|
1
|
Akutsu M, Dikic I and Bremm A: Ubiquitin
chain diversity at a glance. J Cell Sci. 129:875–880.
2016.PubMed/NCBI
|
|
2
|
Zhang YH, Zhou CJ, Zhou ZR, Song AX and Hu
HY: Domain analysis reveals that a deubiquitinating enzyme USP13
performs non-activating catalysis for Lys63-linked polyubiquitin.
PLoS One. 6:e293622011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Talreja J, Bauerfeld C, Wang X, Hafner M,
Liu Y and Samavati L: MKP-1 modulates
ubiquitination/phosphorylation of TLR signaling. Life Sci Alliance.
4:e2021011372021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liu X and Moussa C: Regulatory role of
ubiquitin specific protease-13 (USP13) in misfolded protein
clearance in neurodegenerative diseases. Neuroscience. 460:161–166.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Loix M, Zelcer N, Bogie JFJ and Hendriks
JJA: The ubiquitous role of ubiquitination in lipid metabolism.
Trends Cell Biol. S0962-8924(23)00192-7. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ciechanover A and Ben-Saadon R: N-terminal
ubiquitination: More protein substrates join in. Trends Cell Biol.
14:103–106. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wang X, Herr RA, Chua WJ, Lybarger L,
Wiertz EJ and Hansen TH: Ubiquitination of serine, threonine, or
lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by
viral E3 ligase mK3. J Cell Biol. 177:613–624. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nathan JA, Kim HT, Ting L, Gygi SP and
Goldberg AL: Why do cellular proteins linked to K63-polyubiquitin
chains not associate with proteasomes? EMBO J. 32:552–565. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu P, Gan W, Su S, Hauenstein AV, Fu TM,
Brasher B, Schwerdtfeger C, Liang AC, Xu M and Wei W: K63-linked
polyubiquitin chains bind to DNA to facilitate DNA damage repair.
Sci Signal. 11:eaar81332018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wing SS: Deubiquitinating enzymes-the
importance of driving in reverse along the ubiquitin-proteasome
pathway. Int J Biochem Cell Biol. 35:590–605. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Scortegagna M, Subtil T, Qi J, Kim H, Zhao
W, Gu W, Kluger H and Ronai ZA: USP13 enzyme regulates Siah2 ligase
stability and activity via noncatalytic ubiquitin-binding domains.
J Biol Chem. 286:27333–27341. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Clague MJ, Urbe S and Komander D: Breaking
the chains: Deubiquitylating enzyme specificity begets function.
Nat Rev Mol Cell Biol. 20:338–352. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Morgan EL, Patterson MR, Barba-Moreno D,
Scarth JA, Wilson A and Macdonald A: The deubiquitinase (DUB) USP13
promotes Mcl-1 stabilisation in cervical cancer. Oncogene.
40:2112–2129. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zeng Q, Li Z, Zhao X, Guo L, Yu C, Qin J,
Zhang S, Zhang Y and Yang X: Ubiquitin-specific protease 7 promotes
osteosarcoma cell metastasis by inducing epithelial-mesenchymal
transition. Oncol Rep. 41:543–551. 2019.PubMed/NCBI
|
|
15
|
Timms KM, Ansari-Lari MA, Morris W, Brown
SN and Gibbs RA: The genomic organization of isopeptidase
T-3(ISOT-3), a new member of the ubiquitin specific protease family
(UBP). Gene. 217:101–106. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ren H, Mu W and Xu Q: miR-19a-3p
inhibition alleviates sepsis-induced lung injury via enhancing
USP13 expression. Acta Biochim Pol. 68:201–206. 2021.PubMed/NCBI
|
|
17
|
Biterge Sut B: Molecular profiling of
immune cell-enriched Severe Acute Respiratory Syndrome Coronavirus
2 (SARS-CoV-2) interacting protein USP13. Life Sci. 258:1181702020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yu F, Li Y, Ye Q, Miao J, Taleb SJ, Zhao Y
and Zhao J: Lipopolysaccharide reduces USP13 stability through
c-Jun N-terminal kinase activation in Kupffer cells. J Cell
Physiol. 236:4360–4368. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Darling S, Fielding AB, Sabat-Pospiech D,
Prior IA and Coulson JM: Regulation of the cell cycle and
centrosome biology by deubiquitylases. Biochem Soc Trans.
