|
1
|
Christofi T, Baritaki S, Falzone L, Libra
M and Zaravinos A: Current perspectives in cancer immunotherapy.
Cancers (Basel). 11:14722019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gupta SL, Basu S, Soni V and Jaiswal RK:
Immunotherapy: An alternative promising therapeutic approach
against cancers. Mol Biol Rep. 49:9903–9913. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kennedy LB and Salama AKS: A review of
cancer immunotherapy toxicity. CA Cancer J Clin. 70:86–104. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shi Z, Li H, Song W, Zhou Z, Li Z and
Zhang M: Emerging roles of the gut microbiota in cancer
immunotherapy. Front Immunol. 14:11398212023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Vivarelli S, Salemi R, Candido S, Falzone
L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G and Libra
M: Gut microbiota and cancer: From pathogenesis to therapy. Cancers
(Basel). 11:382019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kumagai T, Rahman F and Smith AM: The
microbiome and radiation induced-bowel injury: Evidence for
potential mechanistic role in disease pathogenesis. Nutrients.
10:14052018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Qin J, Li R, Raes J, Arumugam M, Burgdorf
KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al: A
human gut microbial gene catalogue established by metagenomic
sequencing. Nature. 464:59–65. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jandhyala SM, Talukdar R, Subramanyam C,
Vuyyuru H, Sasikala M and Nageshwar Reddy D: Role of the normal gut
microbiota. World J Gastroenterol. 21:8787–8803. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Tuddenham S and Sears CL: The intestinal
microbiome and health. Curr Opin Infect Dis. 28:464–470. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jain N: The early life education of the
immune system: Moms, microbes and (missed) opportunities. Gut
Microbes. 12:18245642020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gao Y, O'Hely M, Quinn TP, Ponsonby AL,
Harrison LC, Frøkiær H, Tang MLK, Brix S, Kristiansen K, Burgner D,
et al: Maternal gut microbiota during pregnancy and the composition
of immune cells in infancy. Front Immunol. 13:9863402022.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rio-Aige K, Azagra-Boronat I,
Massot-Cladera M, Selma-Royo M, Parra-Llorca A, González S,
García-Mantrana I, Castell M, Rodríguez-Lagunas MJ, Collado MC and
Pérez Cano FJ: Association of maternal microbiota and diet in cord
blood cytokine and immunoglobulin profiles. Int J Mol Sci.
22:17782021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Henrick BM, Rodriguez L, Lakshmikanth T,
Pou C, Henckel E, Arzoomand A, Olin A, Wang J, Mikes J, Tan Z, et
al: Bifidobacteria-mediated immune system imprinting early in life.
Cell. 184:3884–3898.e11. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Koenig JE, Spor A, Scalfone N, Fricker AD,
Stombaugh J, Knight R, Angenent LT and Ley RE: Succession of
microbial consortia in the developing infant gut microbiome. Proc
Natl Acad Sci USA. 108 (Suppl 1):S4578–S4585. 2011. View Article : Google Scholar
|
|
15
|
Odamaki T, Kato K, Sugahara H, Hashikura
N, Takahashi S, Xiao JZ, Abe F and Osawa R: Age-related changes in
gut microbiota composition from newborn to centenarian: A
cross-sectional study. BMC Microbiol. 16:902016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xu Y, Wang Y, Li H, Dai Y, Chen D, Wang M,
Jiang X, Huang Z, Yu H, Huang J and Xiong Z: Altered fecal
microbiota composition in older adults with frailty. Front Cell
Infect Microbiol. 11:6961862021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cheng H, Guan X, Chen D and Ma W: The
Th17/Treg cell balance: A gut microbiota-modulated story.
