|
1
|
Dahl CA, Schall RP, He HL and Cairns JS:
Identification of a novel gene expressed in activated natural
killer cells and T cells. J Immunol. 148:597–603. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kim SH, Han SY, Azam T, Yoon DY and
Dinarello CA: Interleukin-32: A cytokine and inducer of TNFalpha.
Immunity. 22:131–142. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ko NY, Mun SH, Lee SH, Kim JW, Kim DK, Kim
HS, Her E, Kim SH, Won HS, Shin HS, et al: Interleukin-32α
production is regulated by MyD88-dependent and independent pathways
in IL-1β-stimulated human alveolar epithelial cells. Immunobiology.
216:32–40. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kold-Petry CA, Rudloff I, Baumer Y, Ruvo
M, Marasco D, Botti P, Farkas L, Cho SX, Zepp JA, Azam T, et al:
IL-32 promotes angiogenesis. J Immunol. 192:589–602. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Goda C, Kanaji T, Kanaji S, Tanaka G,
Arima K, Ohno S and Izuhara K: Involvement of IL-32 in
activation-induced cell death in T cells. Int Immunol. 18:233–240.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hong JT, Son DJ, Lee CK, Yoon DY, Lee DH
and Park MH: Interleukin 32, inflammation and cancer. Pharmacol
Ther. 174:127–137. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Moschen AR, Fritz T, Clouston AD, Rebhan
I, Bauhofer O, Barrie HD, Powell EE, Kim SH, Dinarello CA,
Bartenschlager R, et al: Interleukin-32: A new proinflammatory
cytokine involved in hepatitis C virus-related liver inflammation
and fibrosis. Hepatology. 53:1819–1829. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
de Albuquerque R, Komsi E, Starskaia I,
Ullah U and Lahesmaa R: The role of interleukin-32 in autoimmunity.
Scand J Immunol. 93:e130122021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nam SY, Jeong HJ and Kim HM: Kaempferol
impedes IL-32-induced monocyte-macrophage differentiation. Chem
Biol Interact. 274:107–115. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kudo M, Ogawa E, Kinose D, Haruna A,
Takahashi T, Tanabe N, Marumo S, Hoshino Y, Hirai T, Sakai H, et
al: Oxidative stress induced interleukin-32 mRNA expression in
human bronchial epithelial cells. Respir Res. 13:192012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Cagnard N, Letourneur F, Essabbani A,
Devauchelle V, Mistou S, Rapinat A, Decraene C, Fournier C and
Chiocchia G: Interleukin-32, CCL2, PF4F1 and GFD10 are the only
cytokine/chemokine genes differentially expressed by in vitro
cultured rheumatoid and osteoarthritis fibroblast-like
synoviocytes. Eur Cytokine Netw. 16:289–292. 2005.PubMed/NCBI
|
|
12
|
Barksby HE, Nile CJ, Jaedicke KM, Taylor
JJ and Preshaw PM: Differential expression of immunoregulatory
genes in monocytes in response to Porphyromonas gingivalis and
Escherichia coli lipopolysaccharide. Clin Exp Immunol. 156:479–487.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Jeong HJ, Shin SY, Oh HA, Kim MH, Cho JS
and Kim HM: IL-32 up-regulation is associated with inflammatory
cytokine production in allergic rhinitis. J Pathol. 224:553–563.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kang YH, Park MY, Yoon DY, Han SR, Lee CI,
Ji NY, Myung PK, Lee HG, Kim JW, Yeom YI, et al: Dysregulation of
overexpressed IL-32α in hepatocellular carcinoma suppresses cell
growth and induces apoptosis through inactivation of NF-κB and
Bcl-2. Cancer Lett. 318:226–233. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kang JW, Choi SC, Cho MC, Kim HJ, Kim JH,
Lim JS, Kim SH, Han JY and Yoon DY: A proinflammatory cytokine
interleukin-32beta promotes the production of an anti-inflammatory
cytokine interleukin-10. Immunology. 128 (1 Suppl):e532–e540. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Dinarello CA and Kim SH: IL-32, a novel
cytokine with a possible role in disease. Ann Rheum Dis. 65 (Suppl
3):iii61–iii64. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen J, Wang S, Su J, Chu G, You H, Chen
Z, Sun H, Chen B and Zhou M: Interleukin-32α inactivates JAK2/STAT3
signaling and reverses interleukin-6-induced epithelial-mesenchymal
transition, invasion, and metastasis in pancreatic cancer cells.
