|
1
|
Du L, Zhao Z, Zheng R, Li H, Zhang S, Li
R, Wei W and He J: Epidemiology of thyroid cancer: Incidence and
mortality in China, 2015. Front Oncol. 10:17022020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Global Burden of Disease Cancer
Collaboration, . Fitzmaurice C, Dicker D, Pain A, Hamavid H,
Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G, Woodbrook R, et
al: The global burden of cancer 2013. JAMA Oncol. 1:505–527. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lim H, Devesa SS, Sosa JA, Check D and
Kitahara CM: Trends in thyroid cancer incidence and mortality in
the United States, 1974–2013. JAMA. 317:1338–1348. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kim J, Gosnell JE and Roman SA: Geographic
influences in the global rise of thyroid cancer. Nat Rev
Endocrinol. 16:17–29. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bilder RM: Phenomics: Building scaffolds
for biological hypotheses in the post-genomic era. Biol Psychiatry.
63:439–440. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hyman DM, Taylor BS and Baselga J:
Implementing genome-driven oncology. Cell. 168:584–599. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Song YS and Park YJ: Genomic
characterization of differentiated thyroid carcinoma. Endocrinol
Metab (Seoul). 34:1–10. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kumar D, Bansal G, Narang A, Basak T,
Abbas T and Dash D: Integrating transcriptome and proteome
profiling: Strategies and applications. Proteomics. 16:2533–2544.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Comiskey DF Jr, He H, Liyanarachchi S,
Sheikh MS, Genutis LK, Hendrickson IV, Yu L, Brock PL and de la
Chapelle A: Variants in LRRC34 reveal distinct mechanisms for
predisposition to papillary thyroid carcinoma. J Med Genet.
57:519–527. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Corrado A, Aceto R, Silvestri R, Dell'Anno
I, Ricci B, Miglietta S, Romei C, Giovannoni R, Poliseno L,
Evangelista M, et al: Pro64His (rs4644) polymorphism within
galectin-3 is a risk factor of differentiated thyroid carcinoma and
affects the transcriptome of thyrocytes engineered via CRISPR/Cas9
system. Thyroid. 31:1056–1066. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ye L, Zhou X, Huang F, Wang W, Qi Y, Xu H,
Yang S, Shen L, Fei X, Xie J, et al: The genetic landscape of
benign thyroid nodules revealed by whole exome and transcriptome
sequencing. Nat Commun. 8:155332017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Song YS, Kang BH, Lee S, Yoo SK, Choi YS,
Park J, Park DY, Lee KE, Seo JS and Park YJ: Genomic and
transcriptomic characteristics according to size of papillary
thyroid microcarcinoma. Cancers (Basel). 12:13452020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
He H, Liyanarachchi S, Li W, Comiskey DF
Jr, Yan P, Bundschuh R, Turkoglu AM, Brock P, Ringel MD and de la
Chapelle A: Transcriptome analysis discloses dysregulated genes in
normal appearing tumor-adjacent thyroid tissues from patients with
papillary thyroid carcinoma. Sci Rep. 11:141262021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Morillo-Bernal J, Fernández LP and
Santisteban P: FOXE1 regulates migration and invasion in thyroid
cancer cells and targets ZEB1. Endocr Relat Cancer. 27:137–151.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Barros-Filho MC, de Mello JBH, Marchi FA,
Pinto CAL, da Silva IC, Damasceno PKF, Soares MBP, Kowalski LP and
Rogatto SR: GADD45B transcript is a prognostic marker in papillary
thyroid carcinoma patients treated with total thyroidectomy and
radioiodine therapy. Front Endocrinol (Lausanne). 11:2692020.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ma B, Jiang H, Wen D, Hu J, Han L, Liu W,
Xu W, Shi X, Wei W, Liao T, et al: Transcriptome analyses identify
a metabolic gene signature indicative of dedifferentiation of
papillary thyroid cancer. J Clin Endocrinol Metab. 104:3713–3725.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Credendino SC, Moccia C, Amendola E,
D'Avino G, Di Guida L, Clery E, Greco A, Bellevicine C, Brunetti A,
De Felice M and De Vita G: FOXE1 gene dosage affects thyroid cancer