Microorganisms. 7:5832019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lee GR: The balance of Th17 versus Treg
cells in autoimmunity. Int J Mol Sci. 19:7302018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ivanov II, Frutos Rde L, Manel N,
Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB and Littman DR:
Specific microbiota direct the differentiation of IL-17-producing
T-helper cells in the mucosa of the small intestine. Cell Host
Microbe. 4:337–349. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Atarashi K, Tanoue T, Shima T, Imaoka A,
Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, et al:
Induction of colonic regulatory T cells by indigenous
Clostridium species. Science. 331:337–341. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Round JL, Lee SM, Li J, Tran G, Jabri B,
Chatila TA and Mazmanian SK: The Toll-like receptor 2 pathway
establishes colonization by a commensal of the human microbiota.
Science. 332:974–977. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Erturk-Hasdemir D, Oh SF, Okan NA,
Stefanetti G, Gazzaniga FS, Seeberger PH, Plevy SE and Kasper DL:
Symbionts exploit complex signaling to educate the immune system.
Proc Natl Acad Sci USA. 116:26157–26166. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sun M, Wu W, Chen L, Yang W, Huang X, Ma
C, Chen F, Xiao Y, Zhao Y, Ma C, et al: Microbiota-derived
short-chain fatty acids promote Th1 cell IL-10 production to
maintain intestinal homeostasis. Nat Commun. 9:35552018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Martin-Gallausiaux C, Béguet-Crespel F,
Marinelli L, Jamet A, Ledue F, Blottière HM and Lapaque N: Butyrate
produced by gut commensal bacteria activates TGF-beta1 expression
through the transcription factor SP1 in human intestinal epithelial
cells. Sci Rep. 8:97422018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Duscha A, Gisevius B, Hirschberg S,
Yissachar N, Stangl GI, Dawin E, Bader V, Haase S, Kaisler J, David
C, et al: Propionic acid shapes the multiple sclerosis disease
course by an immunomodulatory mechanism. Cell. 180:1067–1080.e16.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Levy M, Thaiss CA, Zeevi D, Dohnalová L,
Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig
Y, et al: Microbiota-modulated metabolites shape the intestinal
microenvironment by regulating NLRP6 inflammasome signaling. Cell.
163:1428–1443. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang
L, Zheng M, Zhang X, Xia D, Ke Y, et al: Bile acids control
inflammation and metabolic disorder through inhibition of NLRP3
inflammasome. Immunity. 45:802–816. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yan F, Cao H, Cover TL, Whitehead R,
Washington MK and Polk DB: Soluble proteins produced by probiotic
bacteria regulate intestinal epithelial cell survival and growth.
Gastroenterology. 132:562–575. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Salemi R, Vivarelli S, Ricci D, Scillato
M, Santagati M, Gattuso G, Falzone L and Libra M: Lactobacillus
rhamnosus GG cell-free supernatant as a novel anti-cancer
adjuvant. J Transl Med. 21:1952023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ottman N, Reunanen J, Meijerink M, Pietilä
TE, Kainulainen V, Klievink J, Huuskonen L, Aalvink S, Skurnik M,
Boeren S, et al: Pili-like proteins of Akkermansia
muciniphila modulate host immune responses and gut barrier
function. PLoS One. 12:e01730042017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Alexander M, Ang QY, Nayak RR, Bustion AE,
Sandy M, Zhang B, Upadhyay V, Pollard KS, Lynch SV and Turnbaugh
PJ: Human gut bacterial metabolism drives Th17 activation and
colitis. Cell Host Microbe. 30:17–30.e9. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Vinay DS, Ryan EP, Pawelec G, Talib WH,
Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, et
al: Immune evasion in cancer: Mechanistic basis and therapeutic
strategies. Semin Cancer Biol. 35 (Suppl):S185–S198. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wei G, Zhang H, Zhao H, Wang J, Wu N, Li