45:1125–1136. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sun H, Zhang Q, Jing YY, Zhang M, Wang HY,
Cai Z, Liuyu T, Zhang ZD, Xiong TC, Wu Y, et al: USP13 negatively
regulates antiviral responses by deubiquitinating STING. Nat
Commun. 8:155342017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang J, Liu Y, Tang L, Qi S, Mi Y, Liu D
and Tian Q: Identification of candidate substrates of
ubiquitin-specific protease 13 using 2D-DIGE. Int J Mol Med.
40:47–56. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Xie X, Matsumoto S, Endo A, Fukushima T,
Kawahara H, Saeki Y and Komada M: Deubiquitinases USP5 and USP13
are recruited to and regulate heat-induced stress granules by
deubiquitinating activities. J Cell Sci. 131:jcs2108562018.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang Y, Jiang C, Li H, Lv F, Li X, Qian
X, Fu L, Xu B and Guo X: Elevated Aurora B expression contributes
to chemoresistance and poor prognosis in breast cancer. Int J Clin
Exp Pathol. 8:751–757. 2015.PubMed/NCBI
|
|
24
|
Antao AM, Kaushal K, Das S, Singh V,
Suresh B, Kim KS and Ramakrishna S: USP48 governs cell cycle
progression by regulating the protein level of Aurora B. Int J Mol
Sci. 22:85082021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Borah NA and Reddy MM: Aurora Kinase B
Inhibition: A potential therapeutic strategy for cancer. Molecules.
26:19812021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Punt S, Malu S, McKenzie JA, Manrique SZ,
Doorduijn EM, Mbofung RM, Williams L, Silverman DA, Ashkin EL,
Dominguez AL, et al: Aurora kinase inhibition sensitizes melanoma
cells to T-cell-mediated cytotoxicity. Cancer Immunol Immunother.
70:1101–1113. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gonzalez-Loyola A, Fernandez-Miranda G,
Trakala M, Partida D, Samejima K, Ogawa H, Cañamero M, de Martino
A, Martínez-Ramírez Á, de Cárcer G, et al: Aurora B overexpression
causes aneuploidy and p21Cip1 repression during tumor development.
Mol Cell Biol. 35:3566–3578. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen M, Gutierrez GJ and Ronai ZA:
Ubiquitin-recognition protein Ufd1 couples the endoplasmic
reticulum (ER) stress response to cell cycle control. Proc Natl
Acad Sci USA. 108:9119–9124. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Esposito M, Akman HB, Giron P, Ceregido
MA, Schepers R, Ramos Paez LC, La Monaca E, De Greve J, Coux O, De
Trez C, et al: USP13 controls the stability of Aurora B impacting
progression through the cell cycle. Oncogene. 39:6009–6023. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bigot N, Day M, Baldock RA, Watts FZ,
Oliver AW and Pearl LH: Phosphorylation-mediated interactions with
TOPBP1 couple 53BP1 and 9-1-1 to control the G1 DNA damage
checkpoint. Elife. 8:e443532019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu K, Graves JD, Lee YJ, Lin FT and Lin
WC: Cell Cycle-Dependent Switch of TopBP1 Functions by Cdk2 and
Akt. Mol Cell Biol. 40:e005992020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kanginakudru S, DeSmet M, Thomas Y, Morgan
IM and Androphy EJ: Levels of the E2 interacting protein TopBP1
modulate papillomavirus maintenance stage replication. Virology.
478:129–135. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kim W, Zhao F, Gao H, Qin S, Hou J, Deng
M, Kloeber JA, Huang J, Zhou Q, Guo G, et al: USP13 regulates the
replication stress response by deubiquitinating TopBP1. DNA Repair
(Amst). 100:1030632021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
He X, Kim JS, Diaz-Martinez LA, Han C,
Lane WS, Budnik B and Waldman T: USP13 interacts with cohesin and
regulates its ubiquitination in human cells. J Biol Chem.
