|
1
|
Soker S, Takashima S, Miao HQ, Neufeld G
and Klagsbrun M: Neuropilin-1 is expressed by endothelial and tumor
cells as an isoform-specific receptor for vascular endothelial
growth factor. Cell. 92:735–745. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen H, Chédotal A, He Z, Goodman CS and
Tessier-Lavigne M: Neuropilin-2, a novel member of the neuropilin
family, is a high affinity receptor for the semaphorins Sema E and
Sema IV but not Sema III. Neuron. 19:547–559. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hu C and Jiang X: Role of NRP-1 in
VEGF-VEGFR2-independent tumorigenesis. Target Oncol. 11:501–505.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kofler N and Simons M: The expanding role
of neuropilin: Regulation of transforming growth factor-β and
platelet-derived growth factor signaling in the vasculature. Curr
Opin Hematol. 23:260–267. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Klotz DM, Kuhlmann JD, Link T, Goeckenjan
M, Hofbauer LC, Göbel A, Rachner TD and Wimberger P: Clinical
impact of soluble neuropilin-1 in ovarian cancer patients and its
association with its circulating ligands of the HGF/c-MET axis.
Front Oncol. 12:9748852022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liu W, Parikh AA, Stoeltzing O, Fan F,
McCarty MF, Wey J, Hicklin DJ and Ellis LM: Upregulation of
neuropilin-1 by basic fibroblast growth factor enhances vascular
smooth muscle cell migration in response to VEGF. Cytokine.
32:206–212. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Leclerc M, Voilin E, Gros G, Corgnac S, de
Montpréville V, Validire P, Bismuth G and Mami-Chouaib F:
Regulation of antitumour CD8 T-cell immunity and checkpoint
blockade immunotherapy by neuropilin-1. Nat Commun. 10:33452019.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bębnowska D, Grywalska E,
Niedźwiedzka-Rystwej P, Sosnowska-Pasiarska B, Smok-Kalwat J,
Pasiarski M, Góźdź S, Roliński J and Polkowski W: CAR-T cell
therapy-an overview of targets in gastric cancer. J Clin Med.
9:18942020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chen L, Zhang G, Shi Y, Qiu R and Khan AA:
Neuropilin-1 (NRP-1) and magnetic nanoparticles, a potential
combination for diagnosis and therapy of gliomas. Curr Pharm Des.
21:5434–5449. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Oplawski M, Dziobek K, Grabarek B, Zmarzły
N, Dąbruś D, Januszyk P, Brus R, Tomala B and Boroń D: Expression
of NRP-1 and NRP-2 in endometrial cancer. Curr Pharm Biotechnol.
20:254–260. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Förster S, Givehchi M, Nitschke K, Mayr T,
Kilian K, Dutta S, Datta K, Nuhn P, Popovic Z, Muders MH and Erben
P: Neuropilin-2 and Its transcript variants correlate with clinical
outcome in bladder cancer. Genes (Basel). 12:5502021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Tu DG, Chang WW, Jan MS, Tu CW, Lu YC and
Tai CK: Promotion of metastasis of thyroid cancer cells via
NRP-2-mediated induction. Oncol Lett. 12:4224–4230. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang L, Wang H, Li C, Zhao Y, Wu L, Du X
and Han Z: VEGF-A/neuropilin 1 pathway confers cancer stemness via
activating Wnt/β-catenin axis in breast cancer cells. Cell Physiol
Biochem. 44:1251–1262. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chen C, Zhang R, Ma L, Li Q, Zhao YL,
Zhang GJ, Zhang D, Li WZ, Cao S, Wang L and Geng ZM: Neuropilin-1
is up-regulated by cancer-associated fibroblast-secreted IL-8 and
associated with cell proliferation of gallbladder cancer. J Cell
Mol Med. 24:12608–12618. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lungulescu C, Ghimpau V, Gheonea DI, Sur D
and Lungulescu CV: The role of neuropilin-2 in the epithelial to
mesenchymal transition of colorectal cancer: A systematic review.