L, Wu J and Zhang D: Emerging immune checkpoints in the tumor
microenvironment: Implications for cancer immunotherapy. Cancer
Lett. 511:68–76. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Iwai Y, Ishida M, Tanaka Y, Okazaki T,
Honjo T and Minato N: Involvement of PD-L1 on tumor cells in the
escape from host immune system and tumor immunotherapy by PD-L1
blockade. Proc Natl Acad Sci USA. 99:12293–12297. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Herbst RS, Soria JC, Kowanetz M, Fine GD,
Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger
SN, et al: Predictive correlates of response to the anti-PD-L1
antibody MPDL3280A in cancer patients. Nature. 515:563–567. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Park JJ, Thi EP, Carpio VH, Bi Y, Cole AG,
Dorsey BD, Fan K, Harasym T, Iott CL, Kadhim S, et al: Checkpoint
inhibition through small molecule-induced internalization of
programmed death-ligand 1. Nat Commun. 12:12222021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lee HT, Lee SH and Heo YS: Molecular
interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in
immuno-oncology. Molecules. 24:11902019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Das R, Verma R, Sznol M, Boddupalli CS,
Gettinger SN, Kluger H, Callahan M, Wolchok JD, Halaban R,
Dhodapkar MV and Dhodapkar KM: Combination therapy with anti-CTLA-4
and anti-PD-1 leads to distinct immunologic changes in vivo. J
Immunol. 194:950–959. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Shi AP, Tang XY, Xiong YL, Zheng KF, Liu
YJ, Shi XG, Lv Y, Jiang T, Ma N and Zhao JB: Immune checkpoint LAG3
and Its Ligand FGL1 in cancer. Front Immunol. 12:7850912022.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kandel S, Adhikary P, Li G and Cheng K:
The TIM3/Gal9 signaling pathway: An emerging target for cancer
immunotherapy. Cancer Lett. 510:67–78. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tan AC, Bagley SJ, Wen PY, Lim M, Platten
M, Colman H, Ashley DM, Wick W, Chang SM, Galanis E, et al:
Systematic review of combinations of targeted or immunotherapy in
advanced solid tumors. J Immunother Cancer. 9:e0024592021.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Syn NL, Teng MWL, Mok TSK and Soo RA:
De-novo and acquired resistance to immune checkpoint targeting.
Lancet Oncol. 18:e731–e741. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sanmamed MF and Chen L: A paradigm shift
in cancer immunotherapy: From enhancement to normalization. Cell.
175:313–326. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Boutros C, Tarhini A, Routier E, Lambotte
O, Ladurie FL, Carbonnel F, Izzeddine H, Marabelle A, Champiat S,
Berdelou A, et al: Safety profiles of anti-CTLA-4 and anti-PD-1
antibodies alone and in combination. Nat Rev Clin Oncol.
13:473–486. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Brahmer JR, Lacchetti C, Schneider BJ,
Atkins MB, Brassil KJ, Caterino JM, Chau I, Ernstoff MS, Gardner
JM, Ginex P, et al: Management of immune-related adverse events in
patients treated with immune checkpoint inhibitor therapy: American
society of clinical oncology clinical practice guideline. J Clin
Oncol. 36:1714–1768. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Topalian SL, Hodi FS, Brahmer JR,
Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD,
Sosman JA, Atkins MB, et al: Safety, activity, and immune
correlates of anti-PD-1 antibody in cancer. N Engl J Med.
366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ott PA, Bang YJ, Berton-Rigaud D, Elez E,
Pishvaian MJ, Rugo HS, Puzanov I, Mehnert JM, Aung KL, Lopez J, et
al: Safety and antitumor activity of pembrolizumab in advanced
programmed death ligand 1-positive endometrial cancer: Results from
the KEYNOTE-028 study. J Clin Oncol. 35:2535–2541. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Antonia SJ, Balmanoukian A, Brahmer J, Ou
SI, Hellmann MD, Kim SW, Ahn MJ, Kim DW, Gutierrez M, Liu SV, et
al: Clinical activity, tolerability, and long-term follow-up of
durvalumab in patients with advanced NSCLC. J Thorac Oncol.