296:1001942021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liu Q, Yang X, Long G, Hu Y, Gu Z,
Boisclair YR and Long Q: ERAD deficiency promotes mitochondrial
dysfunction and transcriptional rewiring in human hepatic cells. J
Biol Chem. 295:16743–16753. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Byun H, Gou Y, Zook A, Lozano MM and
Dudley JP: ERAD and how viruses exploit it. Front Microbiol.
5:3302014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Liu Y, Soetandyo N, Lee JG, Liu L, Xu Y,
Clemons WM Jr and Ye Y: USP13 antagonizes gp78 to maintain
functionality of a chaperone in ER-associated degradation. Elife.
3:e013692014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Devis-Jauregui L, Eritja N, Davis ML,
Matias-Guiu X and Llobet-Navas D: Autophagy in the physiological
endometrium and cancer. Autophagy. 17:1077–1095. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yang G, Song W, Postoak JL, Chen J,
Martinez J, Zhang J, Wu L and Van Kaer L: Autophagy-related protein
PIK3C3/VPS34 controls T cell metabolism and function. Autophagy.
17:1193–1204. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu H, Zhao Z, Wu T, Zhang Q, Lu F, Gu J,
Jiang T and Xue J: Inhibition of autophagy-dependent pyroptosis
attenuates cerebral ischaemia/reperfusion injury. J Cell Mol Med.
25:5060–5069. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Xie W, Jin S and Cui J: The NEDD4-USP13
axis facilitates autophagy via deubiquitinating PIK3C3. Autophagy.
16:1150–1151. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Snyder NA and Silva GM: Deubiquitinating
enzymes (DUBs): Regulation, homeostasis, and oxidative stress
response. J Biol Chem. 297:1010772021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang Y and Wang F: Post-Translational
modifications of deubiquitinating enzymes: Expanding the ubiquitin
code. Front Pharmacol. 12:6850112021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Elsocht M, Giron P, Maes L, Versees W,
Gutierrez GJ, De Greve J and Ballet S: Structure-Activity
Relationship (SAR) Study of Spautin-1 to Entail the Discovery of
Novel NEK4 Inhibitors. Int J Mol Sci. 22:6352021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Cheung HH, Yang Y, Lee TL, Rennert O and
Chan WY: Hypermethylation of genes in testicular embryonal
carcinomas. Br J Cancer. 114:230–236. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu Z, Xu Y, Zhang W, Gao X, Luo G, Song
H, Liu J and Wang H: Identification of targets of JS-K against
HBV-positive human hepatocellular carcinoma HepG2.2.15 cells with
iTRAQ proteomics. Sci Rep. 11:103812021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang J, Lin W, Li R, Cheng H, Sun S, Shao
F, Yang Y, Zhang L, Feng X, Gao S, et al: The Deubiquitinase USP13
maintains cancer cell stemness by promoting FASN stability in small
cell lung cancer. Front Oncol. 12:8999872022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Forghanifard MM, Azaraz S, Ardalan Khales
S, Morshedi Rad D and Abbaszadegan MR: MAML1 promotes ESCC
aggressiveness through upregulation of EMT marker TWIST1. Mol Biol
Rep. 47:2659–2668. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Han C, Yang L, Choi HH, Baddour J, Achreja
A, Liu Y, Li Y, Li J, Wan G, Huang C, et al: Amplification of USP13
drives ovarian cancer metabolism. Nat Commun. 7:135252016.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Qu Z, Zhang R, Su M and Liu W: UsP13
serves as a tumor suppressor via the PTEN/AKT pathway in oral
squamous cell carcinoma. Cancer Manag Res. 11:9175–9183. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang J, Zhang P, Wei Y, Piao HL, Wang W,
Maddika S, Wang M, Chen D, Sun Y, Hung MC, et al: Deubiquitylation
and stabilization of PTEN by USP13. Nat Cell Biol. 15:1486–1494.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L,
Cai Y, Norberg HV, Zhang T, Furuya T, et al: Beclin1 controls the
levels of p53 by regulating the deubiquitination activity of USP10
and USP13. Cell. 147:223–234. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu Y, Zhang Y, Liu C, Zhang Y, Wang D,
Wang S, Wu Y, Liu F, Li Q, Liu X, et al: Amplification of USP13
drives non-small cell lung cancer progression mediated by AKT/MAPK
signaling. Biomed Pharmacother. 114:1088312019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Meng LB, Hu GF, Shan MJ, Zhang YM, Yu ZM,
Liu YQ, Xu HX, Wang L, Gong T and Liu DP: Citrate Synthase and OGDH
as potential biomarkers of atherosclerosis under chronic stress.