Onco Targets Ther. 9:4225–4237. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Novick D, Rubinstein M, Azam T, Rabinkov
A, Dinarello CA and Kim SH: Proteinase 3 is an IL-32 binding
protein. Proc Natl Acad Sci USA. 103:3316–3321. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Heinhuis B, Netea MG, van den Berg WB,
Dinarello CA and Joosten LAB: Interleukin-32: A predominantly
intracellular proinflammatory mediator that controls cell
activation and cell death. Cytokine. 60:321–327. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Pendergraft WF III, Rudolph EH, Falk RJ,
Jahn JE, Grimmler M, Hengst L, Jennette JC and Preston GA:
Proteinase 3 sidesteps caspases and cleaves p21(Waf1/Cip1/Sdi1) to
induce endothelial cell apoptosis. Kidney Int. 65:75–84. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yang JJ, Pendergraft WF, Alcorta DA,
Nachman PH, Hogan SL, Thomas RP, Sullivan P, Jennette JC, Falk RJ
and Preston GA: Circumvention of normal constraints on granule
protein gene expression in peripheral blood neutrophils and
monocytes of patients with antineutrophil cytoplasmic
autoantibody-associated glomerulonephritis. J Am Soc Nephrol.
15:2103–2114. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kwon OC, Ghang B, Lee EJ, Hong S, Lee CK,
Yoo B, Kim S and Kim YG: Interleukin-32γ: Possible association with
the activity and development of nephritis in patients with systemic
lupus erythematosus. Int J Rheum Dis. 22:1305–1311. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Inoue M, Shoda H, Seri Y, Kubo K, Kanda H,
Fujio K and Yamamoto K: Three cases of lupus nephritis patients
with serum interleukin-32γ detection. Lupus. 23:1187–1191. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Caramori G, Adcock IM, Di Stefano A and
Chung KF: Cytokine inhibition in the treatment of COPD. nt J Chron
Obstruct Pulmon Dis. 9:397–412. 2014.PubMed/NCBI
|
|
25
|
Heinhuis B, Koenders MI, van den Berg WB,
Netea MG, Dinarello CA and Joosten LAB: Interleukin 32 (IL-32)
contains a typical α-helix bundle structure that resembles focal
adhesion targeting region of focal adhesion kinase-1. J Biol Chem.
287:5733–5743. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Park MH, Yoon DY, Ban JO, Kim DH, Lee DH,
Song S, Kim Y, Han SB, Lee HP and Hong JT: Decreased severity of
collagen antibody and lipopolysaccharide-induced arthritis in human
IL-32β overexpressed transgenic mice. Oncotarget. 6:38566–38577.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Dos Santos JC, Heinhuis B, Gomes RS, Damen
MS, Real F, Mortara RA, Keating ST, Dinarello CA, Joosten LA and
Ribeiro-Dias F: Cytokines and microbicidal molecules regulated by
IL-32 in THP-1-derived human macrophages infected with New World
Leishmania species. PLoS Negl Trop Dis. 11:e00054132017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xu H, Zhang S, Pan X, Cao H, Huang X, Xu
Q, Zhong H and Peng X: TIMP-1 expression induced by IL-32 is
mediated through activation of AP-1 signal pathway. Int
Immunopharmacol. 38:233–237. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Netea MG, Lewis EC, Azam T, Joosten LA,
Jaekal J, Bae SY, Dinarello CA and Kim SH: Interleukin-32 induces
the differentiation of monocytes into macrophage-like cells. Proc
Natl Acad Sci USA. 105:3515–3520. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Netea MG, Azam T, Ferwerda G, Girardin SE,
Walsh M, Park JS, Abraham E, Kim JM, Yoon DY, Dinarello CA and Kim
SH: IL-32 synergizes with nucleotide oligomerization domain (NOD) 1
and NOD2 ligands for IL-1beta and IL-6 production through a caspase
1-dependent mechanism. Proc Natl Acad Sci USA. 102:16309–16314.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Becker S, Warren MK and Haskill S:
Colony-stimulating factor-induced monocyte survival and
differentiation into macrophages in serum-free cultures. J Immunol.
