Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2023 Volume 26 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 26 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Application of organoids in precision immunotherapy of lung cancer (Review)

  • Authors:
    • Huichuan Tian
    • Jiajun Ren
    • Ruiyu Mou
    • Yingjie Jia
  • View Affiliations / Copyright

    Affiliations: Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China
    Copyright: © Tian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 484
    |
    Published online on: September 26, 2023
       https://doi.org/10.3892/ol.2023.14071
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

In immunotherapy, the immune system is modulated in order to treat cancer. Traditional two dimensional in vitro models and in vivo animal models are insufficient to simulate the complex tumor microenvironment (TME) in the original tumor. As tumor immunotherapy involves the immune system, additional tumor mimic models, such as patient‑derived organoids, are required for the evaluation of the efficacy of immunotherapy. Furthermore, non‑tumor components and host tumor cells in the TME may interact to promote cancer incidence, progression, drug resistance and metastasis. It is possible to produce organoid models for lung cancer by retaining endogenous stromal components (e.g., multiple immune cell types), supplying cancer‑associated fibroblasts and exogenous immune cells, constructing tumor vasculature and adding other biological or chemical components that emulate the TME. Therefore, the lung cancer organoid culture platform may facilitate preclinical testing of immunotherapy drugs for lung cancer by mimicking immunotherapy responses. The present review summarizes current lung cancer organoid culture methods for TME modeling and discusses the use of lung cancer‑derived organoids for the detection of lung cancer immunotherapy and individualized cancer immunotherapy.
View Figures

Figure 1

Figure 2

View References

1 

Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, Mariotto AB, Lowy DR and Feuer EJ: The effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 383:640–649. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Kucherlapati R: Impact of precision medicine in oncology. Cancer J. 29:1–2. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A and Paul MK: Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol Cancer. 22:402023. View Article : Google Scholar : PubMed/NCBI

5 

Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, Ni A, Novik JB, Mangarin LMB, Abu-Akeel M, et al: Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 33:843–852.e4. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, et al: Durable clinical benefit with Nivolumab plus Ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 36:773–779. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, Bowden M, Deng J, Liu H, Miao D, et al: Ex Vivo profiling of PD-1 blockade using Organotypic tumor spheroids. Cancer Discov. 8:196–215. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, et al: Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell. 165:35–44. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M, Markovits E, Baruch EN, Tripple V, Arama-Chayoth M, Greenberg E, et al: Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell. 179:236–250.e18. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Jamal-Hanjani M, Quezada SA, Larkin J and Swanton C: Translational implications of tumor heterogeneity. Clin Cancer Res. 21:1258–1266. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Mestas J and Hughes CC: Of mice and not men: Differences between mouse and human immunology. J Immunol. 172:2731–2738. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Jespersen H, Lindberg MF, Donia M, Söderberg EMV, Andersen R, Keller U, Ny L, Svane IM, Nilsson LM and Nilsson JA: Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat Commun. 8:7072017. View Article : Google Scholar : PubMed/NCBI

13 

Zhao Y, Shuen TWH, Toh TB, Chan XY, Liu M, Tan SY, Fan Y, Yang H, Lyer SG, Bonney GK, et al: Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. Gut. 67:1845–1854. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, et al: Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 4:998–1013. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Wan ACA: Recapitulating Cell-cell interactions for Organoid Construction-are biomaterials dispensable? Trends Biotechnol. 34:711–721. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Clevers H: Modeling development and disease with organoids. Cell. 165:1586–1597. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K and Sasai Y: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 3:519–532. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ and Clevers H: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al: Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 10:39912019. View Article : Google Scholar : PubMed/NCBI

20 

Shi R, Radulovich N, Ng C, Liu N, Notsuda H, Cabanero M, Martins-Filho SN, Raghavan V, Li Q, Mer AS, et al: Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res. 26:1162–174. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Strikoudis A, Cieślak A, Loffredo L, Chen YW, Patel N, Saqi A, Lederer DJ and Snoeck HW: Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep. 27:3709–3723.e5. 2019. View Article : Google Scholar : PubMed/NCBI

22 

De Poel E, Lefferts JW and Beekman JM: Intestinal organoids for Cystic Fibrosis research. J Cyst Fibros. 19:S60–S64. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Paolicelli G, Luca A, Jose SS, Antonini M, Teloni I, Fric J and Zelante T: Using lung organoids to investigate epithelial barrier complexity and IL-17 signaling during respiratory infection. Front Immunol. 10:3232019. View Article : Google Scholar : PubMed/NCBI

