Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2023 Volume 26 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 26 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of growth differentiation factor 15 in cancer cachexia (Review)

  • Authors:
    • Tingting Ling
    • Jing Zhang
    • Fuwan Ding
    • Lanlan Ma
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China, Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China, Department of Endocrinology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China, Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China
    Copyright: © Ling et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 462
    |
    Published online on: September 13, 2023
       https://doi.org/10.3892/ol.2023.14049
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Growth differentiation factor 15 (GDF15), a member of the transforming growth factor‑β family, is a stress‑induced cytokine. Under normal circumstances, the expression of GDF15 is low in most tissues. It is highly expressed during tissue injury, inflammation, oxidative stress and cancer. GDF15 has been established as a biomarker in patients with cancer, and is associated with cancer cachexia (CC) and poor survival. CC is a multifactorial metabolic disorder characterized by severe muscle and adipose tissue atrophy, loss of appetite, anemia and bone loss. Cachexia leads to reductions in quality of life and tolerance to anticancer therapy, and results in a poor prognosis in cancer patients. Dysregulated GDF15 levels have been discovered in patients with CC and animal models, where they have been found to be involved in anorexia and weight loss. Although studies have suggested that GDF15 mediates anorexia and weight loss in CC through its neuroreceptor, glial cell‑lineage neurotrophic factor family receptor α‑like, the effects of GDF15 on CC and the potential regulatory mechanisms require further elucidation. In the present review, the characteristics of GDF15 and its roles and molecular mechanisms in CC are elaborated. The targeting of GDF15 as a potential therapeutic strategy for CC is also discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, et al: Cachexia: A new definition. Clin Nutr. 27:793–799. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Baazim H, Antonio-Herrera L and Bergthaler A: The interplay of immunology and cachexia in infection and cancer. Nat Rev Immunol. 22:309–321. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al: Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 12:489–495. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Porporato PE: Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 5:e2002016. View Article : Google Scholar : PubMed/NCBI

5 

Yu J, Choi S, Park A, Do J, Nam D, Kim Y, Noh J, Lee KY, Maeng CH and Park KS: Bone marrow homeostasis is impaired via JAK/STAT and glucocorticoid signaling in cancer cachexia model. Cancers (Basel). 13:10592021. View Article : Google Scholar : PubMed/NCBI

6 

Argilés JM, Stemmler B, López-Soriano FJ and Busquets S: Inter-tissue communication in cancer cachexia. Nat Rev Endocrinol. 15:9–20. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Baracos VE, Martin L, Korc M, Guttridge DC and Fearon KCH: Cancer-associated cachexia. Nat Rev Dis Primers. 4:171052018. View Article : Google Scholar : PubMed/NCBI

8 

Gupta A, Nshuti L, Grewal US, Sedhom R, Check DK, Parsons HM, Blaes AH, Virnig BA, Lustberg MB, Subbiah IM, et al: Financial burden of drugs prescribed for cancer-associated symptoms. JCO Oncol Pract. 18:140–147. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Liu CA, Zhang Q, Ruan GT, Shen LY, Xie HL, Liu T, Tang M, Zhang X, Yang M, Hu CL, et al: Novel diagnostic and prognostic tools for lung cancer cachexia: Based on nutritional and inflammatory status. Front Oncol. 12:8907452022. View Article : Google Scholar : PubMed/NCBI

10 

Malla J, Zahra A, Venugopal S, Selvamani TY, Shoukrie SI, Selvaraj R, Dhanoa RK, Hamouda RK and Mostafa J: What role do inflammatory cytokines play in cancer cachexia? Cureus. 14:e267982022.PubMed/NCBI

11 

Zeng R, Tong C and Xiong X: The molecular basis and therapeutic potential of leukemia inhibitory factor in cancer cachexia. Cancers (Basel). 14:29552022. View Article : Google Scholar : PubMed/NCBI

12 

Lu SW, Pan HC, Hsu YH, Chang KC, Wu LW, Chen WY and Chang MS: IL-20 antagonist suppresses PD-L1 expression and prolongs survival in pancreatic cancer models. Nat Commun. 11:46112020. View Article : Google Scholar : PubMed/NCBI

