|
1
|
Dizdaroglu M: Oxidatively induced DNA
damage and its repair in cancer. Mutat Res Rev Mutat Res.
763:212–245. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Moldogazieva NT, Lutsenko SV and Terentiev
AA: Reactive oxygen and nitrogen species-induced protein
modifications: Implication in carcinogenesis and anticancer
therapy. Cancer Res. 78:6040–6047. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Moloney JN and Cotter TG: ROS signalling
in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Galadari S, Rahman A, Pallichankandy S and
Thayyullathil F: Reactive oxygen species and cancer paradox: To
promote or to suppress? Free Radic Biol Med. 104:144–164. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Frijhoff J, Winyard PG, Zarkovic N, Davies
SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska
T, et al: Clinical relevance of biomarkers of oxidative stress.
Antioxid Redox Signal. 23:1144–1170. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Saikolappan S, Kumar B, Shishodia G, Koul
S and Koul HK: Reactive oxygen species and cancer: A complex
interaction. Cancer Lett. 452:132–143. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Saha SK, Lee SB, Won J, Choi HY, Kim K,
Yang GM, Dayem AA and Cho SG: Correlation between oxidative stress,
nutrition, and cancer initiation. Int J Mol Sci. 18:15442017.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Feno S, Butera G, Vecellio Reane D,
Rizzuto R and Raffaello A: Crosstalk between calcium and ROS in
pathophysiological conditions. Oxid Med Cell Longev.
2019:93240182019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Mittler R: ROS Are Good. Trends Plant Sci.
22:11–19. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yoneyama M, Kawada K, Gotoh Y, Shiba T and
Ogita K: Endogenous reactive oxygen species are essential for
proliferation of neural stem/progenitor cells. Neurochem Int.
56:740–746. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Trachootham D, Alexandre J and Huang P:
Targeting cancer cells by ROS-mediated mechanisms: A radical
therapeutic approach? Nat Rev Drug Discov. 8:579–591. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zoi V, Galani V, Lianos GD, Voulgaris S,
Kyritsis AP and Alexiou GA: The role of curcumin in cancer
treatment. Biomedicines. 9:10862021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Nelson KM, Dahlin JL, Bisson J, Graham J,
Pauli GF and Walters MA: The essential medicinal chemistry of
curcumin. J Med Chem. 60:1620–1637. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Simon HU, Haj-Yehia A and Levi-Schaffer F:
Role of reactive oxygen species (ROS) in apoptosis induction.
Apoptosis. 5:415–418. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Abd El-Hack ME, El-Saadony MT, Swelum AA,
Arif M, Abo Ghanima MM, Shukry M, Noreldin A, Taha AE and
El-Tarabily KA: Curcumin, the active substance of turmeric: Its
effects on health and ways to improve its bioavailability. J Sci
Food Agric. 101:5747–5762. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Du Q, Hu B, An HM, Shen KP, Xu L, Deng S
and Wei MM: Synergistic anticancer effects of curcumin and
resveratrol in Hepa1-6 hepatocellular carcinoma cells. Oncol Rep.
29:1851–1858. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
He YC, He L, Khoshaba R, Lu FG, Cai C,
Zhou FL, Liao DF and Cao D: Curcumin nicotinate selectively induces
cancer cell apoptosis and cycle arrest through a P53-Mediated
mechanism. Molecules. 24:41792019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yao H, Gong X, Geng M, Duan S, Qiao P, Sun
F, Zhu Z and Du B: Cascade nanozymes based on the ‘butterfly
effect’ for enhanced starvation therapy through the regulation of
autophagy. Biomater Sci. 10:4008–4022. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kotha RR and Luthria DL: Curcumin:
Biological, pharmaceutical, nutraceutical, and analytical aspects.
Molecules. 24:29302019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Amalraj A, Pius A and Gopi S and Gopi S:
Biological activities of curcuminoids, other biomolecules from
turmeric and their derivatives-A review. J Tradit Complement Med.
