|
1
|
Howlader N, Forjaz G, Mooradian MJ, Meza
R, Kong CY, Cronin KA, Mariotto AB, Lowy DR and Feuer EJ: The
effect of advances in lung-cancer treatment on population
mortality. N Engl J Med. 383:640–649. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kucherlapati R: Impact of precision
medicine in oncology. Cancer J. 29:1–2. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chen DS and Mellman I: Elements of cancer
immunity and the cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lahiri A, Maji A, Potdar PD, Singh N,
Parikh P, Bisht B, Mukherjee A and Paul MK: Lung cancer
immunotherapy: Progress, pitfalls, and promises. Mol Cancer.
22:402023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hellmann MD, Nathanson T, Rizvi H, Creelan
BC, Sanchez-Vega F, Ahuja A, Ni A, Novik JB, Mangarin LMB,
Abu-Akeel M, et al: Genomic features of response to combination
immunotherapy in patients with advanced non-small-cell lung cancer.
Cancer Cell. 33:843–852.e4. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Overman MJ, Lonardi S, Wong KYM, Lenz HJ,
Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill
A, et al: Durable clinical benefit with Nivolumab plus Ipilimumab
in DNA mismatch repair-deficient/microsatellite instability-high
metastatic colorectal cancer. J Clin Oncol. 36:773–779. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Jenkins RW, Aref AR, Lizotte PH, Ivanova
E, Stinson S, Zhou CW, Bowden M, Deng J, Liu H, Miao D, et al: Ex
Vivo profiling of PD-1 blockade using Organotypic tumor spheroids.
Cancer Discov. 8:196–215. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hugo W, Zaretsky JM, Sun L, Song C, Moreno
BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G,
et al: Genomic and transcriptomic features of response to Anti-PD-1
therapy in metastatic melanoma. Cell. 165:35–44. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Harel M, Ortenberg R, Varanasi SK,
Mangalhara KC, Mardamshina M, Markovits E, Baruch EN, Tripple V,
Arama-Chayoth M, Greenberg E, et al: Proteomics of melanoma
response to immunotherapy reveals mitochondrial dependence. Cell.
179:236–250.e18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jamal-Hanjani M, Quezada SA, Larkin J and
Swanton C: Translational implications of tumor heterogeneity. Clin
Cancer Res. 21:1258–1266. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mestas J and Hughes CC: Of mice and not
men: Differences between mouse and human immunology. J Immunol.
172:2731–2738. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jespersen H, Lindberg MF, Donia M,
Söderberg EMV, Andersen R, Keller U, Ny L, Svane IM, Nilsson LM and
Nilsson JA: Clinical responses to adoptive T-cell transfer can be
modeled in an autologous immune-humanized mouse model. Nat Commun.
8:7072017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhao Y, Shuen TWH, Toh TB, Chan XY, Liu M,
Tan SY, Fan Y, Yang H, Lyer SG, Bonney GK, et al: Development of a
new patient-derived xenograft humanised mouse model to study
human-specific tumour microenvironment and immunotherapy. Gut.
67:1845–1854. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hidalgo M, Amant F, Biankin AV, Budinská
E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo
GM, et al: Patient-derived xenograft models: An emerging platform
for translational cancer research. Cancer Discov. 4:998–1013. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wan ACA: Recapitulating Cell-cell
interactions for Organoid Construction-are biomaterials
dispensable? Trends Biotechnol. 34:711–721. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Clevers H: Modeling development and
disease with organoids. Cell. 165:1586–1597. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Eiraku M, Watanabe K, Matsuo-Takasaki M,
Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma
K and Sasai Y: Self-organized formation of polarized cortical
tissues from ESCs and its active manipulation by extrinsic signals.
Cell Stem Cell. 3:519–532. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Sato T, Vries RG, Snippert HJ, van de
Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters
PJ and Clevers H: Single Lgr5 stem cells build crypt-villus
structures in vitro without a mesenchymal niche. Nature.
459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ,
Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al: Patient-derived
lung cancer organoids as in vitro cancer models for therapeutic
screening. Nat Commun. 10:39912019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shi R, Radulovich N, Ng C, Liu N, Notsuda
H, Cabanero M, Martins-Filho SN, Raghavan V, Li Q, Mer AS, et al:
Organoid cultures as preclinical models of non-small cell lung
cancer. Clin Cancer Res. 26:1162–174. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Strikoudis A, Cieślak A, Loffredo L, Chen
YW, Patel N, Saqi A, Lederer DJ and Snoeck HW: Modeling of fibrotic
lung disease using 3D organoids derived from human pluripotent stem
cells. Cell Rep. 27:3709–3723.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
De Poel E, Lefferts JW and Beekman JM:
Intestinal organoids for Cystic Fibrosis research. J Cyst Fibros.