13 

Di Girolamo D and Tajbakhsh S: Pathological features of tissues and cell populations during cancer cachexia. Cell Regen. 11:152022. View Article : Google Scholar : PubMed/NCBI

14 

Callaway CS, Delitto AE, Patel R, Nosacka RL, D'Lugos AC, Delitto D, Deyhle MR, Trevino JG, Judge SM and Judge AR: IL-8 released from human pancreatic cancer and tumor-associated stromal cells signals through a CXCR2-ERK1/2 axis to induce muscle atrophy. Cancers (Basel). 11:18632019. View Article : Google Scholar : PubMed/NCBI

15 

Xiong H, Ye J, Xie K, Hu W, Xu N and Yang H: Exosomal IL-8 derived from Lung Cancer and Colon Cancer cells induced adipocyte atrophy via NF-κB signaling pathway. Lipids Health Dis. 21:1472022. View Article : Google Scholar : PubMed/NCBI

16 

Suriben R, Chen M, Higbee J, Oeffinger J, Ventura R, Li B, Mondal K, Gao Z, Ayupova D, Taskar P, et al: Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat Med. 26:1264–1270. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Belloum Y, Rannou-Bekono F and Favier FB: Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review). Oncol Rep. 37:2543–2552. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Nissinen TA, Hentilä J, Penna F, Lampinen A, Lautaoja JH, Fachada V, Holopainen T, Ritvos O, Kivelä R and Hulmi JJ: Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses. J Cachexia Sarcopenia Muscle. 9:514–529. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Thibaut MM, Sboarina M, Roumain M, Pötgens SA, Neyrinck AM, Destrée F, Gillard J, Leclercq IA, Dachy G, Demoulin JB, et al: Inflammation-induced cholestasis in cancer cachexia. J Cachexia Sarcopenia Muscle. 12:70–90. 2021. View Article : Google Scholar : PubMed/NCBI

20 

Peyta L, Jarnouen K, Pinault M, Coulouarn C, Guimaraes C, Goupille C, de Barros JP, Chevalier S, Dumas JF, Maillot F, et al: Regulation of hepatic cardiolipin metabolism by TNFα: Implication in cancer cachexia. Biochim Biophys Acta. 1851:1490–1500. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Patel HJ and Patel BM: TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci. 170:56–63. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Black K, Garrett IR and Mundy GR: Chinese hamster ovarian cells transfected with the murine interleukin-6 gene cause hypercalcemia as well as cachexia, leukocytosis and thrombocytosis in tumor-bearing nude mice. Endocrinology. 128:2657–2659. 1991. View Article : Google Scholar : PubMed/NCBI

23 

Bindels LB, Neyrinck AM, Loumaye A, Catry E, Walgrave H, Cherbuy C, Leclercq S, Van Hul M, Plovier H, Pachikian B, et al: Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget. 9:18224–18238. 2018. View Article : Google Scholar : PubMed/NCBI

24 

White JP, Puppa MJ, Narsale A and Carson JA: Characterization of the male ApcMin/+ mouse as a hypogonadism model related to cancer cachexia. Biol Open. 2:1346–1353. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Tracey KJ, Wei H, Manogue KR, Fong Y, Hesse DG, Nguyen HT, Kuo GC, Beutler B, Cotran RS, Cerami A, et al: Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med. 167:1211–1227. 1988. View Article : Google Scholar : PubMed/NCBI

26 

Johns N, Stretch C, Tan BH, Solheim TS, Sørhaug S, Stephens NA, Gioulbasanis I, Skipworth RJ, Deans DA, Vigano A, et al: New genetic signatures associated with cancer cachexia as defined by low skeletal muscle index and weight loss. J Cachexia Sarcopenia Muscle. 8:122–130. 2017. View Article : Google Scholar : PubMed/NCBI

