|
1
|
Schaff LR and Mellinghoff IK: Glioblastoma
and other primary brain malignancies in adults: A review. JAMA.
329:574–587. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
McNamara C, Mankad K, Thust S, Dixon L,
Limback-Stanic C, D'Arco F, Jacques TS and Löbel U: 2021 WHO
classification of tumours of the central nervous system: A review
for the neuroradiologist. Neuroradiology. 64:1919–1950. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Szklener K, Mazurek M, Wieteska M,
Waclawska M, Bilski M and Mandziuk S: New directions in the therapy
of glioblastoma. Cancers (Basel). 14:53772022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Salvador GA: Iron in neuronal function and
dysfunction. Biofactors. 36:103–110. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen S and Zhang Z, Zhang B, Huang Q, Liu
Y, Qiu Y, Qiu Y, Long X, Wu M and Zhang Z: CircCDK14 promotes tumor
progression and resists ferroptosis in glioma by regulating PDGFRA.
Int J Biol Sci. 18:841–857. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jiao JT, Jiang C, Huang J, Dai MC, Wang C,
Cheng C and Shao JF: Metabolic syndrome factors and risk of
postoperative depression in high-grade glioma patients in a
1.5-year prospective study. Med Oncol. 31:2342014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tiller JW: Depression and anxiety. Med J
Aust. 199((S6)): S28–S31. 2013.PubMed/NCBI
|
|
8
|
Middeldorp CM, Cath DC, Van Dyck R and
Boomsma DI: The co-morbidity of anxiety and depression in the
perspective of genetic epidemiology. A review of twin and family
studies. Psychol Med. 35:611–624. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Maes M, Kubera M, Obuchowiczwa E, Goehler
L and Brzeszcz J: Depression's multiple comorbidities explained by
(neuro)inflammatory and oxidative & nitrosative stress
pathways. Neuro Endocrinol Lett. 32:7–24. 2011.PubMed/NCBI
|
|
10
|
Bunevicius A, Deltuva VP and Tamasauskas
A: Association of pre-operative depressive and anxiety symptoms
with five-year survival of glioma and meningioma patients: A
prospective cohort study. Oncotarget. 8:57543–57551. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gathinji M, McGirt MJ, Attenello FJ,
Chaichana KL, Than K, Olivi A, Weingart JD, Brem H and
Quinones-Hinojosa A: Association of preoperative depression and
survival after resection of malignant brain astrocytoma. Surg
Neurol. 71:299–303; discussion 303. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Conrad M, Lorenz SM and Proneth B:
Targeting ferroptosis: New hope for as-yet-incurable diseases.
Trends Mol Med. 27:113–122. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Liu T, Zhu C, Chen X, Guan G, Zou C, Shen
S, Wu J, Wang Y, Lin Z, Chen L, et al: Ferroptosis, as the most
enriched programmed cell death process in glioma, induces
immunosuppression and immunotherapy resistance. Neuro Oncol.
24:1113–1125. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang Z, Li R, Hou N, Zhang J, Wang T, Fan
P, Ji C, Zhang B, Liu L, Wang Y, et al: PRMT5 reduces immunotherapy
efficacy in triple-negative breast cancer by methylating KEAP1 and
inhibiting ferroptosis. J Immunother Cancer. 11:e0068902023.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yan H, Talty R and Johnson CH: Targeting
ferroptosis to treat colorectal cancer. Trends Cell Biol.
33:185–188. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ramadori P, Gallage S and Heikenwalder MF:
Unique tumour microenvironment: When ferroptosis activation boosts
ICI of liver cancer. Gut. 72:1639–1641. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Han Z, Wang H, Long J, Qiu Y and Xing XL:
Establishing a prognostic model of ferroptosis- and immune-related
signatures in kidney cancer: A study based on TCGA and ICGC
databases. Front Oncol. 12:9313832022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Chen X, Li J, Kang R, Klionsky DJ and Tang
D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Degterev A, Huang Z, Boyce M, Li Y, Jagtap
P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA and Yuan J:
Chemical inhibitor of nonapoptotic cell death with therapeutic
potential for ischemic brain injury. Nat Chem Biol. 1:112–119.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu Y, Shoji-Kawata S, Sumpter RM Jr, Wei
Y, Ginet V, Zhang L, Posner B, Tran KA, Green DR, Xavier RJ, et al:
Autosis is a Na+, K+-ATPase-regulated form of cell death triggered
by autophagy-inducing peptides, starvation, and hypoxia-ischemia.