histology and differentiation in vivo. Int J Mol Sci. 22:252020.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Zhao B, Huang Z, Zhu X, Cai H, Huang Y,
Zhang X, Zhang Z, Lu H, An C, Niu L and Li Z: Clinical significance
of the expression of co-stimulatory molecule B7-H3 in papillary
thyroid carcinoma. Front Cell Dev Biol. 10:8192362022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Akyay OZ, Gov E, Kenar H, Arga KY, Selek
A, Tarkun İ, Canturk Z, Cetinarslan B, Gurbuz Y and Sahin B:
Mapping the molecular basis and markers of papillary thyroid
carcinoma progression and metastasis using global transcriptome and
microRNA profiling. OMICS. 24:148–159. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li Q, Wang P, Sun C, Wang C and Sun Y:
Integrative analysis of methylation and transcriptome identified
epigenetically regulated lncRNAs with prognostic relevance for
thyroid cancer. Front Bioeng Biotechnol. 7:4392020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Guan Y, Bhandari A, Xia E, Kong L, Zhang X
and Wang O: Downregulating integrin subunit alpha 7 (ITGA7)
promotes proliferation, invasion, and migration of papillary
thyroid carcinoma cells through regulating
epithelial-to-mesenchymal transition. Acta Biochim Biophys Sin
(Shanghai). 52:116–124. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ramírez-Moya J, Miliotis C, Baker AR,
Gregory RI, Slack FJ and Santisteban P: An ADAR1-dependent RNA
editing event in the cyclin-dependent kinase CDK13 promotes thyroid
cancer hallmarks. Mol Cancer. 20:1152021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang ML and Liu JX: MALAT1 rs619586
polymorphism functions as a prognostic biomarker in the management
of differentiated thyroid carcinoma. J Cell Physiol. 235:1700–1710.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Saqcena M, Leandro-Garcia LJ, Maag J,
Tchekmedyian V, Krishnamoorthy GP, Tamarapu PP, Tiedje V, Reuter V,
Knauf JA, de Stanchina E, et al: SWI/SNF Complex Mutations Promote
Thyroid Tumor Progression and Insensitivity to Redifferentiation
Therapies. Cancer Discov. 11:1158–1175. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Augenlicht A, Saiselet M,
Decaussin-Petrucci M, Andry G, Dumont JE and Maenhaut C: MiR-7-5p
inhibits thyroid cell proliferation by targeting the EGFR/MAPK and
IRS2/PI3K signaling pathways. Oncotarget. 12:1587–1599. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hou S, Xie X, Zhao J, Wu C, Li N, Meng Z,
Cai C and Tan J: Downregulation of miR-146b-3p inhibits
proliferation and migration and modulates the expression and
location of sodium/iodide symporter in dedifferentiated thyroid
cancer by potentially targeting MUC20. Front Oncol. 10:5663652021.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Huang J, Sun W, Wang Z, Lv C, Zhang T,
Zhang D, Dong W, Shao L, He L, Ji X, et al: FTO suppresses
glycolysis and growth of papillary thyroid cancer via decreasing
stability of APOE mRNA in an N6-methyladenosine-dependent manner. J
Exp Clin Cancer Res. 41:422022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li X, Ruan X, Zhang P, Yu Y, Gao M, Yuan
S, Zhao Z, Yang J and Zhao L: TBX3 promotes proliferation of
papillary thyroid carcinoma cells through facilitating
PRC2-mediated p57KIP2 repression. Oncogene.
37:2773–2792. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liao Y, Hua Y, Li Y, Zhang C, Yu W, Guo P,
Zou K, Li W, Sun Y, Wang R, et al: CRSP8 promotes thyroid cancer
progression by antagonizing IKKα-induced cell differentiation. Cell
Death Differ. 28:1347–1363. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Long MY, Chen JW, Zhu Y, Luo DY, Lin SJ,
Peng XZ, Tan LP and Li HH: Comprehensive circular RNA profiling
reveals the regulatory role of circRNA_0007694 in papillary thyroid
carcinoma. Am J Transl Res. 12:1362–1378. 2020.PubMed/NCBI
|
|
32
|
Ramírez-Moya J, Wert-Lamas L, Acuña-Ruíz
A, Fletcher A, Wert-Carvajal C, McCabe CJ, Santisteban P and
Riesco-Eizaguirre G: Identification of an interactome network
between lncRNAs and miRNAs in thyroid cancer reveals SPTY2D1-AS1 as
a new tumor suppressor. Sci Rep. 12:77062022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cancer Genome Atlas Research Network, .