139:3703–3709. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Delneste Y, Charbonnier P, Herbault N,
Magistrelli G, Caron G, Bonnefoy JY and Jeannin P: Interferon-gamma
switches monocyte differentiation from dendritic cells to
macrophages. Blood. 101:143–150. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lo AS, Gorak-Stolinska P, Bachy V, Ibrahim
MA, Kemeny DM and Maher J: Modulation of dendritic cell
differentiation by colony-stimulating factor-1: Role of
phosphatidylinositol 3′-kinase and delayed caspase activation. J
Leukoc Biol. 82:1446–1454. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Romani N, Gruner S, Brang D, Kämpgen E,
Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM and
Schuler G: Proliferating dendritic cell progenitors in human blood.
J Exp Med. 180:83–93. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sallusto F and Lanzavecchia A: Efficient
presentation of soluble antigen by cultured human dendritic cells
is maintained by granulocyte/macrophage colony-stimulating factor
plus interleukin 4 and downregulated by tumor necrosis factor
alpha. J Exp Med. 179:1109–1118. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chomarat P, Banchereau J, Davoust J and
Palucka AK: IL-6 switches the differentiation of monocytes from
dendritic cells to macrophages. Nat Immunol. 1:510–514. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Gorvel L, Korenfeld D, Tung T and
Klechevsky E: Dendritic cell-derived IL-32α: A novel inhibitory
cytokine of NK cell function. J Immunol. 199:1290–1300. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Borzouei S, Gholamian-Hamadan M and Behzad
M: Impact of interleukin-32α on T helper cell-related cytokines,
transcription factors, and proliferation in patients with type 2
diabetes mellitus. Immunopharmacol Immunotoxicol. 45:268–276. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Di Sabatino A, Giuffrida P, Fornasa G,
Salvatore C, Vanoli A, Naviglio S, De Leo L, Pasini A, De Amici M,
Alvisi C, et al: Innate and adaptive immunity in self-reported
nonceliac gluten sensitivity versus celiac disease. Dig Liver Dis.
48:745–752. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Park YS, Kang JW, Lee DH, Kim MS, Bak Y,
Yang Y, Lee HG, Hong J and Yoon DY: Interleukin-32α downregulates
the activity of the B-cell CLL/lymphoma 6 protein by inhibiting
protein kinase Cε-dependent SUMO-2 modification. Oncotarget.
5:8765–8777. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Oh JH, Cho MC, Kim JH, Lee SY, Kim HJ,
Park ES, Ban JO, Kang JW, Lee DH, Shim JH, et al: IL-32γ inhibits
cancer cell growth through inactivation of NF-κB and STAT3 signals.
Oncogene. 30:3345–3359. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lee YS, Han SB, Ham HJ, Park JH, Lee JS,
Hwang DY, Jung YS, Yoon DY and Hong JT: IL-32γ suppressed atopic
dermatitis through inhibition of miR-205 expression via
inactivation of nuclear factor-kappa B. J Allergy Clin Immunol.
146:156–168. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wallimann A and Schenk M: IL-32 as a
potential biomarker and therapeutic target in skin inflammation.
Front Immunol. 14:12642362023. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Park MH, Song MJ, Cho MC, Moon DC, Yoon
DY, Han SB and Hong JT: Interleukin-32 enhances cytotoxic effect of
natural killer cells to cancer cells via activation of death
receptor 3. Mmunology. 135:63–72. 2012.
|
|
45
|
Yun HM, Oh JH, Shim JH, Ban JO, Park KR,
Kim JH, Lee DH, Kang JW, Park YH, Yu D, et al: Antitumor activity
of IL-32β through the activation of lymphocytes, and the
inactivation of NF-κB and STAT3 signals. Cell Death Dis.