19:S60–S64. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Paolicelli G, Luca A, Jose SS, Antonini M,
Teloni I, Fric J and Zelante T: Using lung organoids to investigate
epithelial barrier complexity and IL-17 signaling during
respiratory infection. Front Immunol. 10:3232019. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Salahudeen AA, Choi SS, Rustagi A, Zhu J,
de la O SM, Flynn RA, Margalef-Català M, Santos AJM, Ju J, Batish
A, et al: Progenitor identification and SARS-CoV-2 infection in
long-term human distal lung organoid cultures. Preprint. bioRxiv.
Jul 27–2020.doi: 10.1101/2020.07.27.212076. PubMed/NCBI
|
|
25
|
Barkauskas CE, Chung MI, Fioret B, Gao X,
Katsura H and Hogan BL: Lung organoids: Current uses and future
promise. Development. 144:986–997. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Rock JR, Onaitis MW, Rawlins EL, Lu Y,
Clark CP, Xue Y, Randell SH and Hogan BL: Basal cells as stem cells
of the mouse trachea and human airway epithelium. Proc Natl Acad
Sci USA. 106:12771–12775. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
McQualter JL, Yuen K, Williams B and
Bertoncello I: Evidence of an epithelial stem/progenitor cell
hierarchy in the adult mouse lung. Proc Natl Acad Sci USA.
107:1414–9. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen YW, Huang SX, de Carvalho ALRT, Ho
SH, Islam MN, Volpi S, Notarangelo LD, Ciancanelli M, Casanova JL,
Bhattacharya J, et al: A three-dimensional model of human lung
development and disease from pluripotent stem cells. Nat Cell Biol.
19:542–549. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sachs N, Papaspyropoulos A, Zomer-van
Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G,
Iakobachvili N, Amatngalim GD, et al: Long-term expanding human
airway organoids for disease modeling. EMBO J. 38:e1003002019.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Roerink SF, Sasaki N, Lee-Six H, Young MD,
Alexandrov LB, Behjati S, Mitchell TJ, Grossmann S, Lightfoot H,
Egan DA, et al: Intra-tumour diversification in colorectal cancer
at the single-cell level. Nature. 556:457–62. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Subtil B, Iyer KK, Poel D, Bakkerus L,
Gorris MAJ, Escalona JC, van den Dries K, Cambi A, Verheul HMW, de
Vries IJM and Tauriello DVF: Dendritic cell phenotype and function
in a 3D co-culture model of patient-derived metastatic colorectal
cancer organoids. Front Immunol. 14:11052442023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bleijs M, van de Wetering M, Clevers H and
Drost J: Xenograft and organoid model systems in cancer research.
EMBO J. 38:e1016542019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Weiswald LB, Bellet D and Dangles-Marie V:
Spherical cancer models in tumor biology. Neoplasia. 17:1–15. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang R, Zhang J, Chen S, Lu M, Luo X, Yao
S, Liu S, Qin Y and Chen H: Tumor-associated macrophages provide a
suitable microenvironment for non-small lung cancer invasion and
progression. Lung Cancer. 4:188–196. 2011. View Article : Google Scholar
|
|
35
|
de Visser KE and Joyce JA: The evolving
tumor microenvironment: From cancer initiation to metastatic
outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Luckett KA and Ganesh K: Engineering the
immune microenvironment into organoid models. Ann Rev Cancer Biol.