7:205–233. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gopi S, Jacob J, Varma K, Jude S, Amalraj
A, Arundhathy CA, George R, Sreeraj TR, Divya C, Kunnumakkara AB
and Stohs SJ: Comparative oral absorption of curcumin in a natural
turmeric matrix with two other curcumin formulations: An open-label
Parallel-arm study. Phytother Res. 31:1883–1891. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kunnumakkara AB, Bordoloi D, Padmavathi G,
Monisha J, Roy NK, Prasad S and Aggarwal BB: Curcumin, the golden
nutraceutical: Multitargeting for multiple chronic diseases. Br J
Pharmacol. 174:1325–1348. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Manica D, Silva GBD, Silva APD, Marafon F,
Maciel SFVO, Bagatini MD and Moreno M: Curcumin promotes apoptosis
of human melanoma cells by caspase 3. Cell Biochem Funct. Oct
4–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wei H, Li X, Liu F, Li Y, Luo B, Huang X,
Chen H, Wen B and Ma P: Curcumin inhibits the development of
colorectal cancer via regulating the USP4/LAMP3 pathway. Naunyn
Schmiedebergs Arch Pharmacol. Sep 20–2023.(Epub ahead of print).
View Article : Google Scholar
|
|
25
|
Gabr SA, Elsaed WM, Eladl MA, El-Sherbiny
M, Ebrahim HA, Asseri SM, Eltahir YAM, Elsherbiny N and Eldesoqui
M: Curcumin modulates oxidative stress, fibrosis, and apoptosis in
Drug-resistant cancer cell lines. Life (Basel).
12:14272022.PubMed/NCBI
|
|
26
|
Lin X, Wang L, Zhao L, Zhu Z, Chen T, Chen
S, Tao Y, Zeng T, Zhong Y, Sun H, et al: Curcumin micelles suppress
gastric tumor cell growth by upregulating ROS generation,
disrupting redox equilibrium and affecting mitochondrial
bioenergetics. Food Funct. 11:4146–4159. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sharma RA, McLelland HR, Hill KA, Ireson
CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ and
Steward WP: Pharmacodynamic and pharmacokinetic study of oral
Curcuma extract in patients with colorectal cancer. Clin Cancer
Res. 7:1894–1900. 2001.PubMed/NCBI
|
|
28
|
Lao CD, Ruffin MT IV, Normolle D, Heath
DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL and Brenner
DE: Dose escalation of a curcuminoid formulation. BMC Complement
Altern Med. 6:102006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Faião-Flores F, Suarez JA, Pardi PC and
Maria DA: DM-1, sodium
4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate:
A curcumin analog with a synergic effect in combination with
paclitaxel in breast cancer treatment. Tumour Biol. 33:775–785.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Stohs SJ, Chen O, Ray SD, Ji J, Bucci LR
and Preuss HG: Highly bioavailable forms of curcumin and promising
avenues for curcumin-based research and application: A review.
Molecules. 25:13972020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang ZJ, Huang SY, Zhou DD, Xiong RG, Zhao
CN, Fang AP, Zhang YJ, Li HB and Zhu HL: Effects and mechanisms of
curcumin for the prevention and management of cancers: An updated
review. Antioxidants (Basel). 11:14812022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Freyre-Fonseca V, Delgado-Buenrostro NL,
Gutiérrez-Cirlos EB, Calderón-Torres CM, Cabellos-Avelar T,
Sánchez-Pérez Y, Pinzón E, Torres I, Molina-Jijón E, Zazueta CP, et
al: Titanium dioxide nanoparticles impair lung mitochondrial
function. Toxicol Lett. 202:111–119. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Cremers CM and Jakob U: Oxidant sensing by
reversible disulfide bond formation. J Biol Chem. 288:26489–26496.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Trujillo J, Granados-Castro LF, Zazueta C,
Andérica-Romero AC, Chirino YI and Pedraza-Chaverrí J: Mitochondria
as a target in the therapeutic properties of curcumin. Arch Pharm
(Weinheim). 347:873–884. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mortezaee K, Salehi E, Mirtavoos-Mahyari
H, Motevaseli E, Najafi M, Farhood B, Rosengren RJ and Sahebkar A:
Mechanisms of apoptosis modulation by curcumin: Implications for
cancer therapy. J Cell Physiol. 234:12537–12550. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yang M, Tian H, Shen P, Xu L, Liu H, Zhu
J, Wang Q and Shi Y: Curcumin alleviates nuclear factor-κB/NOD-like
receptor protein 3 mediated renal injury caused by acute
respiratory distress syndrome through reducing mitochondrial
oxidative stress. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue.