14:1794–1806. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Schöffski P, Tan DSW, Martín M,
Ochoa-de-Olza M, Sarantopoulos J, Carvajal RD, Kyi C, Esaki T,
Prawira A, Akerley W, et al: Phase I/II study of the LAG-3
inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001)
in patients with advanced malignancies. J Immunother Cancer.
10:e0037762022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Curigliano G, Gelderblom H, Mach N, Doi T,
Tai D, Forde PM, Sarantopoulos J, Bedard PL, Lin CC, Hodi FS, et
al: Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3
antibody, alone and in combination with spartalizumab, an anti-PD-1
antibody, in advanced solid tumors. Clin Cancer Res. 27:3620–3629.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kelly CM, Qin LX, Whiting KA, Richards AL,
Avutu V, Chan JE, Chi P, Dickson MA, Gounder MM, Keohan ML, et al:
A phase II study of epacadostat and pembrolizumab in patients with
advanced sarcoma. Clin Cancer Res. 29:2043–2051. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zakharia Y, McWilliams RR, Rixe O, Drabick
J, Shaheen MF, Grossmann KF, Kolhe R, Pacholczyk R, Sadek R,
Tennant LL, et al: Phase II trial of the IDO pathway inhibitor
indoximod plus pembrolizumab for the treatment of patients with
advanced melanoma. J Immunother Cancer. 9:e0020572021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lynch TJ, Bondarenko I, Luft A,
Serwatowski P, Barlesi F, Chacko R, Sebastian M, Neal J, Lu H,
Cuillerot JM and Reck M: Ipilimumab in combination with paclitaxel
and carboplatin as first-line treatment in stage IIIB/IV
non-small-cell lung cancer: Results from a randomized,
double-blind, multicenter phase II study. J Clin Oncol.
30:2046–2054. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wan MT and Ming ME: Nivolumab versus
ipilimumab in the treatment of advanced melanoma: A critical
appraisal: ORIGINAL ARTICLE. Wolchok JD, Chiarion-Sileni V,
Gonzalez R, et al: Overall survival with combined nivolumab and
ipilimumab in advanced melanoma. N Engl J Med 2017; 377: 1345-1356.
Br J Dermatol. 179:296–300. 2018.PubMed/NCBI
|
|
55
|
Hellmann MD, Ciuleanu TE, Pluzanski A, Lee
JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers
S, Salman P, et al: Nivolumab plus ipilimumab in lung cancer with a
high tumor mutational burden. N Engl J Med. 378:2093–2104. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tannir NM, Signoretti S, Choueiri TK,
McDermott DF, Motzer RJ, Flaifel A, Pignon JC, Ficial M, Frontera
OA, George S, et al: Efficacy and safety of nivolumab plus
ipilimumab versus sunitinib in first-line treatment of patients
with advanced sarcomatoid renal cell carcinoma. Clin Cancer Res.