Oxid Med Cell Longev. 2021:99579082021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang J, Ye W, Yan X, Guo Q, Ma Q, Lin F,
Huang J and Jin J: Low expression of ACLY associates with favorable
prognosis in acute myeloid leukemia. J Transl Med. 17:1492019.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wei X, Shi J, Lin Q, Ma X, Pang Y, Mao H,
Li R, Lu W, Wang Y and Liu P: Targeting ACLY Attenuates Tumor
Growth and Acquired Cisplatin Resistance in Ovarian Cancer by
Inhibiting the PI3K-AKT Pathway and Activating the AMPK-ROS
Pathway. Front Oncol. 11:6422292021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhou Q, Zhan H, Lin F, Liu Y, Yang K, Gao
Q, Ding M, Liu Y, Huang W and Cai Z: LincRNA-p21 suppresses
glutamine catabolism and bladder cancer cell growth through
inhibiting glutaminase expression. Biosci Rep. 39:BSR201823722019.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhou X, Liu K, Cui J, Xiong J, Wu H, Peng
T and Guo Y: Circ-MBOAT2 knockdown represses tumor progression and
glutamine catabolism by miR-433-3p/GOT1 axis in pancreatic cancer.
J Exp Clin Cancer Res. 40:1242021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Han C, Lu X and Nagrath D: Regulation of
protein metabolism in cancer. Mol Cell Oncol. 5:e12853842018.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
De Blasio A, Vento R and Di Fiore R: Mcl-1
targeting could be an intriguing perspective to cure cancer. J Cell
Physiol. 233:8482–8498. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang S, Zhang M, Jing Y, Yin X, Ma P,
Zhang Z, Wang X, Di W and Zhuang G: Deubiquitinase USP13 dictates
MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat
Commun. 9:2152018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Abdul Rahman SF, Muniandy K, Soo YK, Tiew
EYH, Tan KX, Bates TE and Mohana-Kumaran N: Co-inhibition of BCL-XL
and MCL-1 with selective BCL-2 family inhibitors enhances
cytotoxicity of cervical cancer cell lines. Biochem Biophys Rep.
22:1007562022.PubMed/NCBI
|
|
63
|
Chen Y, Sun XX, Sears RC and Dai MS:
Writing and erasing MYC ubiquitination and SUMOylation. Genes Dis.
6:359–371. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fang X, Zhou W, Wu Q, Huang Z, Shi Y, Yang
K, Chen C, Xie Q, Mack SC, Wang X, et al: Deubiquitinase USP13
maintains glioblastoma stem cells by antagonizing FBXL14-mediated
Myc ubiquitination. J Exp Med. 214:245–267. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhao X, Fiske B, Kawakami A, Li J and
Fisher DE: Regulation of MITF stability by the USP13
deubiquitinase. Nat Commun. 2:4142011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hu S, Bai S, Dai Y, Yang N, Li J, Zhang X,
Wang F, Zhao B, Bao G, Chen Y and Wu X: Deubiquitination of MITF-M
regulates melanocytes proliferation and apoptosis. Front Mol
Biosci. 8:6927242021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhou Q, Lin M, Feng X, Ma F, Zhu Y, Liu X,
Qu C, Sui H, Sun B, Zhu A, et al: Targeting CLK3 inhibits the
progression of cholangiocarcinoma by reprogramming nucleotide
metabolism. J Exp Med. 217:e201917792020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Xie H, Zhou J, Liu X, Xu Y, Hepperla AJ,
Simon JM, Wang T, Yao H, Liao C, Baldwin AS, et al: USP13 promotes
deubiquitination of ZHX2 and tumorigenesis in kidney cancer. Proc
Natl Acad Sci USA. 119:e21198541192022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xie W, Jin S, Wu Y, Xian H, Tian S, Liu
DA, Guo Z and Cui J: Auto-ubiquitination of NEDD4-1 Recruits USP13
to facilitate autophagy through deubiquitinating VPS34. Cell Rep.