35:393–397. 2023.(In Chinese). PubMed/NCBI
|
|
37
|
Feng L, Wang Y, Bi Z, Wei Z, Zhang H and
Zhang S: Single-Atom nanoenzyme-based autoluminescence system for
cancer cell imaging and mitochondrial-targeted therapy. ACS Appl
Bio Mater. 6:5086–5096. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lu Z, Gao Z, Song H, Zhou Y, Yuan W, Wang
X, Zhang L, Hong Y, Meng Y, Hu J, et al: Synthesis, biological
evaluation and action mechanism study of new mitochondria-targeted
curcumin derivative as potential antitumor drugs. Chem Biodivers.
20:e2023000862023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sarosiek K and Wood KC: Endogenous and
imposed determinants of apoptotic vulnerabilities in cancer. Trends
Cancer. 9:96–110. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chen Y, Tao Y, Hu K and Lu J: GRP78
inhibitor HA15 increases the effect of Bortezomib on eradicating
multiple myeloma cells through triggering endoplasmic reticulum
stress. Heliyon. 9:e198062023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liczbiński P, Michałowicz J and Bukowska
B: Molecular mechanism of curcumin action in signaling pathways:
Review of the latest research. Phytother Res. 34:1992–2005. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang L, Cheng X, Xu S, Bao J and Yu HJM:
Curcumin induces endoplasmic reticulum stress-associated apoptosis
in human papillary thyroid carcinoma BCPAP cells via disruption of
intracellular calcium homeostasis. Medicine (Baltimore).
97:e110952018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Goswami RS, Patel KP, Singh RR,
Meric-Bernstam F, Kopetz ES, Subbiah V, Alvarez RH, Davies MA,
Jabbar KJ, Roy-Chowdhuri S, et al: Hotspot mutation panel testing
reveals clonal evolution in a study of 265 paired primary and
metastatic tumors. Clin Cancer Res. 21:2644–2651. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hail N Jr: Mitochondrial reactive oxygen
species affect sensitivity to curcumin-induced apoptosis. Free
Radic Biol Med. 44:1382–1393. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Agarwal A, Kasinathan A, Ganesan R,
Balasubramanian A, Bhaskaran J, Suresh S, Srinivasan R, Aravind KB
and Sivalingam N: Curcumin induces apoptosis and cell cycle arrest
via the activation of reactive oxygen species-independent
mitochondrial apoptotic pathway in Smad4 and p53 mutated colon
adenocarcinoma HT29 cells. Nutr Res. 51:67–81. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sritharan S and Sivalingam N: Curcumin
induced apoptosis is mediated through oxidative stress in mutated
p53 and wild type p53 colon adenocarcinoma cell lines. J Biochem
Mol Toxicol. 35:e226162021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Onorati AV, Dyczynski M, Ojha R and
Amaravadi RK: Targeting autophagy in cancer. Cancer. 124:3307–3318.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ashrafizadeh M, Zarrabi A, Orouei S,
Kiavash Hushmandi, Hakimi A, Amirhossein Zabolian, Daneshi S,
Samarghandian S, Baradaran B and Najafi M: MicroRNA-mediated
autophagy regulation in cancer therapy: The role in
chemoresistance/chemosensitivity. Eur J Pharmacol. 892:1736602021.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liu LD, Pang YX, Zhao XR, Li R, Jin CJ,
Xue J, Dong RY and Liu PS: Curcumin induces apoptotic cell death
and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in
human ovarian cancer cells. Arch Gynecol Obstet. 299:1627–1639.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mortezaee K, Parwaie W, Motevaseli E,
Mirtavoos-Mahyari H, Musa AE, Shabeeb D, Esmaely F, Najafi M and
Farhood B: Targets for improving tumor response to radiotherapy.
Int Immunopharmacol. 76:1058472019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang J, Zhang J, Zhang CJ, Wong YK, Lim
TK, Hua ZC, Liu B, Tannenbaum SR, Shen HM and Lin Q: In situ
proteomic profiling of curcumin targets in HCT116 colon cancer cell
line. Sci Rep. 6:221462016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Liang HH, Huang CY, Chou CW, Makondi PT,
Huang MT, Wei PL and Chang YJ: Heat shock protein 27 influences the
anti-cancer effect of curcumin in colon cancer cells through ROS
production and autophagy activation. Life Sci. 209:43–51. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wang T, Wu X, Al Rudaisat M, Song Y and
Cheng H: Curcumin induces G2/M arrest and triggers autophagy, ROS
generation and cell senescence in cervical cancer cells. J Cancer.
