Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2023 Volume 26 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2023 Volume 26 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of USP9X in cellular functions and tumorigenesis (Review)

  • Authors:
    • Yimei Meng
    • Chaojin Hong
    • Sifu Yang
    • Zhiquan Qin
    • Liu Yang
    • Yumei Huang
  • View Affiliations / Copyright

    Affiliations: Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
    Copyright: © Meng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 506
    |
    Published online on: October 10, 2023
       https://doi.org/10.3892/ol.2023.14093
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ubiquitin‑specific peptidase 9X (USP9X) is involved in certain human diseases, including malignancies, atherosclerosis and certain diseases of the nervous system. USP9X promotes the deubiquitination and stabilization of diverse substrates, thereby exerting a versatile range of effects on pathological and physiological processes. USP9X serves vital roles in the processes of cell survival, invasion and migration in various types of cancer. The present review aims to highlight the current knowledge of USP9X in terms of its structure and the possible mediatory mechanisms involved in certain types of cancer, providing a thorough introduction to its biological functions in carcinogenesis and further outlining its oncogenic or suppressive properties in a diverse range of cancer types. Finally, several perspectives regarding USP9X‑targeted pharmacological therapeutics in cancer development are discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Ermolaeva M, Neri F, Ori A and Rudolph KL: Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol. 19:594–610. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Holguin-Cruz JA, Foster LJ and Gsponer J: Where protein structure and cell diversity meet. Trends Cell Biol. 32:996–1007. 2022. View Article : Google Scholar : PubMed/NCBI

3 

Toyama BH and Hetzer MW: Protein homeostasis: Live long, won't prosper. Nat Rev Mol Cell Biol. 14:55–61. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Beynon RJ and Bond JS: Catabolism of intracellular protein: Molecular aspects. Am J Physiol. 251:141–152. 1986. View Article : Google Scholar : PubMed/NCBI

5 

Komander D and Rape M: The ubiquitin code. Annu Rev Biochem. 81:203–229. 2012. View Article : Google Scholar : PubMed/NCBI

6 

Li X, Elmira E, Rohondia S, Wang J, Liu J and Dou QP: A patent review of the ubiquitin ligase system: 2015–2018. Expert Opin Ther Pat. 28:919–937. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Jang HH: Regulation of protein degradation by proteasomes in cancer. J Cancer Prev. 23:153–161. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Becker JR, Clifford G, Bonnet C, Groth A, Wilson MD and Chapman JR: BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination. Nature. 596:433–437. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Roberts JZ, Crawford N and Longley DB: The role of ubiquitination in apoptosis and necroptosis. Cell Death Differ. 29:272–284. 2022. View Article : Google Scholar : PubMed/NCBI

10 

Sun T, Liu Z and Yang Q: The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 19:1462020. View Article : Google Scholar : PubMed/NCBI

11 

Schmidt MF, Gan ZY, Komander D and Dewson G: Ubiquitin signalling in neurodegeneration: Mechanisms and therapeutic opportunities. Cell Death Differ. 28:570–590. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Fhu CW and Ali A: Dysregulation of the ubiquitin proteasome system in human malignancies: A window for therapeutic intervention. Cancers (Basel). 13:15132021. View Article : Google Scholar : PubMed/NCBI

13 

Grabbe C, Husnjak K and Dikic I: The spatial and temporal organization of ubiquitin networks. Nat Rev Mol Cell Biol. 12:295–307. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Shimizu K, Gi M, Suzuki S, North BJ, Watahiki A, Fukumoto S, Asara JM, Tokunaga F, Wei W and Inuzuka H: Interplay between protein acetylation and ubiquitination controls MCL1 protein stability. Cell Rep. 37:1099882021. View Article : Google Scholar : PubMed/NCBI

15 

Murtaza M, Jolly LA, Gecz J and Wood SA: La FAM fatale: USP9X in development and disease. Cell Mol Life Sci. 72:2075–2089. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Johnson BV, Kumar R, Oishi S, Alexander S, Kasherman M, Vega MS, Ivancevic A, Gardner A, Domingo D, Corbett M, et al: Partial loss of USP9X function leads to a male neurodevelopmental and behavioral disorder converging on transforming growth factor beta signaling. Biol Psychiatry. 87:100–112. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Delbridge ARD, Kueh AJ, Ke F, Zamudio NM, El-Saafin F, Jansz N, Wang GY, Iminitoff M, Beck T, Haupt S, et al: Loss of p53 causes stochastic aberrant x-chromosome inactivation and female-specific neural tube defects. Cell Rep. 27:442–454. 2019. View Article : Google Scholar : PubMed/NCBI