24 

Salahudeen AA, Choi SS, Rustagi A, Zhu J, de la O SM, Flynn RA, Margalef-Català M, Santos AJM, Ju J, Batish A, et al: Progenitor identification and SARS-CoV-2 infection in long-term human distal lung organoid cultures. Preprint. bioRxiv. Jul 27–2020.doi: 10.1101/2020.07.27.212076. PubMed/NCBI

25 

Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H and Hogan BL: Lung organoids: Current uses and future promise. Development. 144:986–997. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH and Hogan BL: Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA. 106:12771–12775. 2009. View Article : Google Scholar : PubMed/NCBI

27 

McQualter JL, Yuen K, Williams B and Bertoncello I: Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA. 107:1414–9. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Chen YW, Huang SX, de Carvalho ALRT, Ho SH, Islam MN, Volpi S, Notarangelo LD, Ciancanelli M, Casanova JL, Bhattacharya J, et al: A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol. 19:542–549. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G, Iakobachvili N, Amatngalim GD, et al: Long-term expanding human airway organoids for disease modeling. EMBO J. 38:e1003002019. View Article : Google Scholar : PubMed/NCBI

30 

Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, Mitchell TJ, Grossmann S, Lightfoot H, Egan DA, et al: Intra-tumour diversification in colorectal cancer at the single-cell level. Nature. 556:457–62. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Subtil B, Iyer KK, Poel D, Bakkerus L, Gorris MAJ, Escalona JC, van den Dries K, Cambi A, Verheul HMW, de Vries IJM and Tauriello DVF: Dendritic cell phenotype and function in a 3D co-culture model of patient-derived metastatic colorectal cancer organoids. Front Immunol. 14:11052442023. View Article : Google Scholar : PubMed/NCBI

32 

Bleijs M, van de Wetering M, Clevers H and Drost J: Xenograft and organoid model systems in cancer research. EMBO J. 38:e1016542019. View Article : Google Scholar : PubMed/NCBI

33 

Weiswald LB, Bellet D and Dangles-Marie V: Spherical cancer models in tumor biology. Neoplasia. 17:1–15. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Wang R, Zhang J, Chen S, Lu M, Luo X, Yao S, Liu S, Qin Y and Chen H: Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer. 4:188–196. 2011. View Article : Google Scholar

35 

de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI

36 

Luckett KA and Ganesh K: Engineering the immune microenvironment into organoid models. Ann Rev Cancer Biol. 7:171–187. 2023. View Article : Google Scholar

37 

Yuki K, Cheng N, Nakano M and Kuo CJ: Organoid models of tumor immunology. Trends Immunol. 41:652–664. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Powley IR, Patel M, Miles G, Pringle H, Howells L, Thomas A, Kettleborough C, Bryans J, Hammonds T, MacFarlane M and Pritchard C: Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br J Cancer. 122:735–744. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Ouchi T, Morimura S, Dow LE, Miyoshi H and Udey MC: EpCAM (CD326) regulates intestinal epithelial integrity and stem cells via Rho-associated kinase. Cells. 10:2562021. View Article : Google Scholar : PubMed/NCBI

40 

Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K and Sasai Y: A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 25:681–686. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Huo KG, D'Arcangelo E and Tsao MS: Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl Lung Cancer Res. 9:2214–2232. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, et al: Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 159:163–175. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Pamarthy S and Sabaawy HE: Patient derived organoids in prostate cancer: Improving therapeutic efficacy in precision medicine. Mol Cancer. 20:1252021. View Article : Google Scholar : PubMed/NCBI

44 

Weeber F, Ooft SN, Dijkstra KK and Voest EE: Tumor organoids as a Pre-clinical cancer model for drug discovery. Cell Chem Biol. 24:1092–1100. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al: Generation of tumor-reactive T cells by Co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 174:1586–1598.e12. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Takahashi N, Hoshi H, Higa A, Hiyama G, Tamura H, Ogawa M, Takagi K, Goda K, Okabe N, Muto S, et al: An in vitro system for evaluating molecular targeted drugs using lung patient-derived tumor organoids. Cells. 8:4812019. View Article : Google Scholar : PubMed/NCBI