27 

Zhong X, Narasimhan A, Silverman LM, Young AR, Shahda S, Liu S, Wan J, Liu Y, Koniaris LG and Zimmers TA: Sex specificity of pancreatic cancer cachexia phenotypes, mechanisms, and treatment in mice and humans: Role of Activin. J Cachexia Sarcopenia Muscle. 13:2146–2161. 2022. View Article : Google Scholar : PubMed/NCBI

28 

Avancini A, Trestini I, Tregnago D, Lanza M, Menis J, Belluomini L, Milella M and Pilotto S: A multimodal approach to cancer-related cachexia: from theory to practice. Expert Rev Anticancer Ther. 21:819–826. 2021. View Article : Google Scholar : PubMed/NCBI

29 

Lockhart SM, Saudek V and O'Rahilly S: GDF15: A hormone conveying somatic distress to the brain. Endocr Rev. 41:bnaa0072020. View Article : Google Scholar : PubMed/NCBI

30 

Lerner L, Tao J, Liu Q, Nicoletti R, Feng B, Krieger B, Mazsa E, Siddiquee Z, Wang R, Huang L, et al: MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J Cachexia Sarcopenia Muscle. 7:467–482. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Suzuki H, Mitsunaga S, Ikeda M, Aoyama T, Yoshizawa K, Yoshimatsu H, Kawai N, Masuda M, Miura T and Ochiai A: Clinical and tumor characteristics of patients with high serum levels of growth differentiation factor 15 in advanced pancreatic cancer. Cancers (Basel). 13:48422021. View Article : Google Scholar : PubMed/NCBI

32 

Lerner L, Hayes TG, Tao N, Krieger B, Feng B, Wu Z, Nicoletti R, Chiu MI, Gyuris J and Garcia JM: Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J Cachexia Sarcopenia Muscle. 6:317–324. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Johnen H, Lin S, Kuffner T, Brown DA, Tsai VW, Bauskin AR, Wu L, Pankhurst G, Jiang L, Junankar S, et al: Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med. 13:1333–1340. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Li P, Lv H, Zhang B, Duan R, Zhang X, Lin P, Song C and Liu Y: Growth differentiation factor 15 protects SH-SY5Y cells from rotenone-induced toxicity by suppressing mitochondrial apoptosis. Front Aging Neurosci. 14:8695582022. View Article : Google Scholar : PubMed/NCBI

35 

Asrih M, Wei S, Nguyen TT, Yi HS, Ryu D and Gariani K: Overview of growth differentiation factor 15 in metabolic syndrome. J Cell Mol Med. 27:1157–1167. 2023. View Article : Google Scholar : PubMed/NCBI

36 

Wan Y and Fu J: GDF15 as a key disease target and biomarker: Linking chronic lung diseases and ageing. Mol Cell Biochem. Apr 24–2023.(Epub ahead of print). View Article : Google Scholar

37 

Assadi A, Zahabi A and Hart RA: GDF15, an update of the physiological and pathological roles it plays: A review. Pflugers Arch. 472:1535–1546. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Johann K, Kleinert M and Klaus S: The Role of GDF15 as a Myomitokine. Cells. 10:29902021. View Article : Google Scholar : PubMed/NCBI

39 

Wischhusen J, Melero I and Fridman WH: Growth/Differentiation Factor-15 (GDF-15): From biomarker to novel targetable immune checkpoint. Front Immunol. 11:9512020. View Article : Google Scholar : PubMed/NCBI

40 

Tsai VW, Brown DA and Breit SN: Targeting the divergent TGFβ superfamily cytokine MIC-1/GDF15 for therapy of anorexia/cachexia syndromes. Curr Opin Support Palliat Care. 12:404–409. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Siddiqui JA, Pothuraju R, Khan P, Sharma G, Muniyan S, Seshacharyulu P, Jain M, Nasser MW and Batra SK: Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev. 64:71–83. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Niu Y, Zhang W, Shi J, Liu Y, Zhang H, Lin N, Li X, Qin L, Yang Z and Su Q: The relationship between circulating growth differentiation factor 15 levels and diabetic retinopathy in patients with type 2 diabetes. Front Endocrinol (Lausanne). 12:6273952021. View Article : Google Scholar : PubMed/NCBI