18 

Homan CC, Kumar R, Nguyen LS, Haan E, Raymond FL, Abidi F, Raynaud M, Schwartz CE, Wood SA, Gecz J, et al: Mutations in USP9X are associated with X-linked intellectual disability and disrupt neuronal cell migration and growth. Am J Hum Genet. 94:470–478. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Wang B, Tang X, Yao L, Wang Y, Chen Z, Li M, Wu N, Wu D, Dai X, Jiang H and Ai D: Disruption of USP9X in macrophages promotes foam cell formation and atherosclerosis. J Clin Invest. 132:e1542172022. View Article : Google Scholar : PubMed/NCBI

20 

Greenhill C: Pancreatic cancer: USP9X can be used to predict pancreatic cancer outcomes. Nat Rev Gastroenterol Hepatol. 9:3022012. View Article : Google Scholar : PubMed/NCBI

21 

Jones MH, Furlong RA, Burkin H, Chalmers IJ, Brown GM, Khwaja O and Affara NA: The Drosophila developmental gene fat facets has a human homologue in Xp11.4 which escapes X-inactivation and has related sequences on Yq11.2. Hum Mol Gene. 5:1695–1701. 1996. View Article : Google Scholar : PubMed/NCBI

22 

Wood SA, Pascoe WS, Ru K, Yamada T, Hirchenhain J, Kemler R and Mattick JS: Cloning and expression analysis of a novel mouse gene with sequence similarity to the Drosophila fat facets gene. Mech Dev. 63:29–38. 1997. View Article : Google Scholar : PubMed/NCBI

23 

Chen X, Overstreet E, Wood SA and Fischer JA: On the conservation of function of the Drosophila fat facets deubiquitinating enzyme and Fam, its mouse homolog. Dev Genes Evol. 210:603–610. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Fischer-Vize JA, Rubin GM and Lehmann R: The fat facets gene is required for Drosophila eye and embryo development. Development. 116:985–1000. 1992. View Article : Google Scholar : PubMed/NCBI

25 

Khut PY, Tucker B, Lardelli M and Wood SA: Evolutionary and expression analysis of the zebrafish deubiquitylating enzyme, usp9. Zebrafish. 4:95–101. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK and Bernards R: A genomic and functional inventory of deubiquitinating enzymes. Cell. 123:773–786. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Amerik AY and Hochstrasser M: Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 1695:189–207. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Paudel P, Zhang Q, Leung C, Greenberg HC, Guo Y, Chern YH, Dong A, Li Y, Vedadi M, Zhuang Z and Tong Y: Crystal structure and activity-based labeling reveal the mechanisms for linkage-specific substrate recognition by deubiquitinase USP9X. Proc Natl Acad Sci USA. 116:7288–7297. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Marx C, Held JM, Gibson BW and Benz CC: ErbB2 trafficking and degradation associated with K48 and K63 polyubiquitination. Cancer Res. 70:3709–3717. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M and Alessi DR: Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J. 411:249–260. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L, et al: FAM/USP9×, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell. 136:123–135. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Mouchantaf R, Azakir BA, McPherson PS, Millard SM, Wood SA and Angers A: The ubiquitin ligase itch is auto-ubiquitylated in vivo and in vitro but is protected from degradation by interacting with the deubiquitylating enzyme FAM/USP9X. J Biol Chem. 281:38738–38747. 2006. View Article : Google Scholar : PubMed/NCBI

33 

Taya S, Yamamoto T, Kano K, Kawano Y, Iwamatsu A, Tsuchiya T, Tanaka K, Kanai-Azuma M, Wood SA, Mattick JS and Kaibuchi K: The Ras target AF-6 is a substrate of the fam deubiquitinating enzyme. J Cell Biol. 142:1053–1062. 1998. View Article : Google Scholar : PubMed/NCBI

34 

Vong QP, Cao K, Li HY, Iglesias PA and Zheng Y: Chromosome alignment and segregation regulated by ubiquitination of survivin. Science. 310:1499–1504. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Narayanan N, Wang Z, Li L and Yang Y: Arginine methylation of USP9X promotes its interaction with TDRD3 and its anti-apoptotic activities in breast cancer cells. Cell Discov. 3:160482017. View Article : Google Scholar : PubMed/NCBI