Integrated genomic characterization of papillary thyroid carcinoma.
Cell. 159:676–690. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho
H, Song YS, Cho SW, Won JK, Shin JY, et al: Comprehensive analysis
of the transcriptional and mutational landscape of follicular and
papillary thyroid cancers. PLoS Genet. 12:e10062392016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Costa V, Esposito R, Ziviello C, Sepe R,
Bim LV, Cacciola NA, Decaussin-Petrucci M, Pallante P, Fusco A and
Ciccodicola A: New somatic mutations and WNK1-B4GALNT3 gene fusion
in papillary thyroid carcinoma. Oncotarget. 6:11242–11251. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Song YS, Won JK, Yoo SK, Jung KC, Kim MJ,
Kim SJ, Cho SW, Lee KE, Yi KH, Seo JS and Park YJ: Comprehensive
transcriptomic and genomic profiling of subtypes of follicular
variant of papillary thyroid carcinoma. Thyroid. 28:1468–1478.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Johnson DN, Furtado LV, Long BC, Zhen CJ,
Wurst M, Mujacic I, Kadri S, Segal JP, Antic T and Cipriani NA:
Noninvasive follicular thyroid neoplasms with papillary-like
nuclear features are genetically and biologically similar to
adenomatous nodules and distinct from papillary thyroid carcinomas
with extensive follicular growth. Arch Pathol Lab Med. 142:838–850.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Nikiforov YE, Seethala RR, Tallini G,
Baloch ZW, Basolo F, Thompson LD, Barletta JA, Wenig BM, Al Ghuzlan
A, Kakudo K, et al: Nomenclature revision for encapsulated
follicular variant of papillary thyroid carcinoma: A paradigm shift
to reduce overtreatment of indolent tumors. JAMA Oncol.
2:1023–1029. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pool C, Walter V, Bann D, Goldenberg D,
Broach J, Hennessy M, Cottrill E, Washburn E, Williams N, Crist H,
et al: Molecular characterization of tumors meeting diagnostic
criteria for the non-invasive follicular thyroid neoplasm with
papillary-like nuclear features (NIFTP). Virchows Arch.
474:341–351. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yoo SK, Song YS, Lee EK, Hwang J, Kim HH,
Jung G, Kim YA, Kim SJ, Cho SW, Won JK, et al: Integrative analysis
of genomic and transcriptomic characteristics associated with
progression of aggressive thyroid cancer. Nat Commun. 10:27642019.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Berdelou A, Lamartina L, Klain M,
Leboulleux S and Schlumberger M: Treatment of refractory thyroid
cancer. Endocr Relat Cancer. 25:R209–R223. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Goossens N, Nakagawa S, Sun X and Hoshida
Y: Cancer biomarker discovery and validation. Transl Cancer Res.
4:256–269. 2015.PubMed/NCBI
|
|
43
|
Bossuyt PM: Where are all the new
omics-based tests? Clin Chem. 60:1256–1257. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Boutros PC: The path to routine use of
genomic biomarkers in the cancer clinic. Genome Res. 25:1508–1513.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Capdevila J, Matos I, Mancuso FM, Iglesias
C, Nuciforo P, Zafon C, Palmer HG, Ogbah Z, Muiños L, Hernando J,
et al: Identification of expression profiles defining distinct
prognostic subsets of radioactive-iodine refractory differentiated
thyroid cancer from the DECISION trial. Mol Cancer Ther.
19:312–317. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Colombo C, Minna E, Gargiuli C, Muzza M,
Dugo M, De Cecco L, Pogliaghi G, Tosi D, Bulfamante G, Greco A, et
al: The molecular and gene/miRNA expression profiles of radioiodine
resistant papillary thyroid cancer. J Exp Clin Cancer Res.