43 

Tsui KH, Hsu SY, Chung LC, Lin YH, Feng TH, Lee TY, Chang PL and Juang HH: Growth differentiation factor-15: A p53- and demethylation-upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells. Sci Rep. 5:128702015. View Article : Google Scholar : PubMed/NCBI

44 

Joo M, Kim D, Lee MW, Lee HJ and Kim JM: GDF15 promotes cell growth, migration, and invasion in gastric cancer by inducing STAT3 activation. Int J Mol Sci. 24:29252023. View Article : Google Scholar : PubMed/NCBI

45 

Li S, Ma YM, Zheng PS and Zhang P: GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J Exp Clin Cancer Res. 37:802018. View Article : Google Scholar : PubMed/NCBI

46 

Spanopoulou A and Gkretsi V: Growth differentiation factor 15 (GDF15) in cancer cell metastasis: From the cells to the patients. Clin Exp Metastasis. 37:451–464. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Rochette L, Dogon G, Zeller M, Cottin Y and Vergely C: GDF15 and cardiac cells: Current concepts and new insights. Int J Mol Sci. 22:88892021. View Article : Google Scholar : PubMed/NCBI

48 

Li L, Zhang R, Yang H, Zhang D, Liu J, Li J and Guo B: GDF15 knockdown suppresses cervical cancer cell migration in vitro through the TGF-β/Smad2/3/Snail1 pathway. FEBS Open Bio. 10:2750–2760. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Wang CY, Huang AQ, Zhou MH and Mei YA: GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells. Biochem J. 460:35–47. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Park SH, Yu M, Kim J and Moon Y: C/EBP homologous protein promotes NSAID-activated gene 1-linked pro-inflammatory signals and enterocyte invasion by enteropathogenic Escherichia coli. Microbes Infect. 19:110–121. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Molfino A, Amabile MI, Imbimbo G, Rizzo V, Pediconi F, Catalano C, Emiliani A, Belli R, Ramaccini C, Parisi C, et al: Association between growth differentiation factor-15 (GDF-15) serum levels, anorexia and low muscle mass among cancer patients. Cancers (Basel). 13:992020. View Article : Google Scholar : PubMed/NCBI

52 

Sabatini PV, Frikke-Schmidt H, Arthurs J, Gordian D, Patel A, Rupp AC, Adams JM, Wang J, Beck Jørgensen S, Olson DP, et al: GFRAL-expressing neurons suppress food intake via aversive pathways. Proc Natl Acad Sci USA. 118:e20213571182021. View Article : Google Scholar : PubMed/NCBI

53 

Cimino I, Kim H, Tung YCL, Pedersen K, Rimmington D, Tadross JA, Kohnke SN, Neves-Costa A, Barros A, Joaquim S, et al: Activation of the hypothalamic-pituitary-adrenal axis by exogenous and endogenous GDF15. Proc Natl Acad Sci USA. 118:e21068681182021. View Article : Google Scholar : PubMed/NCBI

54 

Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH and Kwon HY: Cancer cachexia: Molecular mechanisms and treatment strategies. J Hematol Oncol. 16:542023. View Article : Google Scholar : PubMed/NCBI

55 

Bloch SA, Lee JY, Syburra T, Rosendahl U, Griffiths MJ, Kemp PR and Polkey MI: Increased expression of GDF-15 may mediate ICU-acquired weakness by down-regulating muscle microRNAs. Thorax. 70:219–228. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Yamamoto H, Takeshima F, Haraguchi M, Akazawa Y, Matsushima K, Kitayama M, Ogihara K, Tabuchi M, Hashiguchi K, Yamaguchi N, et al: High serum concentrations of growth differentiation factor-15 and their association with Crohn's disease and a low skeletal muscle index. Sci Rep. 12:65912022. View Article : Google Scholar : PubMed/NCBI