4:e6402013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Jung YY, Katila N, Neupane S, Shadfar S,
Ojha U, Bhurtel S, Srivastav S, Son DJ, Park PH, Yoon DY, et al:
Enhanced dopaminergic neurotoxicity mediated by MPTP in IL-32β
transgenic mice. Neurochem Int. 102:79–88. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ni X, Zhang X, Hu CH, Langridge T,
Tarapore RS, Allen JE, Oster W and Duvic M: ONC201 selectively
induces apoptosis in cutaneous T-cell lymphoma cells via activating
pro-apoptotic integrated stress response and inactivating JAK/STAT
and NF-κB pathways. Oncotarget. 8:61761–61776. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lin X, Yang L, Wang G, Zi F, Yan H, Guo X,
Chen J, Chen Q, Huang X, Li Y, et al: Interleukin-32α promotes the
proliferation of multiple myeloma cells by inducing production of
IL-6 in bone marrow stromal cells. Oncotarget. 8:92841–92854. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hussain SP and Harris CC: Inflammation and
cancer: An ancient link with novel potentials. Int J Cancer.
121:2373–2380. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ting WC, Chen LM, Huang LC, Hour MJ, Lan
YH, Lee HZ, You BJ, Chang TY and Bao BY: Impact of interleukin-10
gene polymorphisms on survival in patients with colorectal cancer.
J Korean Med Sci. 28:1302–1306. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Petanidis S, Anestakis D, Argyraki M,
Hadzopoulou-Cladaras M and Salifoglou A: Differential expression of
IL-17, 22 and 23 in the progression of colorectal cancer in
patients with K-ras mutation: Ras signal inhibition and crosstalk
with GM-CSF and IFN-γ. PLoS One. 8:e736162013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zeng JC, Zhang Z, Li TY, Liang YF, Wang
HM, Bao JJ, Zhang JA, Wang WD, Xiang WY, Kong B, et al: Assessing
the role of IL-35 in colorectal cancer progression and prognosis.
Int J Clin Exp Pathol. 6:1806–1816. 2013.PubMed/NCBI
|
|
53
|
Yang Y, Wang Z, Zhou Y, Wang X, Xiang J
and Chen Z: Dysregulation of over-expressed IL-32 in colorectal
cancer induces metastasis. World J Surg Oncol. 13:1462015.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yun HM, Park KR, Kim EC, Han SB, Yoon DY
and Hong JT: IL-32α suppresses colorectal cancer development via
TNFR1-mediated death signaling. Oncotarget. 6:9061–9072. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ebach DR, Newberry R and Stenson WF:
Differential role of tumor necrosis factor receptors in TNBS
colitis. Inflamm Bowel Dis. 11:533–540. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Seo EH, Kang J, Kim KH, Cho MC, Lee S, Kim
HJ, Kim JH, Kim EJ, Park DK, Kim SH, et al: Detection of expressed
IL-32 in human stomach cancer using ELISA and immunostaining. J
Microbiol Biotechnol. 18:1606–1612. 2008.PubMed/NCBI
|
|
57
|
Tsai CY, Wang CS, Tsai MM, Chi HC, Cheng
WL, Tseng YH, Chen CY, Lin CD, Wu JI, Wang LH and Lin KH:
Interleukin-32 increases human gastric cancer cell invasion
associated with tumor progression and metastasis. Clin Cancer Res.
20:2276–2288. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ishigami S, Arigami T, Uchikado Y,
Setoyama T, Kita Y, Sasaki K, Okumura H, Kurahara H, Kijima Y,
Harada A, et al: IL-32 expression is an independent prognostic
marker for gastric cancer. Med Oncol. 30:4722013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang S, Chen F and Tang L: IL-32 promotes
breast cancer cell growth and invasiveness. Oncol Lett. 9:305–307.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lin J, Xu R, Hu L, You J, Jiang N, Li C,
Che C, Wang Q, Xu Q and Li J: Interleukin-32 induced thymic stromal
lymphopoietin plays a critical role in the inflammatory response in
human corneal epithelium. Cell Signal. 49:39–45. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nicholl MB, Chen X, Qin C, Bai Q, Zhu Z,
Davis MR and Fang Y: IL-32α has differential effects on
proliferation and apoptosis of human melanoma cell lines. J Surg
Oncol. 113:364–369. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Park HM, Park JY, Kim NY, Kim J, Pham TH,
Hong JT and Yoon DY: Modulatory effects of point-mutated IL-32θ
(A94V) on tumor progression in triple-negative breast cancer cells.