36 

Murray RZ, Jolly LA and Wood SA: The FAM deubiquitylating enzyme localizes to multiple points of protein trafficking in epithelia, where it associates with E-cadherin and beta-catenin. Mol Biol Cell. 15:1591–1599. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Theard D, Labarrade F, Partisani M, Milanini J, Sakagami H, Fon EA, Wood SA, Franco M and Luton F: USP9×-mediated deubiquitination of EFA6 regulates de novo tight junction assembly. EMBO J. 29:1499–1509. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, Maecker H, O'Rourke K, Bazan F, Eastham-Anderson J, et al: Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature. 463:103–107. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Trinkle-Mulcahy L, Boulon S, Lam YW, Urcia R, Boisvert FM, Vandermoere F, Morrice NA, Swift S, Rothbauer U, Leonhardt H and Lamond A: Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol. 183:223–239. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Li X, Song N, Liu L, Liu X, Ding X, Song X, Yang S, Shan L, Zhou X, Su D, et al: USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun. 8:148662017. View Article : Google Scholar : PubMed/NCBI

41 

Engel K, Rudelius M, Slawska J, Jacobs L, Abhari BA, Altmann B, Kurutz J, Rathakrishnan A, Fernandez-Saiz V, Brunner A, et al: USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma. EMBO Mol Med. 8:851–862. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Grou CP, Francisco T, Rodrigues TA, Freitas MO, Pinto MP, Carvalho AF, Domingues P, Wood SA, Rodriguez-Borges JE, Sa-Miranda C, et al: Identification of ubiquitin-specific protease 9X (USP9X) as a deubiquitinase acting on ubiquitin-peroxin 5 (PEX5) thioester conjugate. J Biol Chem. 287:12815–12827. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Akiyama H, Umezawa Y, Ishida S, Okada K, Nogami A and Miura O: Inhibition of USP9X induces apoptosis in FLT3-ITD-positive AML cells cooperatively by inhibiting the mutant kinase through aggresomal translocation and inducing oxidative stress. Cancer Lett. 453:84–94. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Wang P, Wang J, Yao S, Cui M, Cheng Y, Liu W, Gao Z, Hu J, Zhang J and Zhang H: Deubiquitinase USP9X stabilizes RNA m(6)A demethylase ALKBH5 and promotes acute myeloid leukemia cell survival. J Biol Chem. 299:1050552023. View Article : Google Scholar : PubMed/NCBI

45 

Akiyama H, Umezawa Y, Watanabe D, Okada K, Ishida S, Nogami A and Miura O: Inhibition of USP9X downregulates JAK2-V617F and induces apoptosis synergistically with BH3 mimetics preferentially in ruxolitinib-persistent JAK2-V617F-positive leukemic cells. Cancers (Basel). 12:4062020. View Article : Google Scholar : PubMed/NCBI

46 

Wu Y, Yu X, Yi X, Wu K, Dwabe S, Atefi M, Elshimali Y, Kemp KT II, Bhat K, Haro J, et al: Aberrant phosphorylation of SMAD4 Thr277-mediated USP9×-SMAD4 interaction by free fatty acids promotes breast cancer metastasis. Cancer Res. 77:1383–1394. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Li L, Liu T, Li Y, Wu C, Luo K, Yin Y, Chen Y, Nowsheen S, Wu J, Lou Z and Yuan J: The deubiquitinase USP9X promotes tumor cell survival and confers chemoresistance through YAP1 stabilization. Oncogene. 37:2422–2431. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Guan T, Yang X, Liang H, Chen J, Chen Y, Zhu Y and Liu T: Deubiquitinating enzyme USP9X regulates metastasis and chemoresistance in triple-negative breast cancer by stabilizing Snail1. J Cell Physiol. 237:2992–3000. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Lu H, Lyu Y, Tran L, Lan J, Xie Y, Yang Y, Murugan NL, Wang YJ and Semenza GL: HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells. Cell Rep. 36:1097572021. View Article : Google Scholar : PubMed/NCBI