Proc Natl Acad Sci USA. 110:20364–20371. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang WS, SriRamaratnam R, Welsch ME,
Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji
AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by
GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun
X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death
Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gunshin H, Mackenzie B, Berger UV, Gunshin
Y, Romero MF, Boron WF, Nussberger S, Gollan JL and Hediger MA:
Cloning and characterization of a mammalian proton-coupled
metal-ion transporter. Nature. 388:482–488. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lane DJ and Richardson DR: Chaperone turns
gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline. Biochem
J. 462:e1–e3. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hurrell R and Egli I: Iron bioavailability
and dietary reference values. Am J Clin Nutr. 91:1461S–1467S. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ma S, Henson ES, Chen Y and Gibson SB:
Ferroptosis is induced following siramesine and lapatinib treatment
of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gao M, Monian P, Quadri N, Ramasamy R and
Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol
Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yanatori I, Richardson DR, Imada K and
Kishi F: Iron export through the transporter ferroportin 1 is
modulated by the iron chaperone PCBP2. J Biol Chem.
291:17303–17318. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lane DJ, Bae DH, Merlot AM, Sahni S and
Richardson DR: Duodenal cytochrome b (DCYTB) in iron metabolism: An
update on function and regulation. Nutrients. 7:2274–2296. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Qiu A, Jansen M, Sakaris A, Min SH,
Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH and Goldman
ID: Identification of an intestinal folate transporter and the
molecular basis for hereditary folate malabsorption. Cell.
127:917–928. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
White C, Yuan X, Schmidt PJ, Bresciani E,
Samuel TK, Campagna D, Hall C, Bishop K, Calicchio ML, Lapierre A,
et al: HRG1 is essential for heme transport from the phagolysosome
of macrophages during erythrophagocytosis. Cell Metab. 17:261–270.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Nishito Y and Kambe T: Absorption
mechanisms of iron, copper, and zinc: An overview. J Nutr Sci
Vitaminol (Tokyo). 64:1–7. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cao JY and Dixon SJ: Mechanisms of
ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhao J, Wang Y, Tao L and Chen L: Iron
transporters and ferroptosis in malignant brain tumors. Front
Oncol. 12:8618342022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Hu C, Tao L, Cao X and Chen L: The solute
carrier transporters and the brain: Physiological and
pharmacological implications. Asian J Pharm Sci. 15:131–144. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Rouault TA and Cooperman S: Brain iron
metabolism. Semin Pediatr Neurol. 13:142–148. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Engelhardt B and Sorokin L: The
blood-brain and the blood-cerebrospinal fluid barriers: Function
and dysfunction. Semin Immunopathol. 31:497–511. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Skjorringe T, Moller LB and Moos T:
Impairment of interrelated iron- and copper homeostatic mechanisms
in brain contributes to the pathogenesis of neurodegenerative
disorders. Front Pharmacol. 3:1692012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li GJ, Choi BS, Wang X, Liu J, Waalkes MP
and Zheng W: Molecular mechanism of distorted iron regulation in
the blood-CSF barrier and regional blood-brain barrier following in
vivo subchronic manganese exposure. Neurotoxicology. 27:737–744.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zheng W and Monnot AD: Regulation of brain
iron and copper homeostasis by brain barrier systems: Implication
in neurodegenerative diseases. Pharmacol Ther. 133:177–188. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Qian ZM and Ke Y: Brain iron transport.
Biol Rev Camb Philos Soc. 94:1672–1684. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Burdo JR, Menzies SL, Simpson IA, Garrick
LM, Garrick MD, Dolan KG, Haile DJ, Beard JL and Connor JR:
Distribution of divalent metal transporter 1 and metal transport
protein 1 in the normal and Belgrade rat. J Neurosci Res.