39:2452020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Siraj S, Masoodi T, Siraj AK, Azam S,
Qadri Z, Parvathareddy SK, Bu R, Siddiqui KS, Al-Sobhi SS, AlDawish
M and Al-Kuraya KS: APOBEC SBS13 mutational signature-A novel
predictor of radioactive iodine refractory papillary thyroid
carcinoma. Cancers (Basel). 14:15842022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Franco AT, Ricarte-Filho JC, Laetsch TW
and Bauer AJ: Oncogene-specific inhibition in the treatment of
advanced pediatric thyroid cancer. J Clin Invest. 131:e1526962021.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Boufraqech M and Nilubol N: Multi-omics
signatures and translational potential to improve thyroid cancer
patient outcome. Cancers (Basel). 11:19882019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mainini V, Lalowski M, Gotsopoulos A,
Bitsika V, Baumann M and Magni F: MALDI-imaging mass spectrometry
on tissues. Methods Mol Biol. 1243:139–164. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ucal Y, Eravci M, Tokat F, Duren M, Ince U
and Ozpinar A: Proteomic analysis reveals differential protein
expression in variants of papillary thyroid carcinoma. EuPA Open
Proteom. 17:1–6. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ucal Y, Tokat F, Duren M, Ince U and
Ozpinar A: Peptide profile differences of noninvasive follicular
thyroid neoplasm with papillary-like nuclear features, encapsulated
follicular variant, and classical papillary thyroid carcinoma: An
application of matrix-assisted laser desorption/ionization mass
spectrometry imaging. Thyroid. 29:1125–1137. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lai X, Umbricht CB, Fisher K, Bishop J,
Shi Q and Chen S: Identification of novel biomarker and therapeutic
target candidates for diagnosis and treatment of follicular
carcinoma. J Proteomics. 166:59–67. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gawin M, Wojakowska A, Pietrowska M,
Marczak Ł, Chekan M, Jelonek K, Lange D, Jaksik R, Gruca A and
Widłak P: Proteome profiles of different types of thyroid cancers.
Mol Cell Endocrinol. 472:68–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kurczyk A, Gawin M, Chekan M, Wilk A,
Łakomiec K, Mrukwa G, Frątczak K, Polanska J, Fujarewicz K,
Pietrowska M and Widlak P: Classification of thyroid tumors based
on mass spectrometry imaging of tissue microarrays; a single-pixel
approach. Int J Mol Sci. 21:62892020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Farrokhi Yekta R, Arefi Oskouie A, Rezaei
Tavirani M, Mohajeri-Tehrani MR and Soroush AR: Decreased
apolipoprotein A4 and increased complement component 3 as potential
markers for papillary thyroid carcinoma: A proteomic study. Int J
Biol Markers. 33:455–462. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhang Y, Zhao W, Zhao Y, Mao Y, Su T,
Zhong Y, Wang S, Zhai R, Cheng J, Fang X, et al: Comparative
glycoproteomic profiling of human body fluid between healthy
controls and patients with papillary thyroid carcinoma. J Proteome
Res. 19:2539–2552. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Wang Y, Zhou S, Wang D, Wei T, Zhu J and
Li Z: Complement C4-A and plasminogen as potential biomarkers for
prediction of papillary thyroid carcinoma. Front Endocrinol
(Lausanne). 12:7376382021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Belousov PV, Afanasyeva MA, Gubernatorova
EO, Bogolyubova AV, Uvarova AN, Putlyaeva LV, Ramanauskaite EM,
Kopylov AT, Demin DE, Tatosyan KA, et al: Multi-dimensional
immunoproteomics coupled with in vitro recapitulation of oncogenic
NRASQ61R identifies diagnostically relevant autoantibody
biomarkers in thyroid neoplasia. Cancer Lett. 467:96–106. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Capitoli G, Piga I, Galimberti S, Leni D,
Pincelli AI, Garancini M, Clerici F, Mahajneh A, Brambilla V, Smith
A, et al: MALDI-MSI as a complementary diagnostic tool in
cytopathology: A pilot study for the characterization of thyroid
nodules. Cancers (Basel). 11:13772019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
García-Vence M, Chantada-Vázquez MDP,
Cameselle-Teijeiro JM, Bravo SB and Núñez C: A novel nanoproteomic
approach for the identification of molecular targets associated
with thyroid tumors. Nanomaterials (Basel). 10:23702020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Dai J, Yu X, Han Y, Chai L, Liao Y, Zhong
P, Xie R, Sun X, Huang Q, Wang J, et al: TMT-labeling proteomics of
papillary thyroid carcinoma reveal invasive biomarkers. J Cancer.
