Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
February-2024 Volume 27 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2024 Volume 27 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review)

  • Authors:
    • Wei Ju
    • Hong-Hua Cai
    • Wei Zheng
    • De-Ming Li
    • Wei Zhang
    • Xi-Hu Yang
    • Zhi-Xin Yan
  • View Affiliations / Copyright

    Affiliations: Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China, Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China, Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
    Copyright: © Ju et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 81
    |
    Published online on: January 5, 2024
       https://doi.org/10.3892/ol.2024.14215
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Malignant melanoma (MM) is a highly aggressive tumour that can easily metastasize through the lymphatic system at the early stages. Lymph node (LN) involvement and lymphatic vessel (LV) density (LVD) represent a harbinger of an adverse prognosis, indicating a strong link between the state of the lymphatic system and the advancement of MM. Permeable capillary lymphatic vessels are the optimal conduits for melanoma cell (MMC) invasion, and lymphatic endothelial cells (LECs) can also release a variety of chemokines that actively attract MMCs expressing chemokine ligands through a gradient orientation. Moreover, due to the lower oxidative stress environment in the lymph compared with the blood circulation, MMCs are more likely to survive and colonize. The number of LVs surrounding MM is associated with tumour‑infiltrating lymphocytes (TILs), which is crucial for the effectiveness of immunotherapy. On the other hand, MMCs can release various endothelial growth factors such as VEGF‑C/D‑VEGFR3 to mediate LN education and promote lymphangiogenesis. Tumour‑derived extracellular vesicles are also used to promote lymphangiogenesis and create a microenvironment that is more conducive to tumour progression. MM is surrounded by a large number of lymphocytes. However, both LECs and MMCs are highly plastic, playing multiple roles in evading immune surveillance. They achieve this by expressing inhibitory ligands or reducing antigen recognition. In recent years, tertiary lymphoid structures have been shown to be associated with response to anti‑immune checkpoint therapy, which is often a positive prognostic feature in MM. The present review discusses the interaction between lymphangiogenesis and MM metastasis, and it was concluded that the relationship between LVD and TILs and patient prognosis is analogous to a dynamically tilted scale.
View Figures

Figure 1

Figure 2

View References

1 

Hussein Al-Janabi M, Mohammad JG, Mohsen AY, Saad A and Issa R: Metastatic melanoma to the gallbladder presented as a polyp with acute cholecystitis: A case report from Syria. Ann Med Surg (Lond). 76:1035142022.PubMed/NCBI

2 

Eddy K and Chen S: Overcoming immune evasion in melanoma. Int J Mol Sci. 21:89842020. View Article : Google Scholar : PubMed/NCBI

3 

Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A, Stang A, Roesch A and Ugurel S: Melanoma. Lancet. 392:971–984. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Falk Delgado A, Zommorodi S and Falk Delgado A: Sentinel lymph node biopsy and complete lymph node dissection for melanoma. Curr Oncol Rep. 21:542019. View Article : Google Scholar : PubMed/NCBI

5 

Hartman RI and Lin JY: Cutaneous melanoma-a review in detection, staging, and management. Hematol Oncol Clin North Am. 33:25–38. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Ribas A, Hamid O, Daud A, Hodi FS, Wolchok JD, Kefford R, Joshua AM, Patnaik A, Hwu WJ, Weber JS, et al: Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 315:1600–1609. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Knackstedt T, Knackstedt RW, Couto R and Gastman B: Malignant melanoma: Diagnostic and management update. Plast Reconstr Surg. 142:202e–216e. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Faries MB, Thompson JF, Cochran AJ, Andtbacka RH, Mozzillo N, Zager JS, Jahkola T, Bowles TL, Testori A, Beitsch PD, et al: Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med. 376:2211–2222. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Pasquali S, van der Ploeg APT, Mocellin S, Stretch JR, Thompson JF and Scolyer RA: Lymphatic biomarkers in primary melanomas as predictors of regional lymph node metastasis and patient outcomes. Pigment Cell Melanoma Res. 26:326–337. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Ma Q, Dieterich LC, Ikenberg K, Bachmann SB, Mangana J, Proulx ST, Amann VC, Levesque MP, Dummer R, Baluk P, et al: Unexpected contribution of lymphatic vessels to promotion of distant metastatic tumor spread. Sci Adv. 4:eaat47582018. View Article : Google Scholar : PubMed/NCBI