66:1198–1207. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Carlson ES, Tkac I, Magid R, O'Connor MB,
Andrews NC, Schallert T, Gunshin H, Georgieff MK and Petryk A: Iron
is essential for neuron development and memory function in mouse
hippocampus. J Nutr. 139:672–679. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wong BX, Tsatsanis A, Lim LQ, Adlard PA,
Bush AI and Duce JA: β-Amyloid precursor protein does not possess
ferroxidase activity but does stabilize the cell surface ferrous
iron exporter ferroportin. PLoS One. 9:e1141742014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Miyajima H: Aceruloplasminemia.
Neuropathology. 35:83–90. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gaasch JA, Lockman PR, Geldenhuys WJ,
Allen DD and Van der Schyf CJ: Brain iron toxicity: Differential
responses of astrocytes, neurons, and endothelial cells. Neurochem
Res. 32:1196–1208. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Huang R, Dong R, Wang N, He Y, Zhu P, Wang
C, Lan B, Gao Y and Sun L: Adaptive changes allow targeting of
ferroptosis for glioma treatment. Cell Mol Neurobiol. 42:2055–2074.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Du H, Ren X, Bai J, Yang W, Gao Y and Yan
S: Research progress of ferroptosis in adiposity-based chronic
disease (ABCD). Oxid Med Cell Longev. 2022:10526992022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Shintoku R, Takigawa Y, Yamada K, Kubota
C, Yoshimoto Y, Takeuchi T, Koshiishi I and Torii S:
Lipoxygenase-mediated generation of lipid peroxides enhances
ferroptosis induced by erastin and RSL3. Cancer Sci. 108:2187–2194.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yang WS, Kim KJ, Gaschler MM, Patel M,
Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated
fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci
USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Luo Y, Tian G, Fang X, Bai S, Yuan G and
Pan Y: Ferroptosis and its potential role in glioma: From molecular
mechanisms to therapeutic opportunities. Antioxidants (Basel).
11:21232022. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhou Y, Fang C, Xu H, Yuan L, Liu Y, Wang
X, Zhang A, Shao A and Zhou D: Ferroptosis in glioma treatment:
Current situation, prospects and drug applications. Front Oncol.
12:9898962022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yuan H, Li X, Zhang X, Kang R and Tang D:
Identification of ACSL4 as a biomarker and contributor of
ferroptosis. Biochem Biophys Res Commun. 478:1338–1343. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Chu B, Kon N, Chen D, Li T, Liu T, Jiang
L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated
tumour suppression through a distinct ferroptosis pathway. Nat Cell
Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H,
Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al:
Tau-mediated iron export prevents ferroptotic damage after ischemic
stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shin D, Lee J, You JH, Kim D and Roh JL:
Dihydrolipoamide dehydrogenase regulates cystine
deprivation-induced ferroptosis in head and neck cancer. Redox
Biol. 30:1014182020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Detivaud L, Island ML, Jouanolle AM,
Ropert M, Bardou-Jacquet E, Le Lan C, Mosser A, Leroyer P, Deugnier
Y, David V, et al: Ferroportin diseases: Functional studies, a link
between genetic and clinical phenotype. Hum Mutat. 34:1529–1536.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Luo M, Wu L, Zhang K, Wang H, Zhang T,
Gutierrez L, O'Connell D, Zhang P, Li Y, Gao T, et al: miR-137
regulates ferroptosis by targeting glutamine transporter SLC1A5 in
melanoma. Cell Death Differ. 25:1457–1472. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dai C, Chen X, Li J, Comish P, Kang R and
Tang D: Transcription factors in ferroptotic cell death. Cancer
Gene Ther. 27:645–656. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Anandhan A, Dodson M, Schmidlin CJ, Liu P
and Zhang DD: Breakdown of an ironclad defense system: The critical
role of NRF2 in mediating ferroptosis. Cell Chem Biol. 27:436–447.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Liu XB, Yang F and Haile DJ: Functional
consequences of ferroportin 1 mutations. Blood Cells Mol Dis.
35:33–46. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Taniguchi R, Kato HE, Font J, Deshpande
CN, Wada M, Ito K, Ishitani R, Jormakka M and Nureki O: Outward-
and inward-facing structures of a putative bacterial
transition-metal transporter with homology to ferroportin. Nat
Commun. 6:85452015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Galaris D, Barbouti A and Pantopoulos K:
Iron homeostasis and oxidative stress: An intimate relationship.