11:6122–6132. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhan S, Wang T, Wang M, Li J and Ge W:
In-depth proteomics analysis to identify biomarkers of papillary
thyroid cancer patients older than 45 years with different degrees
of lymph node metastases. Proteomics Clin Appl. 13:e19000302019.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wei X, Zhang Y, Yu S, Li S, Jiang W, Zhu
Y, Xu Y, Yang C, Tian G, Mi J, et al: PDLIM5 identified by
label-free quantitative proteomics as a potential novel biomarker
of papillary thyroid carcinoma. Biochem Biophys Res Commun.
499:338–344. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Orlandella FM, Mariniello RM, Iervolino
PLC, Auletta L, De Stefano AE, Ugolini C, Greco A, Mirabelli P,
Pane K, Franzese M, et al: Junctional adhesion molecule-A is
down-regulated in anaplastic thyroid carcinomas and reduces cancer
cell aggressiveness by modulating p53 and GSK3 α/β pathways. Mol
Carcinog. 58:1181–1193. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Luo D, Zhan S, Xia W, Huang L, Ge W and
Wang T: Proteomics study of serum exosomes from papillary thyroid
cancer patients. Endocr Relat Cancer. 25:879–891. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Jin S, Bao W, Yang YT, Fu Q, Bai Y and Liu
Y: Proteomic analysis of the papillary thyroid microcarcinoma. Ann
Endocrinol (Paris). 80:293–300. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mondaza-Hernandez JL, Moura DS,
Lopez-Alvarez M, Sanchez-Bustos P, Blanco-Alcaina E,
Castilla-Ramirez C, Collini P, Merino-Garcia J, Zamora J,
Carrillo-Garcia J, et al: ISG15 as a prognostic biomarker in
solitary fibrous tumour. Cell Mol Life Sci. 79:4342022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kariri YA, Alsaleem M, Joseph C, Alsaeed
S, Aljohani A, Shiino S, Mohammed OJ, Toss MS, Green AR and Rakha
EA: The prognostic significance of interferon-stimulated gene 15
(ISG15) in invasive breast cancer. Breast Cancer Res Treat.
185:293–305. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang Q, Wang J, Qiao H, Huyan L, Liu B,
Li C, Jiang J, Zhao F, Wang H and Yan J: ISG15 is downregulated by
KLF12 and implicated in maintenance of cancer stem cell-like
features in cisplatin-resistant ovarian cancer. J Cell Mol Med.
25:4395–4407. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Qu T, Zhang W, Yan C, Ren D, Wang Y, Guo
Y, Guo Q, Wang J, Liu L, Han L, et al: ISG15 targets glycosylated
PD-L1 and promotes its degradation to enhance antitumor immune
effects in lung adenocarcinoma. J Transl Med. 21:3412023.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lin P, Yao Z, Sun Y, Li W, Liu Y, Liang K,
Liu Y, Qin J, Hou X and Chen L: Deciphering novel biomarkers of
lymph node metastasis of thyroid papillary microcarcinoma using
proteomic analysis of ultrasound-guided fine-needle aspiration
biopsy samples. J Proteomics. 204:1034142019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Mishall KM, Beadnell TC, Kuenzi BM,
Klimczak DM, Superti-Furga G, Rix U and Schweppe RE: Sustained
activation of the AKT/mTOR and MAP kinase pathways mediate
resistance to the Src inhibitor, dasatinib, in thyroid cancer.
Oncotarget. 8:103014–103031. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Krishnan A, Berthelet J, Renaud E,
Rosigkeit S, Distler U, Stawiski E, Wang J, Modrusan Z, Fiedler M,
Bienz M, et al: Proteogenomics analysis unveils a TFG-RET gene
fusion and druggable targets in papillary thyroid carcinomas. Nat
Commun. 11:20562020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rajalingam K and Dikic I: SnapShot:
Expanding the ubiquitin code. Cell. 164:1074–1074.e1. 2016.
View Article : Google Scholar : PubMed/NCBI
|