27:78–86. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Rini BI, Powles T, Atkins MB, Escudier B,
McDermott DF, Suarez C, Bracarda S, Stadler WM, Donskov F, Lee JL,
et al: Atezolizumab plus bevacizumab versus sunitinib in patients
with previously untreated metastatic renal cell carcinoma
(IMmotion151): A multicentre, open-label, phase 3, randomised
controlled trial. Lancet. 393:2404–2415. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Garon EB, Hellmann MD, Rizvi NA, Carcereny
E, Leighl NB, Ahn MJ, Eder JP, Balmanoukian AS, Aggarwal C, Horn L,
et al: Five-year overall survival for patients with advanced
non-small-cell lung cancer treated with pembrolizumab: Results from
the phase I KEYNOTE-001 study. J Clin Oncol. 37:2518–2527. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Yuan L, Jia GD, Lv XF, Xie SY, Guo SS, Lin
DF, Liu LT, Luo DH, Li YF, Deng SW, et al: Camrelizumab combined
with apatinib in patients with first-line platinum-resistant or
PD-1 inhibitor resistant recurrent/metastatic nasopharyngeal
carcinoma: A single-arm, phase 2 trial. Nat Commun. 14:48932023.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liu Y, Song Y, Zuo S, Zhang X, Liu H, Wang
J, Wang J, Tang Y, Zheng W, Ying Z, et al: Antitumor activity and
safety of camrelizumab combined with apatinib in patients with
relapsed or refractory peripheral T-cell lymphoma: An open-label,
multicenter, phase II study. Front Immunol. 14:11281722023.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhao Y, Ma Y, Fan Y, Zhou J, Yang N, Yu Q,
Zhuang W, Song W, Wang ZM, Li B, et al: A multicenter, open-label
phase Ib/II study of cadonilimab (anti PD-1 and CTLA-4 bispecific
antibody) monotherapy in previously treated advanced non-small-cell
lung cancer (AK104-202 study). Lung Cancer. 184:1073552023.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shui L, Yang X, Li J, Yi C, Sun Q and Zhu
H: Gut microbiome as a potential factor for modulating resistance
to cancer immunotherapy. Front Immunol. 10:29892020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Park EM, Chelvanambi M, Bhutiani N,
Kroemer G, Zitvogel L and Wargo JA: Targeting the gut and tumor
microbiota in cancer. Nat Med. 28:690–703. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhou Y, Liu Z and Chen T: Gut microbiota:
A promising milestone in enhancing the efficacy of PD1/PD-L1
blockade therapy. Front Oncol. 12:8473502022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Vétizou M, Pitt JM, Daillère R, Lepage P,
Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong
CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on
the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Huang C, Li M, Liu B, Zhu H, Dai Q, Fan X,
Mehta K, Huang C, Neupane P, Wang F, et al: Relating gut microbiome
and its modulating factors to immunotherapy in solid tumors: A
systematic review. Front Oncol. 11:6421102021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Routy B, Le Chatelier E, Derosa L, Duong
CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C,
Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based
immunotherapy against epithelial tumors. Science. 359:91–97. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Grenda A, Iwan E, Chmielewska I, Krawczyk
P, Giza A, Bomba A, Frąk M, Rolska A, Szczyrek M, Kieszko R, et al:
Presence of Akkermansiaceae in gut microbiome and
immunotherapy effectiveness in patients with advanced non-small
cell lung cancer. AMB Express. 12:862022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Grenda A, Iwan E, Krawczyk P, Frąk M,
Chmielewska I, Bomba A, Giza A, Rolska-Kopińska A, Szczyrek M,
Kieszko R, et al: Attempting to identify bacterial allies in
immunotherapy of NSCLC patients. Cancers (Basel). 14:62502022.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Newsome RC, Gharaibeh RZ, Pierce CM, da
Silva WV, Paul S, Hogue SR, Yu Q, Antonia S, Conejo-Garcia JR,
Robinson LA and Jobin C: Interaction of bacterial genera associated
with therapeutic response to immune checkpoint PD-1 blockade in a
United States cohort. Genome Med. 14:352022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lee KA, Thomas AM, Bolte LA, Björk JR, de
Ruijter LK, Armanini F, Asnicar F, Blanco-Miguez A, Board R,
Calbet-Llopart N, et al: Cross-cohort gut microbiome associations
with immune checkpoint inhibitor response in advanced melanoma. Nat