Biochim Biophys Acta Mol Cell Res. 1866:1185352019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Pardridge WM: Drug transport across the
blood-brain barrier. J Cereb Blood Flow Metab. 32:1959–1972. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang H, An P, Xie E, Wu Q, Fang X, Gao H,
Zhang Z, Li Y, Wang X, Zhang J, et al: Characterization of
ferroptosis in murine models of hemochromatosis. Hepatology.
66:449–465. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Badgley MA, Kremer DM, Maurer HC,
DelGiorno KE, Lee HJ, Purohit V, Sagalovskiy IR, Ma A, Kapilian J,
Firl CEM, et al: Cysteine depletion induces pancreatic tumor
ferroptosis in mice. Science. 368:85–89. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ingold I, Berndt C, Schmitt S, Doll S,
Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T,
et al: Selenium utilization by GPX4 is required to prevent
hydroperoxide-induced ferroptosis. Cell. 172:409–422. e212018.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Alim I, Caulfield JT, Chen Y, Swarup V,
Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie
EJ, et al: Selenium drives a transcriptional adaptive program to
block ferroptosis and treat stroke. Cell. 177:1262–1279. e252019.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Doll S, Freitas FP, Shah R, Aldrovandi M,
da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius
E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis
suppressor. Nature. 575:6936–698. 2019. View Article : Google Scholar
|
|
71
|
Bersuker K, Hendricks JM, Li Z, Magtanong
L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al:
The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit
ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang Z, Ding Y, Wang X, Lu S, Wang C, He
C, Wang L, Piao M, Chi G, Luo Y and Ge P: Pseudolaric acid B
triggers ferroptosis in glioma cells via activation of Nox4 and
inhibition of xCT. Cancer Lett. 428:21–33. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wu Y, Zhao Y, Yang HZ, Wang YJ and Chen Y:
HMGB1 regulates ferroptosis through Nrf2 pathway in mesangial cells
in response to high glucose. Biosci Rep. 41:BSR202029242021.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M,
Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell
proliferation and diminishes ferroptosis. Oncogenesis. 6:e3712017.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Roh JL, Kim EH, Jang H and Shin D: Nrf2
inhibition reverses the resistance of cisplatin-resistant head and
neck cancer cells to artesunate-induced ferroptosis. Redox Biol.
11:254–262. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sun X, Ou Z, Chen R, Niu X, Chen D, Kang R
and Tang D: Activation of the p62-Keap1-NRF2 pathway protects
against ferroptosis in hepatocellular carcinoma cells. Hepatology.
63:173–184. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chen D, Fan Z, Rauh M, Buchfelder M,
Eyupoglu IY and Savaskan N: ATF4 promotes angiogenesis and neuronal
cell death and confers ferroptosis in a xCT-dependent manner.
Oncogene. 36:5593–5608. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhao X, Zhou M, Yang Y and Luo M: The
ubiquitin hydrolase OTUB1 promotes glioma cell stemness via
suppressing ferroptosis through stabilizing SLC7A11 protein.
Bioengineered. 12:12636–12645. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yi R, Wang H, Deng C, Wang X, Yao L, Niu
W, Fei M and Zhaba W: Dihydroartemisinin initiates ferroptosis in
glioblastoma through GPX4 inhibition. Biosci Rep.
40:BSR201933142020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Song Q, Peng S, Sun Z, Heng X and Zhu X:
Temozolomide drives ferroptosis via a DMT1-Dependent pathway in
glioblastoma cells. Yonsei Med J. 62:843–849. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang Y, Tan H, Daniels JD, Zandkarimi F,
Liu H, Brown LM, Uchida K, O'Connor OA and Stockwell BR: Imidazole
ketone erastin induces ferroptosis and slows tumor growth in a
mouse lymphoma model. Cell Chem Biol. 26:623–633. e92019.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Eaton JK, Furst L, Ruberto RA, Moosmayer
D, Hilpmann A, Ryan MJ, Zimmermann K, Cai LL, Niehues M, Badock V,
et al: Selective covalent targeting of GPX4 using masked
nitrile-oxide electrophiles. Nat Chem Biol. 16:497–506. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sukseree S, Schwarze UY, Gruber R, Gruber
F, Quiles Del Rey M, Mancias JD, Bartlett JD, Tschachler E and
Eckhart L: ATG7 is essential for secretion of iron from ameloblasts
and normal growth of murine incisors during aging. Autophagy.