30:2807–2819. e42020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wijshake T, Zou Z, Chen B, Zhong L, Xiao
G, Xie Y, Doench JG, Bennett L and Levine B: Tumor-suppressor
function of Beclin 1 in breast cancer cells requires E-cadherin.
Proc Natl Acad Sci USA. 118:e20204781182021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Matthew-Onabanjo AN, Janusis J,
Mercado-Matos J, Carlisle AE, Kim D, Levine F, Cruz-Gordillo P,
Richards R, Lee MJ and Shaw LM: Beclin 1 promotes endosome
recruitment of hepatocyte growth factor tyrosine kinase substrate
to suppress tumor proliferation. Cancer Res. 80:249–262. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Huang J, Ye Z, Wang J, Chen Q, Huang D and
Liu H: USP13 mediates PTEN to ameliorate osteoarthritis by
restraining oxidative stress, apoptosis and inflammation via
AKT-dependent manner. Biomed Pharmacother. 133:1110892021.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
He Y, Jiang S, Mao C, Zheng H, Cao B,
Zhang Z, Zhao J, Zeng Y and Mao X: The deubiquitinase USP10
restores PTEN activity and inhibits non-small cell lung cancer cell
proliferation. J Biol Chem. 297:1010882021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang Y, Wang Z, Lu J and Zhang H: Circular
RNA circ-PTEN elevates PTEN inhibiting the proliferation of
non-small cell lung cancer cells. Hum Cell. 34:1174–1184. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Geng J, Huang X, Li Y, Xu X, Li S, Jiang
D, Liang J, Jiang D, Wang C and Dai H: Down-regulation of USP13
mediates phenotype transformation of fibroblasts in idiopathic
pulmonary fibrosis. Respir Res. 16:1242015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Che K, Han W, Li D, Cui S, Zhang M, Yang X
and Niu H: Correlations between glycolysis with clinical traits and
immune function in bladder urothelial carcinoma. Biosci Rep.
41:BSR202039822021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li W, Xu M, Li Y, Huang Z, Zhou J, Zhao Q,
Le K, Dong F, Wan C and Yi P: Comprehensive analysis of the
association between tumor glycolysis and immune/inflammation
function in breast cancer. J Transl Med. 18:922020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xiang S, Fang J, Wang S, Deng B and Zhu L:
MicroRNA135b regulates the stability of PTEN and promotes
glycolysis by targeting USP13 in human colorectal cancers. Oncol
Rep. 33:1342–1348. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhao B, Huo W, Yu X, Shi X, Lv L, Yang Y,
Kang J, Li S and Wu H: USP13 promotes breast cancer metastasis
through FBXL14-induced Twist1 ubiquitination. Cell Oncol (Dordr).
46:717–733. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang T, Zheng J, Qiao L and Zhao W:
Deubiquitinase USP13 promotes the epithelial-mesenchymal transition
and metastasis in gastric cancer by maintaining Snail protein.
Pathol Res Pract. 229:1537052022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gao S, Chen T, Li L, Liu X, Liu Y, Zhao J,
Lu Q, Zeng Z, Xu Q, Huang D and Tu K: Hypoxia-Inducible ubiquitin
specific peptidase 13 contributes to tumor growth and metastasis
via enhancing the toll-like receptor 4/Myeloid differentiation
primary response gene 88/Nuclear Factor-κB pathway in
hepatocellular carcinoma. Front Cell Dev Biol. 8:5873892020.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Eluard B, Thieblemont C and Baud V: NF-κB
in the New Era of cancer therapy. Trends Cancer. 6:677–687. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hiramatsu T, Yoshizawa J, Miyaguni K,
Sugihara T, Harada A, Kaji S, Uchida G, Kanamori D, Baba Y,
Ashizuka S and Ohki T: Thalidomide potentiates etoposide-induced
apoptosis in murine neuroblastoma through suppression of NF-κB
activation. Pediatr Surg Int. 34:443–450. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Man X, Piao C, Lin X, Kong C, Cui X and
Jiang Y: USP13 functions as a tumor suppressor by blocking the
NF-kB-mediated PTEN downregulation in human bladder cancer. J Exp
Clin Cancer Res. 38:2592019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Y, Ou Z, Sun Y, Yeh S, Wang X, Long J
and Chang C: Androgen receptor promotes melanoma metastasis via
altering the miRNA-539-3p/USP13/MITF/AXL signals. Oncogene.