11 

Oliver G, Kipnis J, Randolph GJ and Harvey NL: The lymphatic vasculature in the 21st century: Novel functional roles in homeostasis and disease. Cell. 182:270–296. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Petrova TV and Koh GY: Organ-specific lymphatic vasculature: From development to pathophysiology. J Exp Med. 215:35–49. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Johnson LA: In sickness and in health: The immunological roles of the lymphatic system. Int J Mol Sci. 22:44582021. View Article : Google Scholar : PubMed/NCBI

14 

Pereira ER, Kedrin D, Seano G, Gautier O, Meijer EFJ, Jones D, Chin SM, Kitahara S, Bouta EM, Chang J, et al: Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 359:1403–1407. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Takeda A, Hollmén M, Dermadi D, Pan J, Brulois KF, Kaukonen R, Lönnberg T, Boström P, Koskivuo I, Irjala H, et al: Single-cell survey of human lymphatics unveils marked endothelial cell heterogeneity and mechanisms of homing for neutrophils. Immunity. 51:561–572.e5. 2019. View Article : Google Scholar : PubMed/NCBI

16 

Rodda LB, Lu E, Bennett ML, Sokol CL, Wang X, Luther SA, Barres BA, Luster AD, Ye CJ and Cyster JG: Single-cell RNA sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity. 48:1014–1028.e6. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Fujimoto N, He Y, D'Addio M, Tacconi C, Detmar M and Dieterich LC: Single-cell mapping reveals new markers and functions of lymphatic endothelial cells in lymph nodes. PLoS Biol. 18:e30007042020. View Article : Google Scholar : PubMed/NCBI

18 

Zhang L, Zhu L, Yao X, Lou X, Wan J, Duan X, Pan L, Li A, Gu Z, Wang M, et al: Paclitaxel treatment enhances lymphatic metastasis of B16F10 melanoma cells via CCL21/CCR7 axis. Int J Biol Sci. 18:1476–1490. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Cristiani CM, Turdo A, Ventura V, Apuzzo T, Capone M, Madonna G, Mallardo D, Garofalo C, Giovannone ED, Grimaldi AM, et al: Accumulation of circulating CCR7+ natural killer cells marks melanoma evolution and reveals a CCL19-dependent metastatic pathway. Cancer Immunol Res. 7:841–852. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Mendt M and Cardier JE: Activation of the CXCR4 chemokine receptor enhances biological functions associated with B16 melanoma liver metastasis. Melanoma Res. 27:300–308. 2017. View Article : Google Scholar : PubMed/NCBI

21 

McConnell AT, Ellis R, Pathy B, Plummer R, Lovat PE and O'Boyle G: The prognostic significance and impact of the CXCR4-CXCR7-CXCL12 axis in primary cutaneous melanoma. Br J Dermatol. 175:1210–1220. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Korbecki J, Grochans S, Gutowska I, Barczak K and Baranowska-Bosiacka I: CC chemokines in a tumor: A review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands. Int J Mol Sci. 21:76192020. View Article : Google Scholar : PubMed/NCBI

23 

Alimohammadi M, Rahimi A, Faramarzi F, Alizadeh-Navaei R and Rafiei A: Overexpression of chemokine receptor CXCR4 predicts lymph node metastatic risk in patients with melanoma: A systematic review and meta-analysis. Cytokine. 148:1556912021. View Article : Google Scholar : PubMed/NCBI

24 

Doron H, Amer M, Ershaid N, Blazquez R, Shani O, Lahav TG, Cohen N, Adler O, Hakim Z, Pozzi S, et al: Inflammatory activation of astrocytes facilitates melanoma brain tropism via the CXCL10-CXCR3 signaling axis. Cell Rep. 28:1785–1798.e6. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Soler-Cardona A, Forsthuber A, Lipp K, Ebersberger S, Heinz M, Schossleitner K, Buchberger E, Gröger M, Petzelbauer P, Hoeller C, et al: CXCL5 facilitates melanoma cell-neutrophil interaction and lymph node metastasis. J Invest Dermatol. 138:1627–1635. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Broggi MAS, Maillat L, Clement CC, Bordry N, Corthésy P, Auger A, Matter M, Hamelin R, Potin L, Demurtas D, et al: Tumor-associated factors are enriched in lymphatic exudate compared to plasma in metastatic melanoma patients. J Exp Med. 216:1091–1107. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS, Gu Z, McCormick ML, Durham AB, Spitz DR, et al: Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 585:113–118. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ and Morrison SJ: Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 527:186–191. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Habenicht LM, Kirschbaum SB, Furuya M, Harrell MI and Ruddell A: Tumor regulation of lymph node lymphatic sinus growth and lymph flow in mice and in humans. Yale J Biol Med. 90:403–415. 2017.PubMed/NCBI