16:1851–1857. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang Y, Kong Y, Ma Y, Ni S, Wikerholmen
T, Xi K, Zhao F, Zhao Z, Wang J, Huang B, et al: Loss of COPZ1
induces NCOA4 mediated autophagy and ferroptosis in glioblastoma
cell lines. Oncogene. 40:1425–1439. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Santini ZI, Jose PE, York Cornwell E,
Koyanagi A, Nielsen L, Hinrichsen C, Meilstrup C, Madsen KR and
Koushede V: Social disconnectedness, perceived isolation, and
symptoms of depression and anxiety among older Americans (NSHAP): A
longitudinal mediation analysis. Lancet Public Health. 5:e62–e70.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Forero DA, Guio-Vega GP and
Gonzalez-Giraldo Y: A comprehensive regional analysis of
genome-wide expression profiles for major depressive disorder. J
Affect Disord. 218:86–92. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Tang W, Lu Y and Xu J: Post-traumatic
stress disorder, anxiety and depression symptoms among adolescent
earthquake victims: Comorbidity and associated sleep-disturbing
factors. Soc Psychiatry Psychiatr Epidemiol. 53:1241–1251. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Gialluisi A, Bonaccio M, Di Castelnuovo A,
Costanzo S, De Curtis A, Sarchiapone M, Cerletti C, Donati MB, de
Gaetano G and Iacoviello L; Moli-Sani Study Investigators, :
Lifestyle and biological factors influence the relationship between
mental health and low-grade inflammation. Brain Behav Immun.
85:4–13. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Treudler R, Zeynalova S, Riedel-Heller SG,
Zuelke AE, Roehr S, Hinz A, Glaesmer H, Kage P, Loeffler M and
Simon JC: Depression, anxiety and quality of life in subjects with
atopic eczema in a population-based cross-sectional study in
Germany. J Eur Acad Dermatol Venereol. 34:810–816. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Singer S, Roick J, Danker H, Kortmann RD,
Papsdorf K, Taubenheim S, Renovanz M, Jähne K and Meixensberger J:
Psychiatric co-morbidity, distress, and use of psycho-social
services in adult glioma patients-a prospective study. Acta
Neurochir (Wien). 160:1187–1194. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 World health organization
classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ostrom QT, Gittleman H, Fulop J, Liu M,
Blanda R, Kromer C, Wolinsky Y, Kruchko C and Barnholtz-Sloan JS:
CBTRUS statistical report: Primary brain and central nervous system
tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 17
(Suppl 4):iv1–iv62. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Hao A, Huang J and Xu X: Anxiety and
depression in glioma patients: Prevalence, risk factors, and their
correlation with survival. Ir J Med Sci. 190:1155–1164. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Young K and Singh G: Biological mechanisms
of cancer-induced depression. Front Psychiatry. 9:2992018.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Satin JR, Linden W and Phillips MJ:
Depression as a predictor of disease progression and mortality in
cancer patients: A meta-analysis. Cancer. 115:5349–5361. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Sawangjit A, Oyanedel CN, Niethard N,
Salazar C, Born J and Inostroza M: The hippocampus is crucial for
forming non-hippocampal long-term memory during sleep. Nature.
564:109–113. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Dang R, Wang M, Li X, Wang H, Liu L, Wu Q,
Zhao J, Ji P, Zhong L, Licinio J and Xie P: Edaravone ameliorates
depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4
pathway. J Neuroinflammation. 19:412022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Jiao H, Yang H, Yan Z and Chen J, Xu M,
Jiang Y, Liu Y, Xue Z, Ma Q, Li X and Chen J: Traditional Chinese
formula xiaoyaosan alleviates depressive-like behavior in CUMS Mice
by Regulating PEBP1-GPX4-Mediated Ferroptosis in the Hippocampus.
Neuropsychiatr Dis Treat. 17:1001–1019. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Erratum to: path-03. Ferroptosis-related
long non-coding rna signatures predict prognosis in patients with
glioma. Neuro Oncol. 24:20102022. View Article : Google Scholar : PubMed/NCBI
|