57 

Garfield BE, Crosby A, Shao D, Yang P, Read C, Sawiak S, Moore S, Parfitt L, Harries C, Rice M, et al: Growth/differentiation factor 15 causes TGFβ-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension. Thorax. 74:164–176. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Deng M, Bian Y, Zhang Q, Zhou X and Hou G: Growth differentiation factor-15 as a biomarker for sarcopenia in patients with chronic obstructive pulmonary disease. Front Nutr. 9:8970972022. View Article : Google Scholar : PubMed/NCBI

59 

Song M, Zhang Q, Tang M, Zhang X, Ruan G, Zhang X, Zhang K, Ge Y, Yang M, Li Q, et al: Associations of low hand grip strength with 1 year mortality of cancer cachexia: A multicentre observational study. J Cachexia Sarcopenia Muscle. 12:1489–1500. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Zhang W, Sun W, Gu X, Miao C, Feng L, Shen Q, Liu X and Zhang X: GDF-15 in tumor-derived exosomes promotes muscle atrophy via Bcl-2/caspase-3 pathway. Cell Death Discov. 8:1622022. View Article : Google Scholar : PubMed/NCBI

61 

Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, Moroney JW, Reed CH, Luban NL, Wang RH, et al: High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 13:1096–1101. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Zhou D, Zhang Y, Mamtawla G, Wan S, Gao X, Zhang L, Li G and Wang X: Iron overload is related to muscle wasting in patients with cachexia of gastric cancer: using quantitative proteome analysis. Med Oncol. 37:1132020. View Article : Google Scholar : PubMed/NCBI

63 

Martin A, Castells J, Allibert V, Emerit A, Zolotoff C, Cardot-Ruffino V, Gallot YS, Vernus B, Chauvet V, Bartholin L, et al: Hypothalamic-pituitary-adrenal axis activation and glucocorticoid-responsive gene expression in skeletal muscle and liver of Apc mice. J Cachexia Sarcopenia Muscle. 13:1686–1703. 2022. View Article : Google Scholar : PubMed/NCBI

64 

Laurens C, Parmar A, Murphy E, Carper D, Lair B, Maes P, Vion J, Boulet N, Fontaine C, Marquès M, et al: Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight. 5:e1318702020. View Article : Google Scholar : PubMed/NCBI

65 

Fouladiun M, Körner U, Bosaeus I, Daneryd P, Hyltander A and Lundholm KG: Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care-correlations with food intake, metabolism, exercise capacity, and hormones. Cancer. 103:2189–2198. 2005. View Article : Google Scholar : PubMed/NCBI

66 

Elattar S, Dimri M and Satyanarayana A: The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J. 32:4727–4743. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Weber BZC, Arabaci DH and Kir S: Metabolic reprogramming in adipose tissue during cancer cachexia. Front Oncol. 12:8483942022. View Article : Google Scholar : PubMed/NCBI

68 

Plotkin LI, Sanz N and Brun LR: Messages from the Mineral: How bone cells communicate with other tissues. Calcif Tissue Int. 113:39–47. 2023. View Article : Google Scholar : PubMed/NCBI

69 

Zhang Y, Wang H, Zhu G, Qian A and Chen W: F2r negatively regulates osteoclastogenesis through inhibiting the Akt and NFκB signaling pathways. Int J Biol Sci. 16:1629–1639. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Zwickl H, Zwickl-Traxler E, Haushofer A, Seier J, Podar K, Weber M, Hackner K, Jacobi N, Pecherstorfer M and Vallet S: Effect of cachexia on bone turnover in cancer patients: A case-control study. BMC Cancer. 21:7442021. View Article : Google Scholar : PubMed/NCBI

71 

Bonetto A, Kays JK, Parker VA, Matthews RR, Barreto R, Puppa MJ, Kang KS, Carson JA, Guise TA, Mohammad KS, et al: Differential bone loss in mouse models of colon cancer cachexia. Front Physiol. 7:6792016.PubMed/NCBI