7:171–187. 2023. View Article : Google Scholar
|
|
37
|
Yuki K, Cheng N, Nakano M and Kuo CJ:
Organoid models of tumor immunology. Trends Immunol. 41:652–664.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Powley IR, Patel M, Miles G, Pringle H,
Howells L, Thomas A, Kettleborough C, Bryans J, Hammonds T,
MacFarlane M and Pritchard C: Patient-derived explants (PDEs) as a
powerful preclinical platform for anti-cancer drug and biomarker
discovery. Br J Cancer. 122:735–744. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ouchi T, Morimura S, Dow LE, Miyoshi H and
Udey MC: EpCAM (CD326) regulates intestinal epithelial integrity
and stem cells via Rho-associated kinase. Cells. 10:2562021.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Watanabe K, Ueno M, Kamiya D, Nishiyama A,
Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S,
Muguruma K and Sasai Y: A ROCK inhibitor permits survival of
dissociated human embryonic stem cells. Nat Biotechnol. 25:681–686.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Huo KG, D'Arcangelo E and Tsao MS:
Patient-derived cell line, xenograft and organoid models in lung
cancer therapy. Transl Lung Cancer Res. 9:2214–2232. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Karthaus WR, Iaquinta PJ, Drost J,
Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel
H, Sachs N, et al: Identification of multipotent luminal progenitor
cells in human prostate organoid cultures. Cell. 159:163–175. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pamarthy S and Sabaawy HE: Patient derived
organoids in prostate cancer: Improving therapeutic efficacy in
precision medicine. Mol Cancer. 20:1252021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Weeber F, Ooft SN, Dijkstra KK and Voest
EE: Tumor organoids as a Pre-clinical cancer model for drug
discovery. Cell Chem Biol. 24:1092–1100. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Dijkstra KK, Cattaneo CM, Weeber F,
Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL,
Kaing S, Kelderman S, et al: Generation of tumor-reactive T cells
by Co-culture of peripheral blood lymphocytes and tumor organoids.
Cell. 174:1586–1598.e12. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Takahashi N, Hoshi H, Higa A, Hiyama G,
Tamura H, Ogawa M, Takagi K, Goda K, Okabe N, Muto S, et al: An in
vitro system for evaluating molecular targeted drugs using lung
patient-derived tumor organoids. Cells. 8:4812019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Sontheimer-Phelps A, Hassell BA and Ingber
DE: Modelling cancer in microfluidic human organs-on-chips. Nat Rev
Cancer. 19:65–81. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Aref AR, Campisi M, Ivanova E, Portell A,
Larios D, Piel BP, Mathur N, Zhou C, Coakley RV, Bartels A, et al:
3D microfluidic ex vivo culture of organotypic tumor spheroids to
model immune checkpoint blockade. Lab Chip. 18:3129–3143. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jung DJ, Shin TH, Kim M, Sung CO, Jang SJ
and Jeong GS: A one-stop microfluidic-based lung cancer organoid
culture platform for testing drug sensitivity. Lab Chip.
19:2854–2865. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jenkins RW, Barbie DA and Flaherty KT:
Mechanisms of resistance to immune checkpoint inhibitors. Br J
Cancer. 118:9–16. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kitajima S, Ivanova E, Guo S, Yoshida R,
Campisi M, Sundararaman SK, Tange S, Mitsuishi Y, Thai TC, Masuda
S, et al: Suppression of STING associated with LKB1 loss in
KRAS-driven lung cancer. Cancer Discov. 9:34–45. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Öhlinger K, Kolesnik T, Meindl C, Gallé B,
Absenger-Novak M, Kolb-Lenz D and Fröhlich E: Air-liquid interface
culture changes surface properties of A549 cells. Toxicol In Vitro.
60:369–382. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li X, Ootani A and Kuo C: An Air-liquid
interface culture system for 3D organoid culture of diverse primary
gastrointestinal tissues. Methods Mol Biol. 1422:33–40. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ootani A, Li X, Sangiorgi E, Ho QT, Ueno
H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR and Kuo
CJ: Sustained in vitro intestinal epithelial culture within a
Wnt-dependent stem cell niche. Nat Med. 15:701–706. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li X, Nadauld L, Ootani A, Corney DC, Pai
RK, Gevaert O, Cantrell MA, Rack PG, Neal JT, Chan CW, et al:
Oncogenic transformation of diverse gastrointestinal tissues in
primary organoid culture. Nat Med. 20:769–777. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xia T, Du WL, Chen XY and Zhang YN:
Organoid models of the tumor microenvironment and their
applications. J Cell Mol Med. 25:5829–5841. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Finnberg NK, Gokare P, Lev A, Grivennikov
SI, MacFarlane AW IV, Campbell KS, Winters RM, Kaputa K, Farma JM,
Abbas AE, et al: Application of 3D tumoroid systems to define
immune and cytotoxic therapeutic responses based on tumoroid and
tissue slice culture molecular signatures. Oncotarget.