50 

Jie X, Fong WP, Zhou R, Zhao Y, Zhao Y, Meng R, Zhang S, Dong X, Zhang T, Yang K, et al: USP9X-mediated KDM4C deubiquitination promotes lung cancer radioresistance by epigenetically inducing TGF-β2 transcription. Cell Death Differ. 28:2095–2111. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Chen X, Yu C, Gao J, Zhu H, Cui B, Zhang T, Zhou Y, Liu Q, He H, Xiao R, et al: A novel USP9X substrate TTK contributes to tumorigenesis in non-small-cell lung cancer. Theranostics. 8:2348–2360. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Kushwaha D, O'Leary C, Cron KR, Deraska P, Zhu K, D'Andrea AD and Kozono D: USP9X inhibition promotes radiation-induced apoptosis in non-small cell lung cancer cells expressing mid-to-high MCL1. Cancer Biol Ther. 16:392–401. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Sulkshane P, Pawar SN, Waghole R, Pawar SS, Rajput P, Uthale A, Oak S, Kalkar P, Wani H, Patil R, et al: Elevated USP9X drives early-to-late-stage oral tumorigenesis via stabilisation of anti-apoptotic MCL-1 protein and impacts outcome in oral cancers. Br J Cancer. 125:547–560. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Cheng P, Wang J, Waghmare I, Sartini S, Coviello V, Zhang Z, Kim SH, Mohyeldin A, Pavlyukov MS, Minata M, et al: FOXD1-ALDH1A3 signaling is a determinant for the self-renewal and tumorigenicity of mesenchymal glioma stem cells. Cancer Res. 76:7219–7230. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Khan OM, Carvalho J, Spencer-Dene B, Mitter R, Frith D, Snijders AP, Wood SA and Behrens A: The deubiquitinase USP9X regulates FBW7 stability and suppresses colorectal cancer. J Clin Invest. 128:1326–1337. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Potu H, Peterson LF, Kandarpa M, Pal A, Sun H, Durham A, Harms PW, Hollenhorst PC, Eskiocak U, Talpaz M and Donato NJ: Usp9× regulates Ets-1 ubiquitination and stability to control NRAS expression and tumorigenicity in melanoma. Nat Commun. 8:144492017. View Article : Google Scholar : PubMed/NCBI

57 

Chen W, Song J, Liu S, Tang B, Shen L, Zhu J, Fang S, Wu F, Zheng L, Qiu R, et al: USP9X promotes apoptosis in cholangiocarcinoma by modulation expression of KIF1Bbeta via deubiquitinating EGLN3. J Biomed Sci. 28:442021. View Article : Google Scholar : PubMed/NCBI

58 

Czabotar PE, Lessene G, Strasser A and Adams JM: Control of apoptosis by the BCL-2 protein family: Implications for physiology and therapy. Nat Rev Mol Cell Biol. 15:49–63. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Nagai H, Noguchi T, Homma K, Katagiri K, Takeda K, Matsuzawa A and Ichijo H: Ubiquitin-like sequence in ASK1 plays critical roles in the recognition and stabilization by USP9X and oxidative stress-induced cell death. Mol Cell. 36:805–818. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Huntwork-Rodriguez S, Wang B, Watkins T, Ghosh AS, Pozniak CD, Bustos D, Newton K, Kirkpatrick DS and Lewcock JW: JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. J Cell Biol. 202:747–763. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Lai MC, Chen YP, Li DA, Yu JS, Hung HY and Tarn WY: DDX3 interacts with USP9X and participates in deubiquitination of the anti-apoptotic protein MCL1. FEBS J. 289:1043–1061. 2022. View Article : Google Scholar : PubMed/NCBI

62 

Hogh-Binder SA, Klein D, Wolfsperger F, Huber SM, Hennenlotter J, Stenzl A and Rudner J: Protein levels of anti-apoptotic Mcl-1 and the deubiquitinase USP9× are cooperatively upregulated during prostate cancer progression and limit response of prostate cancer cells to radiotherapy. Cancers (Basel). 15:24962023. View Article : Google Scholar : PubMed/NCBI

63 

Sun H, Kapuria V, Peterson LF, Fang D, Bornmann WG, Bartholomeusz G, Talpaz M and Donato NJ: Bcr-Abl ubiquitination and Usp9× inhibition block kinase signaling and promote CML cell apoptosis. Blood. 117:3151–3162. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M and Donato NJ: Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 70:9265–9276. 2010. View Article : Google Scholar : PubMed/NCBI

65 

Karpel-Massler G, Ishida CT, Bianchetti E, Shu C, Perez-Lorenzo R, Horst B, Banu M, Roth KA, Bruce JN, Canoll P, et al: Inhibition of mitochondrial matrix chaperones and antiapoptotic Bcl-2 family proteins empower antitumor therapeutic responses. Cancer Res. 77:3513–3526. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Kim S, Woo SM, Min KJ, Seo SU, Lee TJ, Kubatka P, Kim DE and Kwon TK: WP1130 enhances TRAIL-induced apoptosis through USP9X-dependent miR-708-mediated downregulation of c-FLIP. Cancers (Basel). 11:3442019. View Article : Google Scholar : PubMed/NCBI