11:6704–6715. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chang M, Shang M, Yuan F, Guo W and Wang
C: EF24 exerts cytotoxicity against NSCLC via inducing ROS
accumulation. Cancer Cell Int. 21:5312021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C
and Li B: Ferroptosis, a new form of cell death: Opportunities and
challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang L, Li XM, Shi XH, Ye K, Fu XL, Wang
X, Guo SM, Ma JQ, Xu FF, Sun HM, et al: Sorafenib triggers
ferroptosis via inhibition of HBXIP/SCD axis in hepatocellular
carcinoma. Acta Pharmacol Sin. 44:622–634. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tang X, Li Y, Zhao J, Liang L, Zhang K,
Zhang X, Yu H and Du H: Heme oxygenase-1 increases intracellular
iron storage and suppresses inflammatory response of macrophages by
inhibiting M1 polarization. Metallomics. 15:mfad0622023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Giorgi G, Mascaró M, Gandini N, Rabassa
ME, Coló GP, Arévalo J, Curino AC, Facchinetti MM and Roque ME:
Iron cycle disruption by heme oxygenase-1 activation leads to a
reduced breast cancer cell survival. Biochim Biophys Acta Mol Basis
Dis. 1869:1666212023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chen Y, Guo X, Zeng Y, Mo X, Hong S, He H,
Li J, Fatima S and Liu Q: Oxidative stress induces mitochondrial
iron overload and ferroptotic cell death. Sci Rep. 13:155152023.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li R, Zhang J, Zhou Y, Gao Q, Wang R, Fu
Y, Zheng L and Yu H: Transcriptome investigation and in vitro
verification of curcumin-induced HO-1 as a feature of ferroptosis
in breast cancer cells. Oxid Med Cell Longev. 2020:34698402020.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Suttner DM and Dennery PA: Reversal of
HO-1 related cytoprotection with increased expression is due to
reactive iron. FASEB J. 13:1800–1809. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
McBean GJ: The transsulfuration pathway: A
source of cysteine for glutathione in astrocytes. Amino Acids.
42:199–205. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhou XL, Zhu CY, Wu ZG, Guo X and Zou W:
The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2
and enhance breast cancer cell growth and metastasis. Oncogene.
38:4028–4046. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cao X, Li Y, Wang Y, Yu T, Zhu C, Zhang X
and Guan J: Curcumin suppresses tumorigenesis by ferroptosis in
breast cancer. PLoS One. 17:e02613702022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tang X, Ding H, Liang M, Chen X, Yan Y,
Wan N, Chen Q, Zhang J and Cao J: Curcumin induces ferroptosis in
non-small-cell lung cancer via activating autophagy. Thorac Cancer.
12:1219–1230. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Shi J, Gao W and Shao F: Pyroptosis:
Gasdermin-Mediated programmed necrotic cell death. Trends Biochem
Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Frank D and Vince JE: Pyroptosis versus
necroptosis: Similarities, differences, and crosstalk. Cell Death
Differ. 26:99–114. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liang WF, Gong YX, Li HF, Sun FL, Li WL,
Chen DQ, Xie DP, Ren CX, Guo XY, Wang ZY, et al: Curcumin activates
ROS signaling to promote pyroptosis in hepatocellular carcinoma
HepG2 cells. In Vivo. 35:249–257. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wei T, Zheng Z, Wei X, Liu Y, Li W, Fang
B, Yun D, Dong Z, Yi B, Li W, et al: Rational design, synthesis,
and pharmacological characterisation of dicarbonyl curcuminoid
analogues with improved stability against lung cancer via ROS and
ER stress mediated cell apoptosis and pyroptosis. J Enzyme Inhib
Med Chem. 37:2357–2369. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li AN, Li S, Zhang YJ, Xu XR, Chen YM and
Li HB: Resources and biological activities of natural polyphenols.
Nutrients. 6:6020–6047. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wu H, Chen L, Zhu F, Han X, Sun L and Chen
K: The cytotoxicity effect of resveratrol: Cell cycle arrest and
induced apoptosis of breast cancer 4T1 cells. Toxins (Basel).