Med. 28:535–544. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Cani PD, Depommier C, Derrien M, Everard A
and de Vos WM: Akkermansia muciniphila: paradigm for
next-generation beneficial microorganisms. Nat Rev Gastroenterol
Hepatol. 19:625–637. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xu X, Lv J, Guo F, Li J, Jia Y, Jiang D,
Wang N, Zhang C, Kong L, Liu Y, et al: Gut microbiome influences
the efficacy of PD-1 antibody immunotherapy on MSS-type colorectal
cancer via metabolic pathway. Front Microbiol. 11:8142020.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Peiffer LB, White JR, Jones CB, Slottke
RE, Ernst SE, Moran AE, Graff JN and Sfanos KS: Composition of
gastrointestinal microbiota in association with treatment response
in individuals with metastatic castrate resistant prostate cancer
progressing on enzalutamide and initiating treatment with anti-PD-1
(pembrolizumab). Neoplasia. 32:1008222022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gopalakrishnan V, Spencer CN, Nezi L,
Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman
K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1
immunotherapy in melanoma patients. Science. 359:97–103. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Matson V, Fessler J, Bao R, Chongsuwat T,
Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome
is associated with anti-PD-1 efficacy in metastatic melanoma
patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hakozaki T, Richard C, Elkrief A, Hosomi
Y, Benlaïfaoui M, Mimpen I, Terrisse S, Derosa L, Zitvogel L, Routy
B and Okuma Y: The gut microbiome associates with immune checkpoint
inhibition outcomes in patients with advanced non-small cell lung
cancer. Cancer Immunol Res. 8:1243–1250. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Jin Y, Dong H, Xia L, Yang Y, Zhu Y, Shen
Y, Zheng H, Yao C, Wang Y and Lu S: The diversity of gut microbiome
is associated with favorable responses to anti-programmed death 1
immunotherapy in Chinese patients with NSCLC. J Thorac Oncol.
14:1378–1389. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Mao J, Wang D, Long J, Yang X, Lin J, Song
Y, Xie F, Xun Z, Wang Y, Wang Y, et al: Gut microbiome is
associated with the clinical response to anti-PD-1 based
immunotherapy in hepatobiliary cancers. J Immunother Cancer.
9:e0033342021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Shen YC, Lee PC, Kuo YL, Wu WK, Chen CC,
Lei CH, Yeh CP, Hsu C, Hsu CH, Lin ZZ, et al: An exploratory study
for the association of gut microbiome with efficacy of immune
checkpoint inhibitor in patients with hepatocellular carcinoma. J
Hepatocell Carcinoma. 8:809–822. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang F, He MM, Yao YC, Zhao X, Wang ZQ,
Jin Y, Luo HY, Li JB, Wang FH, Qiu MZ, et al: Regorafenib plus
toripalimab in patients with metastatic colorectal cancer: A phase
Ib/II clinical trial and gut microbiome analysis. Cell Rep Med.
2:1003832021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wu YY, Lin CW, Cheng KS, Lin C, Wang YM,
Lin IT, Chou YH and Hsu PN: Increased programmed death-ligand-1
expression in human gastric epithelial cells in Helicobacter
pylori infection. Clin Exp Immunol. 161:551–559. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Park JS, Gazzaniga FS, Wu M, Luthens AK,
Gillis J, Zheng W, LaFleur MW, Johnson SB, Morad G, Park EM, et al:
Targeting PD-L2-RGMb overcomes microbiome-related immunotherapy
resistance. Nature. 617:377–385. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Peng Z, Cheng S, Kou Y, Wang Z, Jin R, Hu
H, Zhang X, Gong JF, Li J, Lu M, et al: The gut microbiome is
associated with clinical response to anti-PD-1/PD-L1 immunotherapy
in gastrointestinal cancer. Cancer Immunol Res. 8:1251–1261. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Nomura M, Nagatomo R, Doi K, Shimizu J,
Baba K, Saito T, Matsumoto S, Inoue K and Muto M: Association of
short-chain fatty acids in the gut microbiome with clinical
response to treatment with nivolumab or pembrolizumab in patients
with solid cancer tumors. JAMA Netw Open. 3:e2028952020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
He Y, Fu L, Li Y, Wang W, Gong M, Zhang J,
Dong X, Huang J, Wang Q, Mackay CR, et al: Gut microbial
metabolites facilitate anticancer therapy efficacy by modulating
cytotoxic CD8+ T cell immunity. Cell Metab.
