Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2023 Volume 26 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2023 Volume 26 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

Monocyte subsets associated with the efficacy of anti‑PD‑1 antibody monotherapy

  • Authors:
    • Ryotaro Ohkuma
    • Yuki Fujimoto
    • Katsuaki Ieguchi
    • Nobuyuki Onishi
    • Makoto Watanabe
    • Daisuke Takayanagi
    • Tsubasa Goshima
    • Atsushi Horiike
    • Kazuyuki Hamada
    • Hirotsugu Ariizumi
    • Yuya Hirasawa
    • Tomoyuki Ishiguro
    • Risako Suzuki
    • Nana Iriguchi
    • Toshiaki Tsurui
    • Yosuke Sasaki
    • Mayumi Homma
    • Toshiko Yamochi
    • Kiyoshi Yoshimura
    • Mayumi Tsuji
    • Yuji Kiuchi
    • Shinichi Kobayashi
    • Takuya Tsunoda
    • Satoshi Wada
  • View Affiliations / Copyright

    Affiliations: Division of Medical Oncology, Department of Medicine, School of Medicine, Showa University, Tokyo 142‑8555, Japan, Department of Clinical Diagnostic Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan, Department of Pathology, Showa University School of Medicine, Tokyo 157‑8577, Japan, Department of Pathology, Showa University School of Medicine, Tokyo 157‑8577, Japan, Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142‑8555, Japan, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo 157‑8577, Japan
    Copyright: © Ohkuma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 381
    |
    Published online on: July 20, 2023
       https://doi.org/10.3892/ol.2023.13967
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Immune checkpoint inhibitors (ICIs) are among the most notable advances in cancer immunotherapy; however, reliable biomarkers for the efficacy of ICIs are yet to be reported. Programmed death (PD)‑ligand 1 (L1)‑expressing CD14+ monocytes are associated with shorter overall survival (OS) time in patients with cancer treated with anti‑PD‑1 antibodies. The present study focused on the classification of monocytes into three subsets: Classical, intermediate and non‑classical. A total of 44 patients with different types of cancer treated with anti‑PD‑1 monotherapy (pembrolizumab or nivolumab) were enrolled in the present study. The percentage of each monocyte subset was investigated, and the percentage of cells expressing PD‑L1 or PD‑1 within each of the three subsets was further analyzed. Higher pretreatment classical monocyte percentages were correlated with shorter OS (r=‑0.32; P=0.032), whereas higher non‑classical monocyte percentages were correlated with a favorable OS (r=0.39; P=0.0083). PD‑L1‑expressing classical monocytes accounted for a higher percentage of the total monocytes than non‑classical monocytes with PD‑L1 expression. In patients with non‑small cell lung cancer (NSCLC), a higher percentage of PD‑L1‑expressing classical monocytes was correlated with shorter OS (r=‑0.60; P=0.012), which is similar to the observation for the whole patient cohort. Comparatively, higher percentages of non‑classical monocytes expressing PD‑L1 were significantly associated with better OS, especially in patients with NSCLC (r=0.60; P=0.010). Moreover, a higher percentage of non‑classical monocytes contributed to prolonged progression‑free survival in patients with NSCLC (r=0.50; P=0.042), with similar results for PD‑L1‑expressing non‑classical monocytes. The results suggested that the percentage of monocyte subsets in patients with cancer before anti‑PD‑1 monotherapy may predict the treatment efficacy and prognosis. Furthermore, more classical monocytes and fewer non‑classical monocytes, especially those expressing PD‑L1, are involved in shortening OS time, which may indicate the poor efficiency of anti‑PD‑1 treatment approaches.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Dosset M, Vargas TR, Lagrange A, Boidot R, Végran F, Roussey A, Chalmin F, Dondaine L, Paul C, Lauret Marie-Joseph E, et al: PD-1/PD-L1 pathway: An adaptive immune resistance mechanism to immunogenic chemotherapy in colorectal cancer. Oncoimmunology. 7:e14339812018. View Article : Google Scholar : PubMed/NCBI

2 

Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI

3 

Vaddepally RK, Kharel P, Pandey R, Garje R and Chandra AB: Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel). 12:7382020. View Article : Google Scholar : PubMed/NCBI

4 

Gong J, Chehrazi-Raffle A, Reddi S and Salgia R: Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J Immunother Cancer. 6:82018. View Article : Google Scholar : PubMed/NCBI