11:7312019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tanaka T, Aoki R and Terasaki M: Potential
chemopreventive effects of dietary combination of phytochemicals
against cancer development. Pharmaceuticals (Basel). 16:15912023.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Arena A, Romeo MA, Benedetti R, Masuelli
L, Bei R, Gilardini Montani MS and Cirone M: New insights into
curcumin- and resveratrol-mediated anti-cancer effects.
Pharmaceuticals (Basel). 14:10682021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cho CJ, Yang CW, Wu CL, Ho JY, Yu CP, Wu
ST and Yu DS: The modulation study of multiple drug resistance in
bladder cancer by curcumin and resveratrol. Oncol Lett.
18:6869–6876. 2019.PubMed/NCBI
|
|
75
|
Xia RL, Lu Y, Zhu LN, Zhang SF, Zhao FK
and Fu CY: Different regulatory pathways are involved in the
proliferative inhibition of two types of leukemia cell lines
induced by paclitaxel. Oncol Rep. 30:1853–1859. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Rosière R, Van Woensel M, Mathieu V,
Langer I, Mathivet T, Vermeersch M, Amighi K and Wauthoz N:
Development and evaluation of well-tolerated and tumor-penetrating
polymeric micelle-based dry powders for inhaled anti-cancer
chemotherapy. Int J Pharm. 501:148–159. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lee WH, Loo CY, Traini D and Young PM:
Development and evaluation of paclitaxel and curcumin dry powder
for inhalation lung cancer treatment. Pharmaceutics. 13:92020.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lee WH, Bebawy M, Loo CY, Luk F, Mason RS
and Rohanizadeh R: Fabrication of curcumin micellar nanoparticles
with enhanced anti-cancer activity. J Biomed Nanotechnol.
11:1093–1105. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lee WH, Loo CY, Ong HX, Traini D, Young PM
and Rohanizadeh R: Synthesis and characterization of inhalable
flavonoid nanoparticle for lung cancer cell targeting. J Biomed
Nanotechnol. 12:371–386. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Syng-Ai C, Kumari AL and Khar A: Effect of
curcumin on normal and tumor cells: Role of glutathione and bcl-2.
Mol Cancer Ther. 3:1101–1108. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tapia E, Zatarain-Barrón ZL,
Hernández-Pando R, Zarco-Márquez G, Molina-Jijón E,
Cristóbal-García M, Santamaría J and Pedraza-Chaverri J: Curcumin
reverses glomerular hemodynamic alterations and oxidant stress in
5/6 nephrectomized rats. Phytomedicine. 20:359–366. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Serafini MM, Catanzaro M, Fagiani F,
Simoni E, Caporaso R, Dacrema M, Romanoni I, Govoni S, Racchi M,
Daglia M, et al: Modulation of Keap1/Nrf2/ARE signaling pathway by
Curcuma- and Garlic-Derived Hybrids. Front Pharmacol. 10:15972020.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Waghray D and Zhang Q: Inhibit or evade
multidrug resistance P-Glycoprotein in cancer treatment. J Med
Chem. 61:5108–5121. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Attia YM, El-Kersh DM, Ammar RA, Adel A,
Khalil A, Walid H, Eskander K, Hamdy M, Reda N, Mohsen NE, et al:
Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated
multidrug resistance by curcumin and vitamin D3 increases
sensitivity to paclitaxel in breast cancer. Chem Biol Interact.
315:1088652020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ebrahimifar M, Hasanzadegan Roudsari M,
Kazemi SM, Ebrahimi Shahmabadi H, Kanaani L, Alavi SA and Izadi
Vasfi M: Enhancing effects of curcumin on cytotoxicity of
paclitaxel, methotrexate and vincristine in gastric cancer cells.
Asian Pac J Cancer Prev. 18:65–68. 2017.PubMed/NCBI
|
|
86
|
Zhang N, Gao M, Wang Z, Zhang J, Cui W, Li
J, Zhu X, Zhang H, Yang DH and Xu X: Curcumin reverses doxorubicin
resistance in colon cancer cells at the metabolic level. J Pharm
Biomed Anal. 201:1141292021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Firouzi Amoodizaj F, Baghaeifar S, Taheri
E, Farhoudi Sefidan Jadid M, Safi M, Seyyed Sani N, Hajazimian S,
Isazadeh A and Shanehbandi D: Enhanced anticancer potency of
doxorubicin in combination with curcumin in gastric adenocarcinoma.