33:988–1000.e7. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Coutzac C, Jouniaux JM, Paci A, Schmidt J,
Mallardo D, Seck A, Asvatourian V, Cassard L, Saulnier P, Lacroix
L, et al: Systemic short chain fatty acids limit antitumor effect
of CTLA-4 blockade in hosts with cancer. Nat Commun. 11:21682020.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lee PC, Wu CJ, Hung YW, Lee CJ, Chi CT,
Lee IC, Yu-Lun K, Chou SH, Luo JC, Hou MC and Huang YH: Gut
microbiota and metabolites associate with outcomes of immune
checkpoint inhibitor-treated unresectable hepatocellular carcinoma.
J Immunother Cancer. 10:e0047792022. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Jiang SS, Xie YL, Xiao XY, Kang ZR, Lin
XL, Zhang L, Li CS, Qian Y, Xu PP, Leng XX, et al: Fusobacterium
nucleatum-derived succinic acid induces tumor resistance to
immunotherapy in colorectal cancer. Cell Host Microbe.
31:781–797.e9. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yang M, Wang Y, Yuan M, Tao M, Kong C, Li
H, Tong J, Zhu H and Yan X: Antibiotic administration shortly
before or after immunotherapy initiation is correlated with poor
prognosis in solid cancer patients: An up-to-date systematic review
and meta-analysis. Int Immunopharmacol. 88:1068762020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tinsley N, Zhou C, Tan G, Rack S, Lorigan
P, Blackhall F, Krebs M, Carter L, Thistlethwaite F, Graham D and
Cook N: Cumulative antibiotic use significantly decreases efficacy
of checkpoint inhibitors in patients with advanced cancer.
Oncologist. 25:55–63. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hakozaki T, Okuma Y, Omori M and Hosomi Y:
Impact of prior antibiotic use on the efficacy of nivolumab for
non-small cell lung cancer. Oncol Lett. 17:2946–2952.
2019.PubMed/NCBI
|
|
93
|
Derosa L, Hellmann MD, Spaziano M,
Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC,
Chaft JE, et al: Negative association of antibiotics on clinical
activity of immune checkpoint inhibitors in patients with advanced
renal cell and non-small-cell lung cancer. Ann Oncol. 29:1437–1444.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kim J and Lee HK: The role of gut
microbiota in modulating tumor growth and anticancer agent
efficacy. Mol Cells. 44:356–362. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Son MY and Cho HS: Anticancer effects of
gut microbiota-derived short-chain fatty acids in cancers. J
Microbiol Biotechnol. 33:849–856. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Li T, Han L, Ma S, Lin W, Ba X, Yan J,
Huang Y, Tu S and Qin K: Interaction of gut microbiota with the
tumor microenvironment: A new strategy for antitumor treatment and
traditional Chinese medicine in colorectal cancer. Front Mol
Biosci. 10:11403252023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Andrews MC, Duong CPM, Gopalakrishnan V,
Iebba V, Chen WS, Derosa L, Khan MAW, Cogdill AP, White MG, Wong
MC, et al: Gut microbiota signatures are associated with toxicity
to combined CTLA-4 and PD-1 blockade. Nat Med. 27:1432–1441. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Dubin K, Callahan MK, Ren B, Khanin R,
Viale A, Ling L, No D, Gobourne A, Littmann E, Huttenhower C, et
al: Intestinal microbiome analyses identify melanoma patients at
risk for checkpoint-blockade-induced colitis. Nat Commun.
7:103912016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Liu T, Xiong Q, Li L and Hu Y: Intestinal
microbiota predicts lung cancer patients at risk of immune-related
diarrhea. Immunotherapy. 11:385–396. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Sivan A, Corrales L, Hubert N, Williams
JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B,
Alegre ML, et al: Commensal Bifidobacterium promotes
antitumor immunity and facilitates anti-PD-L1 efficacy. Science.