72 

Pin F, Jones AJ, Huot JR, Narasimhan A, Zimmers TA, Bonewald LF and Bonetto A: RANKL blockade reduces cachexia and bone loss induced by non-metastatic ovarian cancer in mice. J Bone Miner Res. 37:381–396. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Adesina OO, Jenkins IC, Wu QV, Fung EB, Narla RR, Lipkin EW, Mahajan K, Konkle BA and Kruse-Jarres R: Urinary cross-linked carboxyterminal telopeptide, a bone resorption marker, decreases after vaso-occlusive crises in adults with sickle cell disease. Blood Cells Mol Dis. 80:1023692020. View Article : Google Scholar : PubMed/NCBI

74 

Cameron ME, Underwood PW, Williams IE, George TJ, Judge SM, Yarrow JF, Trevino JG and Judge AR: Osteopenia is associated with wasting in pancreatic adenocarcinoma and predicts survival after surgery. Cancer Med. 11:50–60. 2022. View Article : Google Scholar : PubMed/NCBI

75 

Westhrin M, Moen SH, Holien T, Mylin AK, Heickendorff L, Olsen OE, Sundan A, Turesson I, Gimsing P, Waage A and Standal T: Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease. Haematologica. 100:e511–e514. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Hinoi E, Ochi H, Takarada T, Nakatani E, Iezaki T, Nakajima H, Fujita H, Takahata Y, Hidano S, Kobayashi T, et al: Positive regulation of osteoclastic differentiation by growth differentiation factor 15 upregulated in osteocytic cells under hypoxia. J Bone Miner Res. 27:938–949. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Wakchoure S, Swain TM, Hentunen TA, Bauskin AR, Brown DA, Breit SN, Vuopala KS, Harris KW and Selander KS: Expression of macrophage inhibitory cytokine-1 in prostate cancer bone metastases induces osteoclast activation and weight loss. Prostate. 69:652–661. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Siddiqui JA, Seshacharyulu P, Muniyan S, Pothuraju R, Khan P, Vengoji R, Chaudhary S, Maurya SK, Lele SM, Jain M, et al: GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Res. 10:62022. View Article : Google Scholar : PubMed/NCBI

79 

Ahmed DS, Isnard S, Lin J, Routy B and Routy JP: GDF15/GFRAL pathway as a metabolic signature for cachexia in patients with cancer. J Cancer. 12:1125–1132. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Zhang XW, Zhang Q, Song MM, Zhang KP, Zhang X, Ruan GT, Yang M, Ge YZ, Tang M, Li XR, et al: The prognostic effect of hemoglobin on patients with cancer cachexia: A multicenter retrospective cohort study. Support Care Cancer. 30:875–885. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Wang B, Wang Y, Chen H, Yao S, Lai X, Qiu Y, Cai J, Huang Y, Wei X, Guan Y, et al: Inhibition of TGFβ improves hematopoietic stem cell niche and ameliorates cancer-related anemia. Stem Cell Res Ther. 12:652021. View Article : Google Scholar : PubMed/NCBI

82 

Jiang F, Yu WJ, Wang XH, Tang YT, Guo L and Jiao XY: Regulation of hepcidin through GDF-15 in cancer-related anemia. Clin Chim Acta. 428:14–19. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Balsano R, Kruize Z, Lunardi M, Comandatore A, Barone M, Cavazzoni A, Re Cecconi AD, Morelli L, Wilmink H, Tiseo M, et al: Transforming growth factor-beta signaling in cancer-induced cachexia: From molecular pathways to the clinics. Cells. 11:26712022. View Article : Google Scholar : PubMed/NCBI

84 

Liu S, Ren J and Ten Dijke P: Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther. 6:82021. View Article : Google Scholar : PubMed/NCBI

85 

Greco SH, Tomkötter L, Vahle AK, Rokosh R, Avanzi A, Mahmood SK, Deutsch M, Alothman S, Alqunaibit D, Ochi A, et al: TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia. PLoS One. 10:e01327862015. View Article : Google Scholar : PubMed/NCBI

86 

Wang Z, Jiang P, Liu F, Du X, Ma L, Ye S, Cao H, Sun P, Su N, Lin F, et al: GDF11 Regulates PC12 neural stem cells via ALK5-Dependent PI3K-Akt signaling pathway. Int J Mol Sci. 23:122792022. View Article : Google Scholar : PubMed/NCBI