47 

Sontheimer-Phelps A, Hassell BA and Ingber DE: Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 19:65–81. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Aref AR, Campisi M, Ivanova E, Portell A, Larios D, Piel BP, Mathur N, Zhou C, Coakley RV, Bartels A, et al: 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab Chip. 18:3129–3143. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Jung DJ, Shin TH, Kim M, Sung CO, Jang SJ and Jeong GS: A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity. Lab Chip. 19:2854–2865. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Jenkins RW, Barbie DA and Flaherty KT: Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 118:9–16. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Kitajima S, Ivanova E, Guo S, Yoshida R, Campisi M, Sundararaman SK, Tange S, Mitsuishi Y, Thai TC, Masuda S, et al: Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov. 9:34–45. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Öhlinger K, Kolesnik T, Meindl C, Gallé B, Absenger-Novak M, Kolb-Lenz D and Fröhlich E: Air-liquid interface culture changes surface properties of A549 cells. Toxicol In Vitro. 60:369–382. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Li X, Ootani A and Kuo C: An Air-liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues. Methods Mol Biol. 1422:33–40. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR and Kuo CJ: Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 15:701–706. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Li X, Nadauld L, Ootani A, Corney DC, Pai RK, Gevaert O, Cantrell MA, Rack PG, Neal JT, Chan CW, et al: Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med. 20:769–777. 2014. View Article : Google Scholar : PubMed/NCBI

56 

Xia T, Du WL, Chen XY and Zhang YN: Organoid models of the tumor microenvironment and their applications. J Cell Mol Med. 25:5829–5841. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Finnberg NK, Gokare P, Lev A, Grivennikov SI, MacFarlane AW IV, Campbell KS, Winters RM, Kaputa K, Farma JM, Abbas AE, et al: Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures. Oncotarget. 8:66747–66757. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H, et al: A living Biobank of breast cancer organoids captures disease heterogeneity. Cell. 172:373–386.e10. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Mu P, Zhou S, Lv T, Xia F, Shen L, Wan J, Wang Y, Zhang H, Cai S, Peng J, et al: Newly developed 3D in vitro models to study tumor-immune interaction. J Exp Clin Cancer Res. 42:812023. View Article : Google Scholar : PubMed/NCBI

60 

Koehler KR and Hashino E: 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protocols. 9:1229–1244. 2014. View Article : Google Scholar : PubMed/NCBI

61 

El Harane S, Zidi B, El Harane N, Krause KH, Matthes T and Preynat-Seauve O: Cancer spheroids and organoids as novel tools for research and therapy: State of the art and challenges to guide precision medicine. Cells. 12:10012023. View Article : Google Scholar : PubMed/NCBI

62 

Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, Castro G Jr, Srimuninnimit V, Laktionov KK, Bondarenko I, et al: Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet. 393:1819–1830. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z and Cheng Q: Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 40:1842021. View Article : Google Scholar : PubMed/NCBI

64 

Paz-Ares L, Ciuleanu TE, Cobo M, Schenker M, Zurawski B, Menezes J, Richardet E, Bennouna J, Felip E, Juan-Vidal O, et al: First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 22:198–211. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Rudin CM, Awad MM, Navarro A, Gottfried M, Peters S, Csőszi T, Cheema PK, Rodriguez-Abreu D, Wollner M, Yang JC, et al: Pembrolizumab or placebo plus etoposide and platinum as first-line therapy for extensive-stage small-cell lung cancer: Randomized, double-blind, phase III KEYNOTE-604 study. J Clin Oncol. 38:2369–2379. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, et al: Molecular determinants of response to Anti-programmed cell death (PD)-1 and Anti-programmed Death-Ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 36:633–641. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Felip E, Altorki N, Zhou C, Csőszi T, Vynnychenko I, Goloborodko O, Luft A, Akopov A, Martinez-Marti A, Kenmotsu H, et al: Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet. 398:1344–1357. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Wong DJ, Bauer TM, Gordon MS, Bene-Tchaleu F, Zhu J, Zhang X and Cha E: Safety and clinical activity of atezolizumab plus ipilimumab in locally advanced or metastatic non-small cell lung cancer: Results from a phase 1b trial. Clin Lung Cancer. 23:273–281. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Wong SK and Iams WT: Front line applications and future directions of immunotherapy in small-cell lung cancer. Cancers. 13:5062021. View Article : Google Scholar : PubMed/NCBI

70 

Iams WT, Porter J and Horn L: Immunotherapeutic approaches for small-cell lung cancer. Nat Rev Clin Oncol. 17:300–312. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Mamdani H, Matosevic S, Khalid AB, Durm G and Jalal SI: Immunotherapy in lung cancer: Current landscape and future directions. Front Immunol. 13:8236182022. View Article : Google Scholar : PubMed/NCBI