67 

Liu Y, Xu X, Lin P, He Y, Zhang Y, Cao B, Zhang Z, Sethi G, Liu J, Zhou X and Mao X: Inhibition of the deubiquitinase USP9× induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis. J Biol Chem. 294:4572–4582. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Dominguez-Brauer C, Thu KL, Mason JM, Blaser H, Bray MR and Mak TW: Targeting mitosis in cancer: Emerging strategies. Mol Cell. 60:524–536. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Motofei IG: Biology of cancer: Understanding the supracellular control of mitosis in physiological processes and malignancy. Semin Cancer Biol. 92:42–44. 2023. View Article : Google Scholar : PubMed/NCBI

70 

Schoonen PM, Talens F, Stok C, Gogola E, Heijink AM, Bouwman P, Foijer F, Tarsounas M, Blatter S, Jonkers J, et al: Progression through mitosis promotes PARP inhibitor-induced cytotoxicity in homologous recombination-deficient cancer cells. Nat Commun. 8:159812017. View Article : Google Scholar : PubMed/NCBI

71 

Skowyra A, Allan LA, Saurin AT and Clarke PR: USP9X limits mitotic checkpoint complex turnover to strengthen the spindle assembly checkpoint and guard against chromosomal instability. Cell Rep. 23:852–865. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Dietachmayr M, Rathakrishnan A, Karpiuk O, von Zweydorf F, Engleitner T, Fernandez-Saiz V, Schenk P, Ueffing M, Rad R, Eilers M, et al: Antagonistic activities of CDC14B and CDK1 on USP9X regulate WT1-dependent mitotic transcription and survival. Nat Commun. 11:12682020. View Article : Google Scholar : PubMed/NCBI

73 

Wang Q, Tang Y, Xu Y, Xu S, Jiang Y, Dong Q, Zhou Y and Ge W: The X-linked deubiquitinase USP9X is an integral component of centrosome. J Biol Chem. 292:12874–12884. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Clancy A, Heride C, Pinto-Fernandez A, Elcocks H, Kallinos A, Kayser-Bricker KJ, Wang W, Smith V, Davis S, Fessler S, et al: The deubiquitylase USP9X controls ribosomal stalling. J Cell Biol. 220:2020042112021. View Article : Google Scholar

75 

Weimer JM and Anton ES: Doubling up on microtubule stabilizers: Synergistic functions of doublecortin-like kinase and doublecortin in the developing cerebral cortex. Neuron. 49:3–4. 2006. View Article : Google Scholar : PubMed/NCBI

76 

Gleeson JG, Lin PT, Flanagan LA and Walsh CA: Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron. 23:257–271. 1999. View Article : Google Scholar : PubMed/NCBI

77 

Kharitidi D, Apaja PM, Manteghi S, Suzuki K, Malitskaya E, Roldan A, Gingras MC, Takagi J, Lukacs GL and Pause A: Interplay of endosomal pH and ligand occupancy in integrin alpha5beta1 ubiquitination, endocytic sorting, and cell migration. Cell Rep. 13:599–609. 2015. View Article : Google Scholar : PubMed/NCBI

78 

Zhu H, Kavsak P, Abdollah S, Wrana JL and Thomsen GH: A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 400:687–693. 1999. View Article : Google Scholar : PubMed/NCBI

79 

Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T and Miyazono K: Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem. 276:12477–12480. 2001. View Article : Google Scholar : PubMed/NCBI

80 

Xie Y, Avello M, Schirle M, McWhinnie E, Feng Y, Bric-Furlong E, Wilson C, Nathans R, Zhang J, Kirschner MW, et al: Deubiquitinase FAM/USP9X interacts with the E3 ubiquitin ligase SMURF1 protein and protects it from ligase activity-dependent self-degradation. J Biol Chem. 288:2976–2985. 2013. View Article : Google Scholar : PubMed/NCBI

81 

Wang T, Jing B, Sun B, Liao Y, Song H, Xu D, Guo W, Li K, Hu M, Liu S, et al: Stabilization of PTGES by deubiquitinase USP9X promotes metastatic features of lung cancer via PGE(2) signaling. Am J Cancer Res. 9:1145–1160. 2019.PubMed/NCBI

82 

Harrigan JA, Jacq X, Martin NM and Jackson SP: Deubiquitylating enzymes and drug discovery: Emerging opportunities. Nat Rev Drug Discov. 17:57–78. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Negrini S, Gorgoulis VG and Halazonetis TD: Genomic instability-an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 11:220–228. 2010. View Article : Google Scholar : PubMed/NCBI