8:66747–66757. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sachs N, de Ligt J, Kopper O, Gogola E,
Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H,
et al: A living Biobank of breast cancer organoids captures disease
heterogeneity. Cell. 172:373–386.e10. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mu P, Zhou S, Lv T, Xia F, Shen L, Wan J,
Wang Y, Zhang H, Cai S, Peng J, et al: Newly developed 3D in vitro
models to study tumor-immune interaction. J Exp Clin Cancer Res.
42:812023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Koehler KR and Hashino E: 3D mouse
embryonic stem cell culture for generating inner ear organoids. Nat
Protocols. 9:1229–1244. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
El Harane S, Zidi B, El Harane N, Krause
KH, Matthes T and Preynat-Seauve O: Cancer spheroids and organoids
as novel tools for research and therapy: State of the art and
challenges to guide precision medicine. Cells. 12:10012023.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho
BC, Turna HZ, Castro G Jr, Srimuninnimit V, Laktionov KK,
Bondarenko I, et al: Pembrolizumab versus chemotherapy for
previously untreated, PD-L1-expressing, locally advanced or
metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised,
open-label, controlled, phase 3 trial. Lancet. 393:1819–1830. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N,
Zhang L, Zeng WJ, Liu Z and Cheng Q: Regulatory mechanisms of
immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer
Res. 40:1842021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Paz-Ares L, Ciuleanu TE, Cobo M, Schenker
M, Zurawski B, Menezes J, Richardet E, Bennouna J, Felip E,
Juan-Vidal O, et al: First-line nivolumab plus ipilimumab combined
with two cycles of chemotherapy in patients with non-small-cell
lung cancer (CheckMate 9LA): An international, randomised,
open-label, phase 3 trial. Lancet Oncol. 22:198–211. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rudin CM, Awad MM, Navarro A, Gottfried M,
Peters S, Csőszi T, Cheema PK, Rodriguez-Abreu D, Wollner M, Yang
JC, et al: Pembrolizumab or placebo plus etoposide and platinum as
first-line therapy for extensive-stage small-cell lung cancer:
Randomized, double-blind, phase III KEYNOTE-604 study. J Clin
Oncol. 38:2369–2379. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Rizvi H, Sanchez-Vega F, La K, Chatila W,
Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N,
et al: Molecular determinants of response to Anti-programmed cell
death (PD)-1 and Anti-programmed Death-Ligand 1 (PD-L1) blockade in
patients with non-small-cell lung cancer profiled with targeted
next-generation sequencing. J Clin Oncol. 36:633–641. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Felip E, Altorki N, Zhou C, Csőszi T,
Vynnychenko I, Goloborodko O, Luft A, Akopov A, Martinez-Marti A,
Kenmotsu H, et al: Adjuvant atezolizumab after adjuvant
chemotherapy in resected stage IB-IIIA non-small-cell lung cancer
(IMpower010): A randomised, multicentre, open-label, phase 3 trial.
Lancet. 398:1344–1357. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wong DJ, Bauer TM, Gordon MS, Bene-Tchaleu
F, Zhu J, Zhang X and Cha E: Safety and clinical activity of
atezolizumab plus ipilimumab in locally advanced or metastatic
non-small cell lung cancer: Results from a phase 1b trial. Clin
Lung Cancer. 23:273–281. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wong SK and Iams WT: Front line
applications and future directions of immunotherapy in small-cell
lung cancer. Cancers. 13:5062021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Iams WT, Porter J and Horn L:
Immunotherapeutic approaches for small-cell lung cancer. Nat Rev
Clin Oncol. 17:300–312. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mamdani H, Matosevic S, Khalid AB, Durm G
and Jalal SI: Immunotherapy in lung cancer: Current landscape and
future directions. Front Immunol. 13:8236182022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Spitzer MH, Carmi Y, Reticker-Flynn NE,
Kwek SS, Madhireddy D, Martins MM, Gherardini PF, Prestwood TR,
Chabon J, Bendall SC, et al: Systemic immunity is required for
effective cancer immunotherapy. Cell. 168:487–502.e15. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wei SC, Levine JH, Cogdill AP, Zhao Y,
Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D and
Allison JP: Distinct cellular mechanisms underlie Anti-CTLA-4 and
Anti-PD-1 checkpoint blockade. Cell. 170:1120–33.e17. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Huang AC, Postow MA, Orlowski RJ, Mick R,
Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, et al: T-cell
invigoration to tumour burden ratio associated with anti-PD-1
response. Nature. 545:60–65. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kamphorst AO, Pillai RN, Yang S, Nasti TH,
Akondy RS, Wieland A, Sica GL, Yu K, Koenig L, Patel NT, et al:
Proliferation of PD-1+ CD8 T cells in peripheral blood after
PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci
USA. 114:4993–4998. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Motzer RJ, Escudier B, McDermott DF,
George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G,
Plimack ER, et al: Nivolumab versus Everolimus in advanced
renal-cell carcinoma. N Engl J Med. 373:1803–1813. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Migden MR, Rischin D, Schmults CD,
Guminski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya L, Lim
AM, Chang ALS, et al: PD-1 blockade with cemiplimab in advanced
cutaneous squamous-cell carcinoma. N Engl J Med. 379:341–351. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Neal JT, Li X, Zhu J, Giangarra V,
Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et
al: Organoid modeling of the tumor immune microenvironment. Cell.