J Biochem Mol Toxicol. 34:e224862020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Dhandapani KM, Mahesh VB and Brann DW:
Curcumin suppresses growth and chemoresistance of human
glioblastoma cells via AP-1 and NFkappaB transcription factors. J
Neurochem. 102:522–538. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Abbaspour H and Afshar AS: Curcumin
inhibits the expression of ornithine decarboxylase and adenosine
deaminase genes in MCF-7 human breast cancer cells. Arch Biol Sci.
70:639–645. 2018. View Article : Google Scholar
|
|
90
|
Lee WJ, Jo JH, Jang SI, Jung EJ, Hwang JM,
Bae JW, Ha JJ, Kim DH and Kwon WS: The natural flavonoid compound
deguelin suppresses sperm (Sus Scrofa) functions through abnormal
activation of the PI3K/AKT pathway. Reprod Toxicol. 120:1084262023.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lin ZY, Yun QZ, Wu L, Zhang TW and Yao TZ:
Pharmacological basis and new insights of deguelin concerning its
anticancer effects. Pharmacol Res. 174:1059352021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Russell DA, Bridges HR, Serreli R, Kidd
SL, Mateu N, Osberger TJ, Sore HF, Hirst J and Spring DR:
Hydroxylated rotenoids selectively inhibit the proliferation of
prostate cancer cells. J Nat Prod. 83:1829–1845. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kocdor MA, Cengiz H, Ates H and Kocdor H:
Inhibition of cancer stem-like phenotype by curcumin and deguelin
in CAL-62 anaplastic thyroid cancer cells. Anticancer Agents Med
Chem. 19:1887–1898. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Liang G, Shao L, Wang Y, Zhao C, Chu Y,
Xiao J, Zhao Y, Li X and Yang S: Exploration and synthesis of
curcumin analogues with improved structural stability both in vitro
and in vivo as cytotoxic agents. Bioorg Med Chem. 17:2623–2631.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zou P, Zhang J, Xia Y, Kanchana K, Guo G,
Chen W, Huang Y, Wang Z, Yang S and Liang G: ROS generation
mediates the anti-cancer effects of WZ35 via activating JNK and ER
stress apoptotic pathways in gastric cancer. Oncotarget.
6:5860–5876. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang L, Han L, Tao Z, Zhu Z, Han L, Yang
Z, Wang H, Dai D, Wu L, Yuan Z and Chen T: The curcumin derivative
WZ35 activates ROS-dependent JNK to suppress hepatocellular
carcinoma metastasis. Food Funct. 9:2970–2978. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang L, Wang C, Tao Z, Zhao L, Zhu Z, Wu
W, He Y, Chen H, Zheng B, Huang X, et al: Curcumin derivative WZ35
inhibits tumor cell growth via ROS-YAP-JNK signaling pathway in
breast cancer. J Exp Clin Cancer Res. 38:4602019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Koroth J, Nirgude S, Tiwari S,
Gopalakrishnan V, Mahadeva R, Kumar S, Karki SS and Choudhary B:
Investigation of anti-cancer and migrastatic properties of novel
curcumin derivatives on breast and ovarian cancer cell lines. BMC
Complement Altern Med. 19:2732019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Koroth J, Mahadeva R, Ravindran F,
Parashar TR, Teja V, Karki SS and Choudhary B: Curcumin derivative
1, 2-bis [(3E, 5E)-3, 5-bis [(2-chlorophenyl)
methylene]-4-oxo-1-piperidyl] ethane-1, 2-dione (ST03) induces
mitochondria mediated apoptosis in ovarian cancer cells and
inhibits tumor progression in EAC mouse model. Transl Oncol.
15:1012802022. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Haseli S, Pourmadadi M, Samadi A, Yazdian
F, Abdouss M, Rashedi H and Navaei-Nigjeh M: A novel pH-responsive
nanoniosomal emulsion for sustained release of curcumin from a
chitosan-based nanocarrier: Emphasis on the concurrent improvement
of loading, sustained release, and apoptosis induction. Biotechnol
Prog. 38:e32802022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Hou CH, Lin FL, Hou SM and Liu JF:
Hyperthermia induces apoptosis through endoplasmic reticulum and
reactive oxygen species in human osteosarcoma cells. Int J Mol Sci.