36:1644–1654. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lim Y and Lee DY: Identification of
genetic mutations related to invasion and metastasis of acral
melanoma via whole-exome sequencing. J Dermatol. 48:999–1006. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Parag-Sharma K, Tasoulas J, Musicant AM,
do Nascimento-Filho CHV, Zhu Z, Twomey C, Liu P, Castilho RM and
Amelio AL: Synergistic efficacy of combined EGFR and HDAC
inhibitors overcomes tolerance to EGFR monotherapy in salivary
mucoepidermoid carcinoma. Oral Oncol. 115:1051662021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tang W, Li X, Xie X, Sun X, Liu J, Zhang
J, Wang C, Yu J and Xie P: EGFR inhibitors as adjuvant therapy for
resected non-small cell lung cancer harboring EGFR mutations. Lung
Cancer. 136:6–14. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Giron P, Eggermont C, Noeparast A,
Vandenplas H, Teugels E, Forsyth R, De Wever O, Aza-Blanc P,
Gutierrez GJ and De Grève J: Targeting USP13-mediated drug
tolerance increases the efficacy of EGFR inhibition of mutant EGFR
in non-small cell lung cancer. Int J Cancer. 148:2579–2593. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zheng S, Shu Y, Lu Y and Sun Y:
Chloroquine combined with imatinib overcomes imatinib resistance in
gastrointestinal stromal tumors by inhibiting autophagy via the
MAPK/ERK Pathway. Onco Targets Ther. 13:6433–6441. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Gao Z, Li C, Sun H, Bian Y, Cui Z, Wang N,
Wang Z, Yang Y, Liu Z, He Z, et al: N6-methyladenosine-modified
USP13 induces pro-survival autophagy and imatinib resistance via
regulating the stabilization of autophagy-related protein 5 in
gastrointestinal stromal tumors. Cell Death Differ. 30:544–559.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Li Y, Luo K, Yin Y, Wu C, Deng M, Li L, Li
L, Chen Y, Nowsheen S, Lou Z and Yuan J: USP13 regulates the
RAP80-BRCA1 complex dependent DNA damage response. Nat Commun.
8:157522017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Guo J, Zhang J, Liang L, Liu N, Qi M, Zhao
S, Su J, Liu J, Peng C, Chen X and Liu H: Potent USP10/13
antagonist spautin-1 suppresses melanoma growth via ROS-mediated
DNA damage and exhibits synergy with cisplatin. J Cell Mol Med.
24:4324–4340. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liu X, Balaraman K, Lynch CC, Hebron M,
Wolf C and Moussa C: Novel ubiquitin specific protease-13
inhibitors alleviate neurodegenerative pathology. Metabolites.
11:6222021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jacomin AC, Taillebourg E and Fauvarque
MO: Deubiquitinating enzymes related to autophagy: New therapeutic
opportunities? Cells. 7:1122018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liu J, Shaik S, Dai X, Wu Q, Zhou X, Wang
Z and Wei W: Targeting the ubiquitin pathway for cancer treatment.
Biochim Biophys Acta. 1855:50–60. 2015.PubMed/NCBI
|
|
97
|
Kaushal K, Antao AM, Kim KS and
Ramakrishna S: Deubiquitinating enzymes in cancer stem cells:
Functions and targeted inhibition for cancer therapy. Drug Discov
Today. 23:1974–1982. 2018. View Article : Google Scholar : PubMed/NCBI
|