Biofactors. Sep 2–2023.(Epub ahead of print). View Article : Google Scholar
|
|
63
|
Pham TH, Bak Y, Kwon T, Kwon SB, Oh JW,
Park JH, Choi YK, Hong JT and Yoon DY: Interleukin-32θ inhibits
tumor-promoting effects of macrophage-secreted CCL18 in breast
cancer. Cell Commun Signal. 17:532019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lee YS, Kim KC, Mongre RK, Kim JY, Kim YR,
Choi DY, Song S, Yun J, Han SB, Yoon DY and Hong JT: IL-32γ
suppresses lung cancer stem cell growth via inhibition of
ITGAV-mediated STAT5 pathway. Cell Death Dis. 10:5062019.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Felaco P, Castellani ML, De Lutiis MA,
Felaco M, Pandolfi F, Salini V, De Amicis D, Vecchiet J, Tete S,
Ciampoli C, et al: IL-32: A newly-discovered proinflammatory
cytokine. J Biol Regul Homeost Agents. 23:141–147. 2009.PubMed/NCBI
|
|
66
|
Ma Z, Dong Z, Yu D, Mu M, Feng W, Guo J,
Cheng B, Guo J and Ma J: IL-32 promotes the radiosensitivity of
esophageal squamous cell carcinoma cell through STAT3 pathway.
Biomed Res Int. 2021:66537472021.PubMed/NCBI
|
|
67
|
Sorrentino C and Di Carlo E: Expression of
IL-32 in human lung cancer is related to the histotype and
metastatic phenotype. Am J Respir Crit Care Med. 180:769–779. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yun J, Park MH, Son DJ, Nam KT, Moon DB,
Ju JH, Hwang OK, Choi JS, Kim TH, Hwang DY, et al: IL-32 gamma
reduces lung tumor development through upregulation of TIMP-3
overexpression and hypomethylation. Cell Death Dis. 9:3062018.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liu H, Pan X, Cao H, Shu X, Sun H, Lu J,
Liang J, Zhang K, Zhu F, Li G and Zhang Q: IL-32γ promotes integrin
αvβ6 expression through the activation of NF-κB in HSCs. Exp Ther
Med. 14:3880–3886. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wang Y, Yang Y, Zhu Y, Li L, Chen F and
Zhang L: Polymorphisms and expression of IL-32: Impact on genetic
susceptibility and clinical outcome of lung cancer. Biomarkers.
22:165–170. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zou Y, Bao J, Pan X, Lu Y, Liao S, Wang X,
Wang G and Lin D: NKP30-B7-H6 interaction aggravates hepatocyte
damage through up-regulation of interleukin-32 expression in
hepatitis b virus-related acute-on-chronic liver failure. PLoS One.
10:e01345682015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Nishida A, Andoh A, Inatomi O and Fujiyama
Y: Interleukin-32 expression in the pancreas. J Biol Chem.
284:17868–17876. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yousif NG, Al-Amran FG, Hadi N, Lee J and
Adrienne J: Expression of IL-32 modulates NF-κB and p38 MAP kinase
pathways in human esophageal cancer. Cytokine. 61:223–227. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Takagi K, Imura J, Shimomura A, Noguchi A,
Minamisaka T, Tanaka S, Nishida T, Hatta H and Nakajima T:
Establishment of highly invasive pancreatic cancer cell lines and
the expression of IL-32. Oncol Lett. 20:2888–2896. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Cai A, Qi S, Su Z, Shen H, Ma W and Dai Y:
Tripterygium glycosides inhibit inflammatory mediators in the rat
synovial RSC-364 cell line stimulated with interleukin-1β. Biomed
Rep. 3:763–766. 2015. View Article : Google Scholar : PubMed/NCBI
|