175:1972–1988.e16. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Larkin J, Chiarion-Sileni V, Gonzalez R,
Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J,
Dummer R, et al: Five-year survival with combined nivolumab and
ipilimumab in advanced melanoma. N Engl J Med. 381:1535–1546. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
González-Rodríguez E, Rodríguez-Abreu D
and Boronat M: Nivolumab for Squamous-cell cancer of head and neck.
N Engl J Med. 376:5952017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Socinski MA, Jotte RM, Cappuzzo F, Orlandi
F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D,
Thomas CA, Barlesi F, et al: Atezolizumab for first-line treatment
of metastatic nonsquamous NSCLC. N Engl J Med. 378:2288–2301. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhou Z, Cong L and Cong X: Patient-derived
organoids in precision medicine: Drug screening, organoid-on-a-chip
and living organoid biobank. Front Oncol. 11:7621842021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kong JCH, Guerra GR, Millen RM, Roth S, Xu
H, Neeson PJ, Darcy PK, Kershaw MH, Sampurno S, Malaterre J, et al:
Tumor-infiltrating lymphocyte function predicts response to
neoadjuvant chemoradiotherapy in locally advanced rectal cancer.
JCO Precis Oncol. 2:1–15. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bhattacharya S, Calar K and de la Puente
P: Mimicking tumor hypoxia and tumor-immune interactions employing
three-dimensional in vitro models. J Exp Clin Cancer Res. 39:1–16.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Halldorsson S, Lucumi E, Gómez-Sjöberg R
and Fleming RMT: Advantages and challenges of microfluidic cell
culture in polydimethylsiloxane devices. Biosens Bioelectron.
63:218–231. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Budczies J, Kirchner M, Kluck K, Kazdal D,
Glade J, Allgäuer M, Kriegsmann M, Heußel CP, Herth FJ, Winter H,
et al: A gene expression signature associated with B cells predicts
benefit from immune checkpoint blockade in lung adenocarcinoma.
Oncoimmunology. 10:18605862021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yi M, Li A, Zhou L, Chu Q, Luo S and Wu K:
Immune signature-based risk stratification and prediction of immune
checkpoint Inhibitor's efficacy for lung adenocarcinoma. Cancer
Immunol Immunother. 70:1705–1719. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yilmaz A, Cui H, Caligiuri MA and Yu J:
Chimeric antigen receptor-engineered natural killer cells for
cancer immunotherapy. J Hematol Oncol. 13:1682021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Dagar G, Gupta A, Masoodi T, Nisar S,
Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, et al:
Harnessing the potential of CAR-T cell therapy: Progress,
challenges, and future directions in hematological and solid tumor
treatments. J Transl Med. 21:4492023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Wen Q, Yang Z, Dai H, Feng A and Li Q:
Radiomics study for predicting the expression of PD-L1 and tumor
mutation burden in non-small cell lung cancer based on CT images
and Clinicopathological features. Front Oncol. 11:6202462021.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chen Q, Zhang L, Mo X, You J, Chen L, Fang
J, Wang F, Jin Z, Zhang B and Zhang S: Current status and quality
of radiomic studies for predicting immunotherapy response and
outcome in patients with non-small cell lung cancer: A systematic
review and meta-analysis. Eur J Nucl Med Mol Imaging. 49:345–360.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Khorrami M, Prasanna P, Gupta A, Patil P,
Velu PD, Thawani R, Corredor G, Alilou M, Bera K, Fu P, et al:
Changes in CT radiomic features associated with lymphocyte
distribution predict overall survival and response to immunotherapy
in non-small cell lung cancer. Cancer Immunol Res. 8:108–19. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Rosenberg SA and Restifo NP: Adoptive cell
transfer as personalized immunotherapy for human cancer. Science.