72 

Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, Gherardini PF, Prestwood TR, Chabon J, Bendall SC, et al: Systemic immunity is required for effective cancer immunotherapy. Cell. 168:487–502.e15. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D and Allison JP: Distinct cellular mechanisms underlie Anti-CTLA-4 and Anti-PD-1 checkpoint blockade. Cell. 170:1120–33.e17. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, et al: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 545:60–65. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, Sica GL, Yu K, Koenig L, Patel NT, et al: Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci USA. 114:4993–4998. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al: Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med. 373:1803–1813. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya L, Lim AM, Chang ALS, et al: PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 379:341–351. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et al: Organoid modeling of the tumor immune microenvironment. Cell. 175:1972–1988.e16. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R, et al: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 381:1535–1546. 2019. View Article : Google Scholar : PubMed/NCBI

81 

González-Rodríguez E, Rodríguez-Abreu D and Boronat M: Nivolumab for Squamous-cell cancer of head and neck. N Engl J Med. 376:5952017. View Article : Google Scholar : PubMed/NCBI

82 

Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, et al: Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 378:2288–2301. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Zhou Z, Cong L and Cong X: Patient-derived organoids in precision medicine: Drug screening, organoid-on-a-chip and living organoid biobank. Front Oncol. 11:7621842021. View Article : Google Scholar : PubMed/NCBI

84 

Kong JCH, Guerra GR, Millen RM, Roth S, Xu H, Neeson PJ, Darcy PK, Kershaw MH, Sampurno S, Malaterre J, et al: Tumor-infiltrating lymphocyte function predicts response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. JCO Precis Oncol. 2:1–15. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Bhattacharya S, Calar K and de la Puente P: Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models. J Exp Clin Cancer Res. 39:1–16. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Halldorsson S, Lucumi E, Gómez-Sjöberg R and Fleming RMT: Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 63:218–231. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Budczies J, Kirchner M, Kluck K, Kazdal D, Glade J, Allgäuer M, Kriegsmann M, Heußel CP, Herth FJ, Winter H, et al: A gene expression signature associated with B cells predicts benefit from immune checkpoint blockade in lung adenocarcinoma. Oncoimmunology. 10:18605862021. View Article : Google Scholar : PubMed/NCBI

88 

Yi M, Li A, Zhou L, Chu Q, Luo S and Wu K: Immune signature-based risk stratification and prediction of immune checkpoint Inhibitor's efficacy for lung adenocarcinoma. Cancer Immunol Immunother. 70:1705–1719. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Yilmaz A, Cui H, Caligiuri MA and Yu J: Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol. 13:1682021. View Article : Google Scholar : PubMed/NCBI

90 

Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, et al: Harnessing the potential of CAR-T cell therapy: Progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med. 21:4492023. View Article : Google Scholar : PubMed/NCBI

91 

Wen Q, Yang Z, Dai H, Feng A and Li Q: Radiomics study for predicting the expression of PD-L1 and tumor mutation burden in non-small cell lung cancer based on CT images and Clinicopathological features. Front Oncol. 11:6202462021. View Article : Google Scholar : PubMed/NCBI

92 

Chen Q, Zhang L, Mo X, You J, Chen L, Fang J, Wang F, Jin Z, Zhang B and Zhang S: Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 49:345–360. 2021. View Article : Google Scholar : PubMed/NCBI

93 

Khorrami M, Prasanna P, Gupta A, Patil P, Velu PD, Thawani R, Corredor G, Alilou M, Bera K, Fu P, et al: Changes in CT radiomic features associated with lymphocyte distribution predict overall survival and response to immunotherapy in non-small cell lung cancer. Cancer Immunol Res. 8:108–19. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Rosenberg SA and Restifo NP: Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Waldman AD, Fritz JM and Lenardo MJ: A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol. 20:651–668. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Majzner RG and Mackall CL: Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 25:1341–1355. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Kaushik G, Venkatesha S, Verma B, Vishwakarma B, Zhang AH and Wesa A: Preclinical in vitro and in vivo models for adoptive cell therapy of cancer. Cancer J. 28:257–262. 2022. View Article : Google Scholar : PubMed/NCBI

98 

Dekkers JF, Alieva M, Cleven A, Keramati F, Wezenaar AKL, van Vliet EJ, Puschhof J, Brazda P, Johanna I, Meringa AD, et al: Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat Biotechnol. 41:60–69. 2023. View Article : Google Scholar : PubMed/NCBI

99 

Michie J, Beavis PA, Freeman AJ, Vervoort SJ, Ramsbottom KM, Narasimhan V, Lelliott EJ, Lalaoui N, Ramsay RG, Johnstone RW, et al: Antagonism of IAPs enhances CAR T-cell efficacy. Cancer Immunol Res. 7:183–192. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Schnalzger TE, de Groot MH, Zhang C, Mosa MH, Michels BE, Röder J, Darvishi T, Wels WS and Farin HF: 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 38:e1009282019. View Article : Google Scholar : PubMed/NCBI