5 

Yi M, Niu M, Xu L, Luo S and Wu K: Regulation of PD-L1 expression in the tumor microenvironment. J Hematol Oncol. 14:102021. View Article : Google Scholar : PubMed/NCBI

6 

Bardhan K, Anagnostou T and Boussiotis VA: The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol. 7:5502016. View Article : Google Scholar : PubMed/NCBI

7 

De Marchi P, Leal LF, Duval da Silva V, da Silva ECA, Cordeiro de Lima VC and Reis RM: PD-L1 expression by tumor proportion score (TPS) and combined positive score (CPS) are similar in non-small cell lung cancer (NSCLC). J Clin Pathol. 74:735–740. 2021. View Article : Google Scholar : PubMed/NCBI

8 

Kulangara K, Zhang N, Corigliano E, Guerrero L, Waldroup S, Jaiswal D, Ms MJ, Shah S, Hanks D, Wang J, et al: Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer. Arch Pathol Lab Med. 143:330–337. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Noske A, Wagner DC, Schwamborn K, Foersch S, Steiger K, Kiechle M, Oettler D, Karapetyan S, Hapfelmeier A, Roth W and Weichert W: Interassay and interobserver comparability study of four programmed death-ligand 1 (PD-L1) immunohistochemistry assays in triple-negative breast cancer. Breast. 60:238–244. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A, Hodi FS, Joshua AM, Kefford R, Hersey P, et al: Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody pembrolizumab in melanoma. J Clin Oncol. 34:4102–4109. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Zeng Z, Yang B and Liao Z: Biomarkers in immunotherapy-based precision treatments of digestive system tumors. Front Oncol. 11:6504812021. View Article : Google Scholar : PubMed/NCBI

12 

Hutarew G: PD-L1 testing, fit for routine evaluation? From a pathologist's point of view. Memo. 9:201–206. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Hirsch FR, McElhinny A, Stanforth D, Ranger-Moore J, Jansson M, Kulangara K, Richardson W, Towne P, Hanks D, Vennapusa B, et al: PD-L1 immunohistochemistry assays for lung cancer: Results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol. 12:208–222. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Ohkuma R, Ieguchi K, Watanabe M, Takayanagi D, Goshima T, Onoue R, Hamada K, Kubota Y, Horiike A, Ishiguro T, et al: Increased plasma soluble PD-1 concentration correlates with disease progression in patients with cancer treated with anti-PD-1 antibodies. Biomedicines. 9:19292021. View Article : Google Scholar : PubMed/NCBI

15 

Ando K, Hamada K, Watanabe M, Ohkuma R, Shida M, Onoue R, Kubota Y, Matsui H, Ishiguro T, Hirasawa Y, et al: Plasma levels of soluble PD-L1 correlate with tumor regression in patients with lung and gastric cancer treated with immune checkpoint inhibitors. Anticancer Res. 39:5195–5201. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Ando K, Hamada K, Shida M, Ohkuma R, Kubota Y, Horiike A, Matsui H, Ishiguro T, Hirasawa Y, Ariizumi H, et al: A high number of PD-L1+ CD14+ monocytes in peripheral blood is correlated with shorter survival in patients receiving immune checkpoint inhibitors. Cancer Immunol Immunother. 70:337–348. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Ziegler-Heitbrock L, Ancuta P, Crowe S, Dalod M, Grau V, Hart DN, Leenen PJ, Liu YJ, MacPherson G, Randolph GJ, et al: Nomenclature of monocytes and dendritic cells in blood. Blood. 116:e74–e80. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Wong KL, Yeap WH, Tai JJ, Ong SM, Dang TM and Wong SC: The three human monocyte subsets: Implications for health and disease. Immunol Res. 53:41–57. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Sidibe A, Ropraz P, Jemelin S, Emre Y, Poittevin M, Pocard M, Bradfield PF and Imhof BA: Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours. Nat Commun. 9:3552018. View Article : Google Scholar : PubMed/NCBI