30 

Peppicelli S, Bianchini F and Calorini L: Inflammatory cytokines induce vascular endothelial growth factor-C expression in melanoma-associated macrophages and stimulate melanoma lymph node metastasis. Oncol Lett. 8:1133–1138. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Leary N, Walser S, He Y, Cousin N, Pereira P, Gallo A, Collado-Diaz V, Halin C, Garcia-Silva S, Peinado H and Dieterich LC: Melanoma-derived extracellular vesicles mediate lymphatic remodelling and impair tumour immunity in draining lymph nodes. J Extracell Vesicles. 11:e121972022. View Article : Google Scholar : PubMed/NCBI

32 

Dadras SS, Paul T, Bertoncini J, Brown LF, Muzikansky A, Jackson DG, Ellwanger U, Garbe C, Mihm MC and Detmar M: Tumor lymphangiogenesis: A novel prognostic indicator for cutaneous melanoma metastasis and survival. Am J Pathol. 162:1951–1960. 2003. View Article : Google Scholar : PubMed/NCBI

33 

Pastushenko I, Van den Eynden GG, Vicente-Arregui S, Prieto-Torres L, Alvarez-Alegret R, Querol I, Dirix LY, Carapeto FJ, Vermeulen PB and Van Laere SJ: Increased angiogenesis and lymphangiogenesis in metastatic sentinel lymph nodes is associated with nonsentinel lymph node involvement and distant metastasis in patients with melanoma. Am J Dermatopathol. 38:338–346. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Ayubi E and Safiri S: Lymphatic vessel density and VEGF-C expression as independent predictors of melanoma metastases: Methodological issues. J Plast Reconstr Aesthet Surg. 71:604–605. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Pastushenko I, Vermeulen PB, Carapeto FJ, Van den Eynden G, Rutten A, Ara M, Dirix LY and Van Laere S: Blood microvessel density, lymphatic microvessel density and lymphatic invasion in predicting melanoma metastases: Systematic review and meta-analysis. Br J Dermatol. 170:66–77. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Špirić Z, Eri Ž and Erić M: Lymphatic vessel density and VEGF-C expression as independent predictors of melanoma metastases. J Plast Reconstr Aesthet Surg. 70:1653–1659. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Skobe M, Hamberg LM, Hawighorst T, Schirner M, Wolf GL, Alitalo K and Detmar M: Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol. 159:893–903. 2001. View Article : Google Scholar : PubMed/NCBI

38 

Wang M, Xu Y, Wen GZ, Wang Q and Yuan SM: Rapamycin suppresses angiogenesis and lymphangiogenesis in melanoma by downregulating VEGF-A/VEGFR-2 and VEGF-C/VEGFR-3 expression. Onco Targets Ther. 12:4643–4654. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Lee JY, Hong SH, Shin M, Heo HR and Jang IH: Blockade of FLT4 suppresses metastasis of melanoma cells by impaired lymphatic vessels. Biochem Biophys Res Commun. 478:733–738. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Korhonen EA, Murtomäki A, Jha SK, Anisimov A, Pink A, Zhang Y, Stritt S, Liaqat I, Stanczuk L, Alderfer L, et al: Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression. J Clin Invest. 132:e1554782022. View Article : Google Scholar : PubMed/NCBI

41 

Rezzola S, Sigmund EC, Halin C and Ronca R: The lymphatic vasculature: An active and dynamic player in cancer progression. Med Res Rev. 42:576–614. 2022. View Article : Google Scholar : PubMed/NCBI