84 

Kang JW, Zhan Z, Ji G, Sang Y, Zhou D, Li Y, Feng H and Cheng T: PUMA facilitates EMI1-promoted cytoplasmic Rad51 ubiquitination and inhibits DNA repair in stem and progenitor cells. Signal Transduct Target Ther. 6:1292021. View Article : Google Scholar : PubMed/NCBI

85 

McGarry E, Gaboriau D, Rainey MD, Restuccia U, Bachi A and Santocanale C: The deubiquitinase USP9X maintains DNA replication fork stability and DNA damage checkpoint responses by regulating CLASPIN during S-Phase. Cancer Res. 76:2384–2393. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Wolfsperger F, Hogh-Binder SA, Schittenhelm J, Psaras T, Ritter V, Bornes L, Huber SM, Jendrossek V and Rudner J: Deubiquitylating enzyme USP9× regulates radiosensitivity in glioblastoma cells by Mcl-1-dependent and -independent mechanisms. Cell Death Dis. 7:20392016. View Article : Google Scholar : PubMed/NCBI

87 

Lautenbacher L, Samaras P, Muller J, Grafberger A, Shraideh M, Rank J, Fuchs ST, Schmidt TK, The M, Dallago C, et al: ProteomicsDB: Toward a FAIR open-source resource for life-science research. Nucleic Acids Res. 50:D1541–D1552. 2022. View Article : Google Scholar : PubMed/NCBI

88 

Zhang C, Cai TY, Zhu H, Yang LQ, Jiang H, Dong XW, Hu YZ, Lin NM, He QJ and Yang B: Synergistic antitumor activity of gemcitabine and ABT-737 in vitro and in vivo through disrupting the interaction of USP9X and Mcl-1. Mol Cancer Ther. 10:1264–1275. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Oosterkamp HM, Hijmans EM, Brummelkamp TR, Canisius S, Wessels LF, Zwart W and Bernards R: USP9X downregulation renders breast cancer cells resistant to tamoxifen. Cancer Res. 74:3810–3820. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Tang Z, Li C, Kang B, Gao G, Li C and Zhang Z: GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 45:W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Zhang C, Qian H, Liu K, Zhao W and Wang L: A feedback loop regulation of LINC01433 and YAP promotes malignant behavior in gastric cancer cells. Onco Targets Ther. 12:7949–7962. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Chen H, Yang F, Li X, Gong ZJ and Wang LW: Long noncoding RNA LNC473 inhibits the ubiquitination of survivin via association with USP9X and enhances cell proliferation and invasion in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 499:702–710. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Xu X, Wang S, Wang H, Pan C, Yang W and Yu J: Hsa_circ_0008434 regulates USP9X expression by sponging miR-6838-5p to promote gastric cancer growth, migration and invasion. BMC Cancer. 21:12892021. View Article : Google Scholar : PubMed/NCBI

94 

Shen G, Lin Y, Yang X, Zhang J, Xu Z and Jia H: MicroRNA-26b inhibits epithelial-mesenchymal transition in hepatocellular carcinoma by targeting USP9X. BMC Cancer. 14:3932014. View Article : Google Scholar : PubMed/NCBI

95 

Chen W, Huang Y, Zhang S, Zheng X, Xie S, Mao J, Cai Y, Lu X, Hu L, Shen J, et al: MicroRNA-212 suppresses nonsmall lung cancer invasion and migration by regulating ubiquitin-specific protease-9. J Cell Biochem. 120:6482–6489. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Chen W, Zhou Y, Zhi X, Ma T, Liu H, Chen BW, Zheng X, Xie S, Zhao B, Feng X, et al: Delivery of miR-212 by chimeric peptide-condensed supramolecular nanoparticles enhances the sensitivity of pancreatic ductal adenocarcinoma to doxorubicin. Biomaterials. 192:590–600. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Guo H, Zhang X, Chen Q, Bao Y, Dong C and Wang X: miR-132 suppresses the migration and invasion of lung cancer cells by blocking USP9X-induced epithelial-mesenchymal transition. Am J Transl Res. 10:224–234. 2018.PubMed/NCBI