20 

Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al: New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 45:228–247. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al: Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 373:1627–1639. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Iida Y, Tanaka H, Sano H, Suzuki Y, Shimizu H and Urano T: Ectopic expression of PCSK9 by smooth muscle cells contributes to aortic dissection. Ann Vasc Surg. 48:195–203. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Prat M, Le Naour A, Coulson K, Lemée F, Leray H, Jacquemin G, Rahabi MC, Lemaitre L, Authier H, Ferron G, et al: Circulating CD14high CD16low intermediate blood monocytes as a biomarker of ascites immune status and ovarian cancer progression. J Immunother Cancer. 8:e0004722020. View Article : Google Scholar : PubMed/NCBI

25 

Olingy CE, Dinh HQ and Hedrick CC: Monocyte heterogeneity and functions in cancer. J Leukoc Biol. 106:309–322. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Shigeta K, Kosaka T, Kitano S, Yasumizu Y, Miyazaki Y, Mizuno R, Shinojima T, Kikuchi E, Miyajima A, Tanoguchi H, et al: High absolute monocyte count predicts poor clinical outcome in patients with castration-resistant prostate cancer treated with docetaxel chemotherapy. Ann Surg Oncol. 23:4115–4122. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Xu H, Manivannan A, Crane I, Dawson R and Liversidge J: Critical but divergent roles for CD62L and CD44 in directing blood monocyte trafficking in vivo during inflammation. Blood. 112:1166–1174. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Movahedi K, Laoui D, Gysemans C, Baeten M, Stangé G, Van den Bossche J, Mack M, Pipeleers D, In't Veld P, De Baetselier P and Van Ginderachter JA: Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res. 70:5728–5739. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Robinson A, Han CZ, Glass CK and Pollard JW: Monocyte regulation in homeostasis and malignancy. Trends Immunol. 42:104–119. 2021. View Article : Google Scholar : PubMed/NCBI

31 

Tarique AA, Logan J, Thomas E, Holt PG, Sly PD and Fantino E: Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol. 53:676–688. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Richards DM, Hettinger J and Feuerer M: Monocytes and macrophages in cancer: Development and functions. Cancer Microenviron. 6:179–191. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Italiani P and Boraschi D: From monocytes to M1/M2 macrophages: Phenotypical vs functional differentiation. Front Immunol. 5:5142014. View Article : Google Scholar : PubMed/NCBI

34 

Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, Garner H, Trouillet C, de Bruijn MF, Geissmann F and Rodewald HR: Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 518:547–551. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Allavena P, Sica A, Garlanda C and Mantovani A: The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 222:155–161. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Xu Q, Liu H, Qile M and Wuren T: Dynamic changes in myeloid-derived suppressor cells during the menstrual cycle: A pilot study. Front Med (Lausanne). 9:9405542022. View Article : Google Scholar : PubMed/NCBI

37 

Nonaka K, Saio M, Umemura N, Kikuchi A, Takahashi T, Osada S and Yoshida K: Th1 polarization in the tumor microenvironment upregulates the myeloid-derived suppressor-like function of macrophages. Cell Immunol. 369:1044372021. View Article : Google Scholar : PubMed/NCBI

38 

Trikha P and Carson WE III: Signaling pathways involved in MDSC regulation. Biochim Biophys Acta. 1846:55–65. 2014.PubMed/NCBI

39 

Marvel D and Gabrilovich DI: Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. Clin Invest. 125:3356–3364. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Pogoda K, Pyszniak M, Rybojad P and Tabarkiewicz J: Monocytic myeloid-derived suppressor cells as a potent suppressor of tumor immunity in non-small cell lung cancer. Oncol Lett. 12:4785–4794. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Koh J, Kim Y, Lee KY, Hur JY, Kim MS, Kim B, Cho HJ, Lee YC, Bae YH, Ku BM, et al: MDSC subtypes and CD39 expression on CD8+ T cells predict the efficacy of anti-PD-1 immunotherapy in patients with advanced NSCLC. Eur J Immunol. 50:1810–1819. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Broute G, Petracci E, De Matteis S, Canale M, Zampiva I, Priano I, Cravero P, Andrikou K, Burgio MA, Ulivi P, et al: High levels of circulating monocytic myeloid-derived suppressive-like cells are associated with the primary resistance to immune checkpoint inhibitors in advanced non-small cell lung cancer: An exploratory analysis. Front Immunol. 13:8665612022. View Article : Google Scholar : PubMed/NCBI