42 

Wouters J, Kalender-Atak Z, Minnoye L, Spanier KI, De Waegeneer M, Bravo González-Blas C, Mauduit D, Davie K, Hulselmans G, Najem A, et al: Robust gene expression programs underlie recurrent cell states and phenotype switching in melanoma. Nat Cell Biol. 22:986–998. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Arozarena I and Wellbrock C: Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat Rev Cancer. 19:377–391. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Reticker-Flynn NE, Zhang W, Belk JA, Basto PA, Escalante NK, Pilarowski GOW, Bejnood A, Martins MM, Kenkel JA, Linde IL, et al: Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell. 185:1924–1942.e23. 2022. View Article : Google Scholar : PubMed/NCBI

45 

García-Silva S, Benito-Martín A, Nogués L, Hernández-Barranco A, Mazariegos MS, Santos V, Hergueta-Redondo M, Ximénez-Embún P, Kataru RP, Lopez AA, et al: Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. Nat Cancer. 2:1387–1405. 2021. View Article : Google Scholar : PubMed/NCBI

46 

Gowda R, Robertson BM, Iyer S, Barry J, Dinavahi SS and Robertson GP: The role of exosomes in metastasis and progression of melanoma. Cancer Treat Rev. 85:1019752020. View Article : Google Scholar : PubMed/NCBI

47 

Wakisaka N, Hasegawa Y, Yoshimoto S, Miura K, Shiotani A, Yokoyama J, Sugasawa M, Moriyama-Kita M, Endo K and Yoshizaki T: Primary tumor-secreted lymphangiogenic factors induce pre-metastatic lymphvascular niche formation at sentinel lymph nodes in oral squamous cell carcinoma. PLoS One. 10:e01440562015. View Article : Google Scholar : PubMed/NCBI

48 

Li L, Wu J, Abdi R, Jewell CM and Bromberg JS: Lymph node fibroblastic reticular cells steer immune responses. Trends Immunol. 42:723–734. 2021. View Article : Google Scholar : PubMed/NCBI

49 

Rovera C, Berestjuk I, Lecacheur M, Tavernier C, Diazzi S, Pisano S, Irondelle M, Mallavialle A, Albrengues J, Gaggioli C, et al: Secretion of IL1 by dedifferentiated melanoma cells inhibits JAK1-STAT3-driven actomyosin contractility of lymph node fibroblastic reticular cells. Cancer Res. 82:1774–1788. 2022. View Article : Google Scholar : PubMed/NCBI

50 

Clasper S, Royston D, Baban D, Cao Y, Ewers S, Butz S, Vestweber D and Jackson DG: A novel gene expression profile in lymphatics associated with tumor growth and nodal metastasis. Cancer Res. 68:7293–7303. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Van de Velde M, Ebroin M, Durré T, Joiret M, Gillot L, Blacher S, Geris L, Kridelka F and Noel A: Tumor exposed-lymphatic endothelial cells promote primary tumor growth via IL6. Cancer Lett. 497:154–164. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Dieterich LC, Ikenberg K, Cetintas T, Kapaklikaya K, Hutmacher C and Detmar M: Tumor-associated lymphatic vessels upregulate PDL1 to inhibit T-cell activation. Front Immunol. 8:662017. View Article : Google Scholar : PubMed/NCBI

53 

Lane RS, Femel J, Breazeale AP, Loo CP, Thibault G, Kaempf A, Mori M, Tsujikawa T, Chang YH and Lund AW: IFNγ-activated dermal lymphatic vessels inhibit cytotoxic T cells in melanoma and inflamed skin. J Exp Med. 215:3057–3074. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Nörder M, Gutierrez MG, Zicari S, Cervi E, Caruso A and Guzmán CA: Lymph node-derived lymphatic endothelial cells express functional costimulatory molecules and impair dendritic cell-induced allogenic T-cell proliferation. FASEB J. 26:2835–2846. 2012. View Article : Google Scholar : PubMed/NCBI

55 

Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN, Issa A, Hugues S and Swartz MA: VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep. 1:191–199. 2012. View Article : Google Scholar : PubMed/NCBI

56 

de Winde CM, Munday C and Acton SE: Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol. 209:515–529. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Swartz MA and Lund AW: Lymphatic and interstitial flow in the tumour microenvironment: Linking mechanobiology with immunity. Nat Rev Cancer. 12:210–219. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Dubrot J, Duraes FV, Harlé G, Schlaeppi A, Brighouse D, Madelon N, Göpfert C, Stokar-Regenscheit N, Acha-Orbea H, Reith W, et al: Absence of MHC-II expression by lymph node stromal cells results in autoimmunity. Life Sci Alliance. 1:e2018001642018. View Article : Google Scholar : PubMed/NCBI