350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Tomita Y, Goto Y, Sakata S, Imamura K,
Minemura A, Oka K, Hayashi A, Jodai T, Akaike K, Anai M, et al:
Clostridium butyricum therapy restores the decreased
efficacy of immune checkpoint blockade in lung cancer patients
receiving proton pump inhibitors. Oncoimmunology. 11:20810102022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Dizman N, Meza L, Bergerot P, Alcantara M,
Dorff T, Lyou Y, Frankel P, Cui Y, Mira V, Llamas M, et al:
Nivolumab plus ipilimumab with or without live bacterial
supplementation in metastatic renal cell carcinoma: A randomized
phase 1 trial. Nat Med. 28:704–712. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Tomita Y, Ikeda T, Sakata S, Saruwatari K,
Sato R, Iyama S, Jodai T, Akaike K, Ishizuka S, Saeki S and
Sakagami T: Association of probiotic Clostridium butyricum
therapy with survival and response to immune checkpoint blockade in
patients with lung cancer. Cancer Immunol Res. 8:1236–1242. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang F, Yin Q, Chen L and Davis MM:
Bifidobacterium can mitigate intestinal immunopathology in
the context of CTLA-4 blockade. Proc Natl Acad Sci USA.
115:157–161. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Spencer CN, McQuade JL, Gopalakrishnan V,
McCulloch JA, Vetizou M, Cogdill AP, Khan MAW, Zhang X, White MG,
Peterson CB, et al: Dietary fiber and probiotics influence the gut
microbiome and melanoma immunotherapy response. Science.
374:1632–1640. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Gao G, Shen S, Zhang T, Zhang J, Huang S,
Sun Z and Zhang H: Lacticaseibacillus rhamnosus Probio-M9
enhanced the antitumor response to anti-PD-1 therapy by modulating
intestinal metabolites. EBioMedicine. 91:1045332023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Huang J, Zheng X, Kang W, Hao H, Mao Y,
Zhang H, Chen Y, Tan Y, He Y, Zhao W and Yin Y: Metagenomic and
metabolomic analyses reveal synergistic effects of fecal microbiota
transplantation and anti-PD-1 therapy on treating colorectal
cancer. Front Immunol. 13:8749222022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shaikh FY, Gills JJ, Mohammad F, White JR,
Stevens CM, Ding H, Fu J, Tam A, Blosser RL, Domingue JC, et al:
Murine fecal microbiota transfer models selectively colonize human
microbes and reveal transcriptional programs associated with
response to neoadjuvant checkpoint inhibitors. Cancer Immunol
Immunother. 71:2405–2420. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Baruch EN, Youngster I, Ben-Betzalel G,
Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S,
Bloch N, et al: Fecal microbiota transplant promotes response in
immunotherapy-refractory melanoma patients. Science. 371:602–609.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Davar D, Dzutsev AK, McCulloch JA,
Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding
Q, Pagliano O, et al: Fecal microbiota transplant overcomes
resistance to anti-PD-1 therapy in melanoma patients. Science.
371:595–602. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wang Y, Wiesnoski DH, Helmink BA,
Gopalakrishnan V, Choi K, DuPont HL, Jiang ZD, Abu-Sbeih H, Sanchez
CA, Chang CC, et al: Fecal microbiota transplantation for
refractory immune checkpoint inhibitor-associated colitis. Nat Med.
24:1804–1808. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fasanello MK, Robillard KT, Boland PM,
Bain AJ and Kanehira K: Use of fecal microbial transplantation for
immune checkpoint inhibitor colitis. ACG Case Rep J. 7:e003602020.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Koo H and Morrow CD: Incongruence between
dominant commensal donor microbes in recipient feces post fecal
transplant and response to anti-PD-1 immunotherapy. BMC Microbiol.
21:2512021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Jamal R, Messaoudene M, de Figuieredo M
and Routy B: Future indications and clinical management for fecal
microbiota transplantation (FMT) in immuno-oncology. Semin Immunol.
67:1017542023. View Article : Google Scholar : PubMed/NCBI
|