43 

Feng J, Chen S, Li S, Wu B, Lu J, Tan L, Li J, Song Y, Shi G, Shi YG and Jiang J: The association between monocytic myeloid-derived suppressor cells levels and the anti-tumor efficacy of anti-PD-1 therapy in NSCLC patients. Transl Oncol. 13:1008652020. View Article : Google Scholar : PubMed/NCBI

44 

Sasaki A, Iwashita Y, Shibata K, Matsumoto T, Ohta M and Kitano S: Prognostic value of preoperative peripheral blood monocyte count in patients with hepatocellular carcinoma. Surgery. 139:755–764. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Lee YY, Choi CH, Sung CO, Do IG, Huh S, Song T, Kim MK, Kim HJ, Kim TJ, Lee JW, et al: Prognostic value of pre-treatment circulating monocyte count in patients with cervical cancer: Comparison with SCC-Ag level. Gynecol Oncol. 124:92–97. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Sanford DE, Belt BA, Panni RZ, Mayer A, Deshpande AD, Carpenter D, Mitchem JB, Plambeck-Suess SM, Worley LA, Goetz BD, et al: Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: A role for targeting the CCL2/CCR2 axis. Clin Cancer Res. 19:3404–3415. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Hayashi T, Fujita K, Nojima S, Hayashi Y, Nakano K, Ishizuya Y, Wang C, Yamamoto Y, Kinouchi T, Matsuzaki K, et al: Peripheral blood monocyte count reflecting tumor-infiltrating macrophages is a predictive factor of adverse pathology in radical prostatectomy specimens. Prostate. 77:1383–1388. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Feng F, Zheng G, Wang Q, Liu S, Liu Z, Xu G, Wang F, Guo M, Lian X and Zhang H: Low lymphocyte count and high monocyte count predicts poor prognosis of gastric cancer. BMC Gastroenterol. 18:1482018. View Article : Google Scholar : PubMed/NCBI

49 

Parikh K, Kumar A, Ahmed J, Anwar A, Puccio C, Chun H, Fanucchi M and Lim SH: Peripheral monocytes and neutrophils predict response to immune checkpoint inhibitors in patients with metastatic non-small cell lung cancer. Cancer Immunol Immunother. 67:1365–1370. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Yasuoka H, Asai A, Ohama H, Tsuchimoto Y, Fukunishi S and Higuchi K: Increased both PD-L1 and PD-L2 expressions on monocytes of patients with hepatocellular carcinoma was associated with a poor prognosis. Sci Rep. 10:103772020. View Article : Google Scholar : PubMed/NCBI

51 

Riemann D, Schütte W, Turzer S, Seliger B and Möller M: High PD-L1/CD274 expression of monocytes and blood dendritic cells is a risk factor in lung cancer patients undergoing treatment with PD1 inhibitor therapy. Cancers (Basel). 12:29662020. View Article : Google Scholar : PubMed/NCBI

52 

Zhang W, Liu Y, Yan Z, Yang H, Sun W, Yao Y, Chen Y and Jiang R: IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J Immunother Cancer. 8:e0002852020. View Article : Google Scholar : PubMed/NCBI

53 

Jeon SH, Lee YJ, Kim HD, Nam H, Ryoo BY, Park SH, Yoo C and Shin EC: Dynamic changes in peripheral blood monocytes early after anti-PD-1 therapy predict clinical outcomes in hepatocellular carcinoma. Cancer Immunol Immunother. 28:371–384. 2023. View Article : Google Scholar : PubMed/NCBI

54 

Bianchini M, Duchêne J, Santovito D, Schloss MJ, Evrard M, Winkels H, Aslani M, Mohanta SK, Horckmans M, Blanchet X, et al: PD-L1 expression on nonclassical monocytes reveals their origin and immunoregulatory function. Sci Immunol. 4:eaar30542019. View Article : Google Scholar : PubMed/NCBI

55 

Noman MZ and Chouaib S: Targeting hypoxia at the forefront of anticancer immune responses. Oncoimmunology. 3:e9544632015. View Article : Google Scholar : PubMed/NCBI