59 

Li CY, Park HJ, Shin J, Baik JE, Mehrara BJ and Kataru RP: Tumor-associated lymphatics upregulate MHC-II to suppress tumor-infiltrating lymphocytes. Int J Mol Sci. 23:134702022. View Article : Google Scholar : PubMed/NCBI

60 

Lukacs-Kornek V, Malhotra D, Fletcher AL, Acton SE, Elpek KG, Tayalia P, Collier AR and Turley SJ: Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol. 12:1096–1104. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Antohe M, Nedelcu RI, Nichita L, Popp CG, Cioplea M, Brinzea A, Hodorogea A, Calinescu A, Balaban M, Ion DA, et al: Tumor infiltrating lymphocytes: The regulator of melanoma evolution. Oncol Lett. 17:4155–4161. 2019.PubMed/NCBI

62 

Mihm MC Jr and Mulé JJ: Reflections on the histopathology of tumor-infiltrating lymphocytes in melanoma and the host immune response. Cancer Immunol Res. 3:827–835. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Durante MA, Rodriguez DA, Kurtenbach S, Kuznetsov JN, Sanchez MI, Decatur CL, Snyder H, Feun LG, Livingstone AS and Harbour JW: Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat Commun. 11:4962020. View Article : Google Scholar : PubMed/NCBI

64 

Li H, van der Leun AM, Yofe I, Lubling Y, Gelbard-Solodkin D, van Akkooi ACJ, van den Braber M, Rozeman EA, Haanen JBAG, Blank CU, et al: Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell. 176:775–789.e18. 2019. View Article : Google Scholar : PubMed/NCBI

65 

Yang J, Lian JW, Chin YH, Wang L, Lian A, Murphy GF and Zhou L: Assessing the prognostic significance of tumor-infiltrating lymphocytes in patients with melanoma using pathologic features identified by natural language processing. JAMA Netw Open. 4:e21263372021. View Article : Google Scholar : PubMed/NCBI

66 

Khong HT, Wang QJ and Rosenberg SA: Identification of multiple antigens recognized by tumor-infiltrating lymphocytes from a single patient: Tumor escape by antigen loss and loss of MHC expression. J Immunother. 27:184–190. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Maeurer MJ, Gollin SM, Martin D, Swaney W, Bryant J, Castelli C, Robbins P, Parmiani G, Storkus WJ and Lotze MT: Tumor escape from immune recognition: Lethal recurrent melanoma in a patient associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest. 98:1633–1641. 1996. View Article : Google Scholar : PubMed/NCBI

68 

Al-Batran SE, Rafiyan MR, Atmaca A, Neumann A, Karbach J, Bender A, Weidmann E, Altmannsberger HM, Knuth A and Jäger E: Intratumoral T-cell infiltrates and MHC class I expression in patients with stage IV melanoma. Cancer Res. 65:3937–3941. 2005. View Article : Google Scholar : PubMed/NCBI

69 

Rodig SJ, Gusenleitner D, Jackson DG, Gjini E, Giobbie-Hurder A, Jin C, Chang H, Lovitch SB, Horak C, Weber JS, et al: MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci Transl Med. 10:eaar33422018. View Article : Google Scholar : PubMed/NCBI

70 

Passarelli A, Mannavola F, Stucci LS, Tucci M and Silvestris F: Immune system and melanoma biology: A balance between immunosurveillance and immune escape. Oncotarget. 8:106132–106142. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Failli A, Legitimo A, Orsini G, Romanini A and Consolini R: Numerical defect of circulating dendritic cell subsets and defective dendritic cell generation from monocytes of patients with advanced melanoma. Cancer Lett. 337:184–192. 2023. View Article : Google Scholar : PubMed/NCBI

72 

Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, et al: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19:1189–1201. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Jacobs JFM, Nierkens S, Figdor CG, de Vries IJM and Adema GJ: Regulatory T cells in melanoma: The final hurdle towards effective immunotherapy? Lancet Oncol. 13:e32–e42. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Petrova V, Arkhypov I, Weber R, Groth C, Altevogt P, Utikal J and Umansky V: Modern aspects of immunotherapy with checkpoint inhibitors in melanoma. Int J Mol Sci. 21:23672020. View Article : Google Scholar : PubMed/NCBI