98 

Chen E, Li E, Liu H, Zhou Y, Wen L, Wang J, Wang Y, Ye L and Liang T: miR-26b enhances the sensitivity of hepatocellular carcinoma to Doxorubicin via USP9X-dependent degradation of p53 and regulation of autophagy. Int J Biol Sci. 17:781–795. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Madan V, Li J, Zhou S, Teoh WW, Han L, Meggendorfer M, Malcovati L, Cazzola M, Ogawa S, Haferlach T, et al: Distinct and convergent consequences of splice factor mutations in myelodysplastic syndromes. Am J Hematol. 95:133–143. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Aqaqe N, Yassin M, Yassin AA, Ershaid N, Katz-Even C, Zipin-Roitman A, Kugler E, Lechman ER, Gan OI, Mitchell A, et al: An ERG enhancer-based reporter identifies leukemia cells with elevated leukemogenic potential driven by ERG-USP9X feed-forward regulation. Cancer Res. 79:3862–3876. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Shen SM, Zhang C, Ge MK, Dong SS, Xia L, He P, Zhang N, Ji Y, Yang S, Yu Y, et al: PTENalpha and PTENbeta promote carcinogenesis through WDR5 and H3K4 trimethylation. Nat Cell Biol. 21:1436–1448. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Kapoor S, Natarajan K, Baldwin PR, Doshi KA, Lapidus RG, Mathias TJ, Scarpa M, Trotta R, Davila E, Kraus M, et al: Concurrent inhibition of pim and FLT3 kinases enhances apoptosis of FLT3-ITD acute myeloid leukemia cells through increased Mcl-1 proteasomal degradation. Clin Cancer Res. 24:234–247. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Sisoudiya SD, Mishra P, Li H, Schraw JM, Scheurer ME, Salvi S, Doddapaneni H, Muzny D, Mitchell D, Taylor O, et al: Identification of USP9X as a leukemia susceptibility gene. Blood Adv. 7:4563–4575. 2023. View Article : Google Scholar : PubMed/NCBI

104 

Schwartzman O, Savino AM, Gombert M, Palmi C, Cario G, Schrappe M, Eckert C, von Stackelberg A, Huang JY, Hameiri-Grossman M, et al: Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome. Proc Natl Acad Sci USA. 114:4030–4039. 2017. View Article : Google Scholar

105 

Moroishi T, Hansen CG and Guan KL: The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 15:73–79. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Demark-Wahnefried W, Platz EA, Ligibel JA, Blair CK, Courneya KS, Meyerhardt JA, Ganz PA, Rock CL, Schmitz KH, Wadden T, et al: The role of obesity in cancer survival and recurrence. Cancer Epidemiol Biomarkers Prev. 21:1244–1259. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Jaiswal A, Murakami K, Elia A, Shibahara Y, Done SJ, Wood SA, Donato NJ, Ohashi PS and Reedijk M: Therapeutic inhibition of USP9×-mediated Notch signaling in triple-negative breast cancer. Proc Natl Acad Sci USA. 118:e21015921182021. View Article : Google Scholar : PubMed/NCBI

108 

Yan J, Zhong N, Liu G, Chen K, Liu X, Su L and Singhal S: Usp9×- and Noxa-mediated Mcl-1 downregulation contributes to pemetrexed-induced apoptosis in human non-small-cell lung cancer cells. Cell Death Dis. 5:e13162014. View Article : Google Scholar : PubMed/NCBI

109 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

110 

Perez-Mancera PA, Rust AG, van der Weyden L, Kristiansen G, Li A, Sarver AL, Silverstein KA, Grutzmann R, Aust D, Rummele P, et al: The deubiquitinase USP9X suppresses pancreatic ductal adenocarcinoma. Nature. 486:266–270. 2012. View Article : Google Scholar : PubMed/NCBI

111 

Pal A, Dziubinski M, Di Magliano MP, Simeone DM, Owens S, Thomas D, Peterson L, Potu H, Talpaz M and Donato NJ: Usp9× promotes survival in human pancreatic cancer and its inhibition suppresses pancreatic ductal adenocarcinoma in vivo tumor growth. Neoplasia. 20:152–164. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Guo M, Luo G, Jin K, Long J, Cheng H, Lu Y, Wang Z, Yang C, Xu J, Ni Q, et al: Somatic genetic variation in solid pseudopapillary tumor of the pancreas by whole exome sequencing. Int J Mol Sci. 18:812017. View Article : Google Scholar : PubMed/NCBI

113 

Perurena N, Lock R, Davis RA, Raghavan S, Pilla NF, Ng R, Loi P, Guild CJ, Miller AL, Sicinska E, et al: USP9X mediates an acute adaptive response to MAPK suppression in pancreatic cancer but creates multiple actionable therapeutic vulnerabilities. Cell Rep Med. 4:1010072023. View Article : Google Scholar : PubMed/NCBI