101 

Badalamenti G, Fanale D, Incorvaia L, Barraco N, Listì A, Maragliano R, Vincenzi B, Calò V, Iovanna JL, Bazan V and Russo A: Role of tumor-infiltrating lymphocytes in patients with solid tumors: Can a drop dig a stone. Cell Immunol. 343:1037532019. View Article : Google Scholar : PubMed/NCBI

102 

Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc. 15:15–39. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Islam SMR, Maeda T, Tamaoki N, Good ML, Kishton RJ, Paria BC, Yu Z, Bosch-Marce M, Bedanova NM, Liu C, et al: Reprogramming of Tumor-reactive Tumor-infiltrating Lymphocytes to Human-induced pluripotent stem cells. Cancer Res Commun. 3:917–932. 2023. View Article : Google Scholar : PubMed/NCBI

104 

Raimondi G, Mato-Berciano A, Pascual-Sabater S, Rovira-Rigau M, Cuatrecasas M, Fondevila C, Sánchez-Cabús S, Begthel H, Boj SF, Clevers H and Fillat C: Patient-derived pancreatic tumour organoids identify therapeutic responses to oncolytic adenoviruses. EBioMedicine. 56:1027862020. View Article : Google Scholar : PubMed/NCBI

105 

Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, Chhabra S, Huang W, Liu H, Aref AR, et al: CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 8:216–233. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Courau T, Bonnereau J, Chicoteau J, Bottois H, Remark R, Assante Miranda L, Toubert A, Blery M, Aparicio T, Allez M and Le Bourhis L: Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J Immunother Cancer. 7:742019. View Article : Google Scholar : PubMed/NCBI

107 

Gonzalez-Exposito R, Semiannikova M, Griffiths B, Khan K, Barber LJ, Woolston A, Spain G, von Loga K, Challoner B, Patel R, et al: CEA expression heterogeneity and plasticity confer resistance to the CEA-targeting bispecific immunotherapy antibody cibisatamab (CEA-TCB) in patient-derived colorectal cancer organoids. J Immunother Cancer. 7:1012019. View Article : Google Scholar : PubMed/NCBI

108 

Sun CP, Lan HR, Fang XL, Yang XY and Jin KT: Organoid models for precision cancer immunotherapy. Front Immunol. 13:7704652022. View Article : Google Scholar : PubMed/NCBI

109 

Kim J, Koo BK and Knoblich JA: Human organoids: Model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Wang HM, Zhang CY, Peng KC, Chen ZX, Su JW, Li YF, Li WF, Gao QY, Zhang SL, Chen YQ, et al: Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study. Cell Rep Med. 4:1009112023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tian H, Ren J, Mou R and Jia Y: Application of organoids in precision immunotherapy of lung cancer (Review). Oncol Lett 26: 484, 2023.
APA
Tian, H., Ren, J., Mou, R., & Jia, Y. (2023). Application of organoids in precision immunotherapy of lung cancer (Review). Oncology Letters, 26, 484. https://doi.org/10.3892/ol.2023.14071
MLA
Tian, H., Ren, J., Mou, R., Jia, Y."Application of organoids in precision immunotherapy of lung cancer (Review)". Oncology Letters 26.5 (2023): 484.
Chicago
Tian, H., Ren, J., Mou, R., Jia, Y."Application of organoids in precision immunotherapy of lung cancer (Review)". Oncology Letters 26, no. 5 (2023): 484. https://doi.org/10.3892/ol.2023.14071
Copy and paste a formatted citation
x
Spandidos Publications style
Tian H, Ren J, Mou R and Jia Y: Application of organoids in precision immunotherapy of lung cancer (Review). Oncol Lett 26: 484, 2023.
APA
Tian, H., Ren, J., Mou, R., & Jia, Y. (2023). Application of organoids in precision immunotherapy of lung cancer (Review). Oncology Letters, 26, 484. https://doi.org/10.3892/ol.2023.14071
MLA
Tian, H., Ren, J., Mou, R., Jia, Y."Application of organoids in precision immunotherapy of lung cancer (Review)". Oncology Letters 26.5 (2023): 484.
Chicago
Tian, H., Ren, J., Mou, R., Jia, Y."Application of organoids in precision immunotherapy of lung cancer (Review)". Oncology Letters 26, no. 5 (2023): 484. https://doi.org/10.3892/ol.2023.14071
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team