75 

Falleni M, Savi F, Tosi D, Agape E, Cerri A, Moneghini L and Bulfamante GP: M1 and M2 macrophages' clinicopathological significance in cutaneous melanoma. Melanoma Res. 27:200–210. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, et al: Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 560:382–386. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Fankhauser M, Broggi MAS, Potin L, Bordry N, Jeanbart L, Lund AW, Da Costa E, Hauert S, Rincon-Restrepo M, Tremblay C, et al: Tumor lymphangiogenesis promotes T cell infiltration and potentiates immunotherapy in melanoma. Sci Transl Med. 9:eaal47122017. View Article : Google Scholar : PubMed/NCBI

78 

Moussion C and Turley SJ: Tumour lymph vessels boost immunotherapy. Nature. 552:340–342. 2017. View Article : Google Scholar

79 

Lund AW, Wagner M, Fankhauser M, Steinskog ES, Broggi MA, Spranger S, Gajewski TF, Alitalo K, Eikesdal HP, Wiig H and Swartz MA: Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 126:3389–3402. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Bordry N, Broggi MAS, de Jonge K, Schaeuble K, Gannon PO, Foukas PG, Danenberg E, Romano E, Baumgaertner P, Fankhauser M, et al: Lymphatic vessel density is associated with CD8+ T cell infiltration and immunosuppressive factors in human melanoma. Oncoimmunology. 7:e14628782018. View Article : Google Scholar : PubMed/NCBI

81 

Sautès-Fridman C, Petitprez F, Calderaro J and Fridman WH: Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. 19:307–325. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, Yizhak K, Sade-Feldman M, Blando J, Han G, et al: B cells and tertiary lymphoid structures promote immunotherapy response. Nature. 577:549–555. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Cipponi A, Mercier M, Seremet T, Baurain JF, Théate I, van den Oord J, Stas M, Boon T, Coulie PG and van Baren N: Neogenesis of lymphoid structures and antibody responses occur in human melanoma metastases. Cancer Res. 72:3997–4007. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Ladányi A, Sebestyén T, Mohos A, Liszkay G, Somlai B, Tóth E and Tímár J: Ectopic lymphoid structures in primary cutaneous melanoma. Pathol Oncol Res. 20:981–985. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Cabrita R, Lauss M, Sanna A, Donia M, Skaarup Larsen M, Mitra S, Johansson I, Phung B, Harbst K, Vallon-Christersson J, et al: Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature. 577:561–565. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Maibach F, Sadozai H, Seyed Jafari SM, Hunger RE and Schenk M: Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma. Front Immunol. 11:21052020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ju W, Cai H, Zheng W, Li D, Zhang W, Yang X and Yan Z: Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review). Oncol Lett 27: 81, 2024.
APA
Ju, W., Cai, H., Zheng, W., Li, D., Zhang, W., Yang, X., & Yan, Z. (2024). Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review). Oncology Letters, 27, 81. https://doi.org/10.3892/ol.2024.14215
MLA
Ju, W., Cai, H., Zheng, W., Li, D., Zhang, W., Yang, X., Yan, Z."Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review)". Oncology Letters 27.2 (2024): 81.
Chicago
Ju, W., Cai, H., Zheng, W., Li, D., Zhang, W., Yang, X., Yan, Z."Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review)". Oncology Letters 27, no. 2 (2024): 81. https://doi.org/10.3892/ol.2024.14215
Copy and paste a formatted citation
x
Spandidos Publications style
Ju W, Cai H, Zheng W, Li D, Zhang W, Yang X and Yan Z: Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review). Oncol Lett 27: 81, 2024.
APA
Ju, W., Cai, H., Zheng, W., Li, D., Zhang, W., Yang, X., & Yan, Z. (2024). Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review). Oncology Letters, 27, 81. https://doi.org/10.3892/ol.2024.14215
MLA
Ju, W., Cai, H., Zheng, W., Li, D., Zhang, W., Yang, X., Yan, Z."Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review)". Oncology Letters 27.2 (2024): 81.
Chicago
Ju, W., Cai, H., Zheng, W., Li, D., Zhang, W., Yang, X., Yan, Z."Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review)". Oncology Letters 27, no. 2 (2024): 81. https://doi.org/10.3892/ol.2024.14215
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team