114 

Chen Z, Wang HW, Wang S, Fan L, Feng S, Cai X, Peng C, Wu X, Lu J, Chen D, et al: USP9X deubiquitinates ALDH1A3 and maintains mesenchymal identity in glioblastoma stem cells. J Clin Invest. 129:2043–2055. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Nguyen HT, Andrejeva D, Gupta R, Choudhary C, Hong X, Eichhorn PJ, Loya AC and Cohen SM: Deubiquitylating enzyme USP9× regulates hippo pathway activity by controlling angiomotin protein turnover. Cell Discov. 2:160012016. View Article : Google Scholar : PubMed/NCBI

116 

Bartholomeusz G, Talpaz M, Bornmann W, Kong LY and Donato NJ: Degrasyn activates proteasomal-dependent degradation of c-Myc. Cancer Res. 67:3912–3918. 2007. View Article : Google Scholar : PubMed/NCBI

117 

Luo H, Jing B, Xia Y, Zhang Y, Hu M, Cai H, Tong Y, Zhou L, Yang L, Yang J, et al: WP1130 reveals USP24 as a novel target in T-cell acute lymphoblastic leukemia. Cancer Cell Int. 19:562019. View Article : Google Scholar : PubMed/NCBI

118 

Peterson LF, Sun H, Liu Y, Potu H, Kandarpa M, Ermann M, Courtney SM, Young M, Showalter HD, Sun D, et al: Targeting deubiquitinase activity with a novel small-molecule inhibitor as therapy for B-cell malignancies. Blood. 125:3588–3597. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Cui J, Sun W, Hao X, Wei M, Su X, Zhang Y, Su L and Liu X: EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell Int. 15:42015. View Article : Google Scholar : PubMed/NCBI

120 

Boise LH: DUB-ling down on B-cell malignancies. Blood. 125:3522–3523. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Chou DH, Vetere A, Choudhary A, Scully SS, Schenone M, Tang A, Gomez R, Burns SM, Lundh M, Vital T, et al: Kinase-independent small-molecule inhibition of JAK-STAT signaling. J Am Chem Soc. 137:7929–7934. 2015. View Article : Google Scholar : PubMed/NCBI

122 

Lawson AP, Long MJC, Coffey RT, Qian Y, Weerapana E, El Oualid F and Hedstrom L: Naturally occurring isothiocyanates exert anticancer effects by inhibiting deubiquitinating enzymes. Cancer Res. 75:5130–5142. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Meng Y, Hong C, Yang S, Qin Z, Yang L and Huang Y: Roles of USP9X in cellular functions and tumorigenesis (Review). Oncol Lett 26: 506, 2023.
APA
Meng, Y., Hong, C., Yang, S., Qin, Z., Yang, L., & Huang, Y. (2023). Roles of USP9X in cellular functions and tumorigenesis (Review). Oncology Letters, 26, 506. https://doi.org/10.3892/ol.2023.14093
MLA
Meng, Y., Hong, C., Yang, S., Qin, Z., Yang, L., Huang, Y."Roles of USP9X in cellular functions and tumorigenesis (Review)". Oncology Letters 26.6 (2023): 506.
Chicago
Meng, Y., Hong, C., Yang, S., Qin, Z., Yang, L., Huang, Y."Roles of USP9X in cellular functions and tumorigenesis (Review)". Oncology Letters 26, no. 6 (2023): 506. https://doi.org/10.3892/ol.2023.14093
Copy and paste a formatted citation
x
Spandidos Publications style
Meng Y, Hong C, Yang S, Qin Z, Yang L and Huang Y: Roles of USP9X in cellular functions and tumorigenesis (Review). Oncol Lett 26: 506, 2023.
APA
Meng, Y., Hong, C., Yang, S., Qin, Z., Yang, L., & Huang, Y. (2023). Roles of USP9X in cellular functions and tumorigenesis (Review). Oncology Letters, 26, 506. https://doi.org/10.3892/ol.2023.14093
MLA
Meng, Y., Hong, C., Yang, S., Qin, Z., Yang, L., Huang, Y."Roles of USP9X in cellular functions and tumorigenesis (Review)". Oncology Letters 26.6 (2023): 506.
Chicago
Meng, Y., Hong, C., Yang, S., Qin, Z., Yang, L., Huang, Y."Roles of USP9X in cellular functions and tumorigenesis (Review)". Oncology Letters 26, no. 6 (2023): 506. https://doi.org/10.3892/ol.2023.14093
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team