15:17380–17395. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Pazouki N, Irani S, Olov N, Atyabi SM and
Bagheri-Khoulenjani S: Fe3O4 nanoparticles
coated with carboxymethyl chitosan containing curcumin in
combination with hyperthermia induced apoptosis in breast cancer
cells. Prog Biomater. 11:43–54. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Freidus LG, Kumar P, Marimuthu T, Pradeep
P and Choonara YE: Theranostic Mesoporous Silica Nanoparticles
Loaded With a Curcumin-Naphthoquinone Conjugate for Potential
Cancer Intervention. Front Mol Biosci. 8:6707922021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Freidus LG, Kumar P, Marimuthu T, Pradeep
P, Pillay V and Choonara YE: Synthesis and Properties of CurNQ for
the theranostic application in ovarian cancer intervention.
Molecules. 25:44712020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zholobak NM, Shcherbakov AB, Ivanova OS,
Reukov V, Baranchikov AE and Ivanov VK: Nanoceria-curcumin
conjugate: Synthesis and selective cytotoxicity against cancer
cells under oxidative stress conditions. J Photochem Photobiol B.
209:1119212020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Haider T, Pandey V, Banjare N, Gupta PN
and Soni V: Drug resistance in cancer: Mechanisms and tackling
strategies. Pharmacol Rep. 72:1125–1151. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li L, Wang F, Jia X, Yao L and Liu Y:
Research mechanism and progress of the natural compound curcumin in
treating Alzheimer´s disease. Mini Rev Med Chem. Oct 30–2023.(Epub
ahead of print). View Article : Google Scholar
|
|
108
|
Molani-Gol R, Dehghani A and Rafraf M:
Effects of curcumin/turmeric supplementation on the liver enzymes,
lipid profiles, glycemic index, and anthropometric indices in
non-alcoholic fatty liver patients: An umbrella meta-analysis.
Phytother Res. Nov 2–2023.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wu WS, Wu JR and Hu CT: Signal cross talks
for sustained MAPK activation and cell migration: The potential
role of reactive oxygen species. Cancer Metastasis Rev. 27:303–314.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Das L and Vinayak M: Long term effect of
curcumin in restoration of tumour suppressor p53 and phase-II
antioxidant enzymes via activation of Nrf2 signalling and
modulation of inflammation in prevention of cancer. PLoS One.
10:e01240002015. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Birben E, Sahiner UM, Sackesen C, Erzurum
S and Kalayci O: Oxidative stress and antioxidant defense. World
Allergy Organ J. 5:9–19. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Lin X, Bai D, Wei Z, Zhang Y, Huang Y,
Deng H and Huang X: Curcumin attenuates oxidative stress in
RAW264.7 cells by increasing the activity of antioxidant enzymes
and activating the Nrf2-Keap1 pathway. PLoS One. 14:e02167112019.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Ghosh P, Vidal C, Dey S and Zhang L:
Mitochondria targeting as an effective strategy for cancer therapy.
Int J Mol Sci. 21:33632020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and
Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med.
19:1997–2007. 2020.PubMed/NCBI
|
|
115
|
Wu MF, Huang YH, Chiu LY, Cherng SH, Sheu
GT and Yang TY: Curcumin induces apoptosis of chemoresistant lung
cancer cells via ROS-Regulated p38 MAPK phosphorylation. Int J Mol
Sci. 23:82482022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
He F, Antonucci L and Karin M: NRF2 as a
regulator of cell metabolism and inflammation in cancer.
Carcinogenesis. 41:405–416. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Karthikeyan A, Senthil N and Min T:
Nanocurcumin: A promising candidate for therapeutic applications.
Front Pharmacol. 11:4872020. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Safavy A, Raisch KP, Mantena S, Sanford
LL, Sham SW, Krishna NR and Bonner JA: Design and development of
water-soluble curcumin conjugates as potential anticancer agents. J
Med Chem. 50:6284–6288. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sharma RA, Euden SA, Platton SL, Cooke DN,
Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer
SM, et al: Phase I clinical trial of oral curcumin: biomarkers of
systemic activity and compliance. Clin Cancer Res. 10:6847–6854.
2004. View Article : Google Scholar : PubMed/NCBI
|