348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Waldman AD, Fritz JM and Lenardo MJ: A
guide to cancer immunotherapy: From T cell basic science to
clinical practice. Nat Rev Immunol. 20:651–668. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Majzner RG and Mackall CL: Clinical
lessons learned from the first leg of the CAR T cell journey. Nat
Med. 25:1341–1355. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Kaushik G, Venkatesha S, Verma B,
Vishwakarma B, Zhang AH and Wesa A: Preclinical in vitro and in
vivo models for adoptive cell therapy of cancer. Cancer J.
28:257–262. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Dekkers JF, Alieva M, Cleven A, Keramati
F, Wezenaar AKL, van Vliet EJ, Puschhof J, Brazda P, Johanna I,
Meringa AD, et al: Uncovering the mode of action of engineered T
cells in patient cancer organoids. Nat Biotechnol. 41:60–69. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Michie J, Beavis PA, Freeman AJ, Vervoort
SJ, Ramsbottom KM, Narasimhan V, Lelliott EJ, Lalaoui N, Ramsay RG,
Johnstone RW, et al: Antagonism of IAPs enhances CAR T-cell
efficacy. Cancer Immunol Res. 7:183–192. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Schnalzger TE, de Groot MH, Zhang C, Mosa
MH, Michels BE, Röder J, Darvishi T, Wels WS and Farin HF: 3D model
for CAR-mediated cytotoxicity using patient-derived colorectal
cancer organoids. EMBO J. 38:e1009282019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Badalamenti G, Fanale D, Incorvaia L,
Barraco N, Listì A, Maragliano R, Vincenzi B, Calò V, Iovanna JL,
Bazan V and Russo A: Role of tumor-infiltrating lymphocytes in
patients with solid tumors: Can a drop dig a stone. Cell Immunol.
343:1037532019. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Cattaneo CM, Dijkstra KK, Fanchi LF,
Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN
and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc.
15:15–39. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Islam SMR, Maeda T, Tamaoki N, Good ML,
Kishton RJ, Paria BC, Yu Z, Bosch-Marce M, Bedanova NM, Liu C, et
al: Reprogramming of Tumor-reactive Tumor-infiltrating Lymphocytes
to Human-induced pluripotent stem cells. Cancer Res Commun.
3:917–932. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Raimondi G, Mato-Berciano A,
Pascual-Sabater S, Rovira-Rigau M, Cuatrecasas M, Fondevila C,
Sánchez-Cabús S, Begthel H, Boj SF, Clevers H and Fillat C:
Patient-derived pancreatic tumour organoids identify therapeutic
responses to oncolytic adenoviruses. EBioMedicine. 56:1027862020.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Deng J, Wang ES, Jenkins RW, Li S, Dries
R, Yates K, Chhabra S, Huang W, Liu H, Aref AR, et al: CDK4/6
inhibition augments antitumor immunity by enhancing T-cell
activation. Cancer Discov. 8:216–233. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Courau T, Bonnereau J, Chicoteau J,
Bottois H, Remark R, Assante Miranda L, Toubert A, Blery M,
Aparicio T, Allez M and Le Bourhis L: Cocultures of human
colorectal tumor spheroids with immune cells reveal the therapeutic
potential of MICA/B and NKG2A targeting for cancer treatment. J
Immunother Cancer. 7:742019. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Gonzalez-Exposito R, Semiannikova M,
Griffiths B, Khan K, Barber LJ, Woolston A, Spain G, von Loga K,
Challoner B, Patel R, et al: CEA expression heterogeneity and
plasticity confer resistance to the CEA-targeting bispecific
immunotherapy antibody cibisatamab (CEA-TCB) in patient-derived
colorectal cancer organoids. J Immunother Cancer. 7:1012019.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Sun CP, Lan HR, Fang XL, Yang XY and Jin
KT: Organoid models for precision cancer immunotherapy. Front
Immunol. 13:7704652022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kim J, Koo BK and Knoblich JA: Human
organoids: Model systems for human biology and medicine. Nat Rev
Mol Cell Biol. 21:571–584. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Wang HM, Zhang CY, Peng KC, Chen ZX, Su
JW, Li YF, Li WF, Gao QY, Zhang SL, Chen YQ, et al: Using
patient-derived organoids to predict locally advanced or metastatic
lung cancer tumor response: A real-world study. Cell Rep Med.
4:1009112023. View Article : Google Scholar : PubMed/NCBI
|