56 

Reck M, Kerr KM, Grohé C, Manegold C, Pavlakis N, Paz-Ares L, Huber RM, Popat S, Thatcher N, Park K, et al: Defining aggressive or early progressing nononcogene-addicted non-small-cell lung cancer: A separate disease entity? Future Oncol. 15:1363–1383. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Shen X and Zhao B: Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis. BMJ. 362:k35292018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ohkuma R, Fujimoto Y, Ieguchi K, Onishi N, Watanabe M, Takayanagi D, Goshima T, Horiike A, Hamada K, Ariizumi H, Ariizumi H, et al: Monocyte subsets associated with the efficacy of anti‑PD‑1 antibody monotherapy. Oncol Lett 26: 381, 2023.
APA
Ohkuma, R., Fujimoto, Y., Ieguchi, K., Onishi, N., Watanabe, M., Takayanagi, D. ... Wada, S. (2023). Monocyte subsets associated with the efficacy of anti‑PD‑1 antibody monotherapy. Oncology Letters, 26, 381. https://doi.org/10.3892/ol.2023.13967
MLA
Ohkuma, R., Fujimoto, Y., Ieguchi, K., Onishi, N., Watanabe, M., Takayanagi, D., Goshima, T., Horiike, A., Hamada, K., Ariizumi, H., Hirasawa, Y., Ishiguro, T., Suzuki, R., Iriguchi, N., Tsurui, T., Sasaki, Y., Homma, M., Yamochi, T., Yoshimura, K., Tsuji, M., Kiuchi, Y., Kobayashi, S., Tsunoda, T., Wada, S."Monocyte subsets associated with the efficacy of anti‑PD‑1 antibody monotherapy". Oncology Letters 26.3 (2023): 381.
Chicago
Ohkuma, R., Fujimoto, Y., Ieguchi, K., Onishi, N., Watanabe, M., Takayanagi, D., Goshima, T., Horiike, A., Hamada, K., Ariizumi, H., Hirasawa, Y., Ishiguro, T., Suzuki, R., Iriguchi, N., Tsurui, T., Sasaki, Y., Homma, M., Yamochi, T., Yoshimura, K., Tsuji, M., Kiuchi, Y., Kobayashi, S., Tsunoda, T., Wada, S."Monocyte subsets associated with the efficacy of anti‑PD‑1 antibody monotherapy". Oncology Letters 26, no. 3 (2023): 381. https://doi.org/10.3892/ol.2023.13967
Copy and paste a formatted citation
x
Spandidos Publications style
Ohkuma R, Fujimoto Y, Ieguchi K, Onishi N, Watanabe M, Takayanagi D, Goshima T, Horiike A, Hamada K, Ariizumi H, Ariizumi H, et al: Monocyte subsets associated with the efficacy of anti‑PD‑1 antibody monotherapy. Oncol Lett 26: 381, 2023.
APA
Ohkuma, R., Fujimoto, Y., Ieguchi, K., Onishi, N., Watanabe, M., Takayanagi, D. ... Wada, S. (2023). Monocyte subsets associated with the efficacy of anti‑PD‑1 antibody monotherapy. Oncology Letters, 26, 381. https://doi.org/10.3892/ol.2023.13967
MLA
Ohkuma, R., Fujimoto, Y., Ieguchi, K., Onishi, N., Watanabe, M., Takayanagi, D., Goshima, T., Horiike, A., Hamada, K., Ariizumi, H., Hirasawa, Y., Ishiguro, T., Suzuki, R., Iriguchi, N., Tsurui, T., Sasaki, Y., Homma, M., Yamochi, T., Yoshimura, K., Tsuji, M., Kiuchi, Y., Kobayashi, S., Tsunoda, T., Wada, S."Monocyte subsets associated with the efficacy of anti‑PD‑1 antibody monotherapy". Oncology Letters 26.3 (2023): 381.
Chicago
Ohkuma, R., Fujimoto, Y., Ieguchi, K., Onishi, N., Watanabe, M., Takayanagi, D., Goshima, T., Horiike, A., Hamada, K., Ariizumi, H., Hirasawa, Y., Ishiguro, T., Suzuki, R., Iriguchi, N., Tsurui, T., Sasaki, Y., Homma, M., Yamochi, T., Yoshimura, K., Tsuji, M., Kiuchi, Y., Kobayashi, S., Tsunoda, T., Wada, S."Monocyte subsets associated with the efficacy of anti‑PD‑1 antibody monotherapy". Oncology Letters 26, no. 3 (2023): 381. https://doi.org/10.3892/ol.2023.13967
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team