87 

Jones JE, Cadena SM, Gong C, Wang X, Chen Z, Wang SX, Vickers C, Chen H, Lach-Trifilieff E, Hadcock JR and Glass DJ: Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep. 22:1522–1530. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Zimmers TA, Jiang Y, Wang M, Liang TW, Rupert JE, Au ED, Marino FE, Couch ME and Koniaris LG: Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. Basic Res Cardiol. 112:482017. View Article : Google Scholar : PubMed/NCBI

89 

Ebner N, Anker SD and von Haehling S: Recent developments in the field of cachexia, sarcopenia, and muscle wasting: highlights from the 11th Cachexia Conference. J Cachexia Sarcopenia Muscle. 10:218–225. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Ebner N, Anker SD and von Haehling S: Recent developments in the field of cachexia, sarcopenia, and muscle wasting: Highlights from the 12th Cachexia Conference. J Cachexia Sarcopenia Muscle. 11:274–285. 2020. View Article : Google Scholar : PubMed/NCBI

91 

da Fonseca GWP, Sato R, de Nazaré Nunes Alves MJ and von Haehling S: Current advancements in pharmacotherapy for cancer cachexia. Expert Opin Pharmacother. 24:629–639. 2023. View Article : Google Scholar : PubMed/NCBI

92 

Crawford J, Calle RA, Collins SM, Weng Y, Lubaczewski SL, Buckeridge C, Wang EQ, Harrington MA, Tarachandani A, Rossulek MI, et al: CT108/16-First-in-patient study of the GDF-15 inhibitor ponsegromab in patients with cancer and cachexia: Safety, tolerability, and exploratory measures of efficacy. Proceedings of the 114th Annual Meeting of the American Association for Cancer Research. 14–19. 2023.https://www.abstractsonline.com/pp8/#!/10828/presentation/10304

93 

Kim-Muller JY, Song L, LaCarubba Paulhus B, Pashos E, Li X, Rinaldi A, Joaquim S, Stansfield JC, Zhang J, Robertson A, et al: GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia. Cell Rep. 42:1119472023. View Article : Google Scholar : PubMed/NCBI

94 

Vignjević Petrinović S, Jauković A, Milošević M, Bugarski D and Budeč M: Targeting stress erythropoiesis pathways in cancer. Front Physiol. 13:8440422022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ling T, Zhang J, Ding F and Ma L: Role of growth differentiation factor 15 in cancer cachexia (Review). Oncol Lett 26: 462, 2023.
APA
Ling, T., Zhang, J., Ding, F., & Ma, L. (2023). Role of growth differentiation factor 15 in cancer cachexia (Review). Oncology Letters, 26, 462. https://doi.org/10.3892/ol.2023.14049
MLA
Ling, T., Zhang, J., Ding, F., Ma, L."Role of growth differentiation factor 15 in cancer cachexia (Review)". Oncology Letters 26.5 (2023): 462.
Chicago
Ling, T., Zhang, J., Ding, F., Ma, L."Role of growth differentiation factor 15 in cancer cachexia (Review)". Oncology Letters 26, no. 5 (2023): 462. https://doi.org/10.3892/ol.2023.14049
Copy and paste a formatted citation
x
Spandidos Publications style
Ling T, Zhang J, Ding F and Ma L: Role of growth differentiation factor 15 in cancer cachexia (Review). Oncol Lett 26: 462, 2023.
APA
Ling, T., Zhang, J., Ding, F., & Ma, L. (2023). Role of growth differentiation factor 15 in cancer cachexia (Review). Oncology Letters, 26, 462. https://doi.org/10.3892/ol.2023.14049
MLA
Ling, T., Zhang, J., Ding, F., Ma, L."Role of growth differentiation factor 15 in cancer cachexia (Review)". Oncology Letters 26.5 (2023): 462.
Chicago
Ling, T., Zhang, J., Ding, F., Ma, L."Role of growth differentiation factor 15 in cancer cachexia (Review)". Oncology Letters 26, no. 5 (2023): 462. https://doi.org/10.3892/ol.2023.14049
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team