Biomedicines. 10:1722022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ma L, Zhai B, Zhu H, Li W, Jiang W, Lei L,
Zhang S, Qiao H, Jiang X and Sun X: The miR-141/neuropilin-1 axis
is associated with the clinicopathology and contributes to the
growth and metastasis of pancreatic cancer. Cancer Cell Int.
19:2482019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Matkar PN, Jong ED, Ariyagunarajah R,
Prud'homme GJ, Singh KK and Leong-Poi H: Jack of many trades:
Multifaceted role of neuropilins in pancreatic cancer. Cancer Med.
7:5036–5046. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Mercurio AM: VEGF/neuropilin signaling in
cancer stem cells. Int J Mol Sci. 20:4902019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gohil SH, Iorgulescu JB, Braun DA, Keskin
DB and Livak KJ: Applying high-dimensional single-cell technologies
to the analysis of cancer immunotherapy. Nat Rev Clin Oncol.
18:244–256. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gu C, Limberg BJ, Whitaker GB, Perman B,
Leahy DJ, Rosenbaum JS, Ginty DD and Kolodkin AL: Characterization
of neuropilin-1 structural features that confer binding to
semaphorin 3A and vascular endothelial growth factor 165. J Biol
Chem. 277:18069–18076. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang L, Feng Y, Xie X, Wu H, Su XN, Qi J,
Xin W, Gao L, Zhang Y, Shah VH and Zhu Q: Neuropilin-1 aggravates
liver cirrhosis by promoting angiogenesis via VEGFR2-dependent
PI3K/Akt pathway in hepatic sinusoidal endothelial cells.
EBioMedicine. 43:525–536. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Timoshenko AV, Rastogi S and Lala PK:
Migration-promoting role of VEGF-C and VEGF-C binding receptors in
human breast cancer cells. Br J Cancer. 97:1090–1098. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Williams G, Eickholt BJ, Maison P, Prinjha
R, Walsh FS and Doherty P: A complementary peptide approach applied
to the design of novel semaphorin/neuropilin antagonists. J
Neurochem. 92:1180–1190. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tominaga K, Minato H, Murayama T, Sasahara
A, Nishimura T, Kiyokawa E, Kanauchi H, Shimizu S, Sato A, Nishioka
K, et al: Semaphorin signaling via MICAL3 induces symmetric cell
division to expand breast cancer stem-like cells. Proc Natl Acad
Sci USA. 116:625–630. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Fernández-Palanca P, Payo-Serafín T,
Fondevila F, Méndez-Blanco C, San-Miguel B, Romero MR, Tuñón MJ,
Marin JJG, González-Gallego J and Mauriz JL: Neuropilin-1 as a
potential biomarker of prognosis and invasive-related parameters in
liver and colorectal cancer: A systematic review and meta-analysis
of human studies. Cancers (Basel). 14:34552022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Curreli S, Wong BS, Latinovic O,
Konstantopoulos K and Stamatos NM: Class 3 semaphorins induce
F-actin reorganization in human dendritic cells: Role in cell
migration. J Leukoc Biol. 100:1323–1334. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chang X, Yang Q, Zhang C, Zhang Y, Liang
X, Liu Y and Xu G: Roles for VEGF-C/NRP-2 axis in regulating renal
tubular epithelial cell survival and autophagy during serum
deprivation. Cell Biochem Funct. 37:290–300. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Reichert S, Scheid S, Roth T, Herkel M,
Petrova D, Linden A, Weberbauer M, Esser J, Diehl P, Grundmann S,
et al: Semaphorin 3F promotes transendothelial migration of
leukocytes in the inflammatory response after survived cardiac
arrest. Inflammation. 42:1252–1264. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bollard J, Patte C, Radkova K, Massoma P,
Chardon L, Valantin J, Gadot N, Goddard I, Vercherat C, Hervieu V,
et al: Neuropilin-2 contributes to tumor progression in preclinical
models of small intestinal neuroendocrine tumors. J Pathol.
249:343–355. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu W, Wu T, Dong X and Zeng YA:
Neuropilin-1 is upregulated by Wnt/β-catenin signaling and is
important for mammary stem cells. Sci Rep. 7:109412017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Wang J, Huang Y, Zhang J, Wei Y, Mahoud S,
Bakheet AM, Wang L, Zhou S and Tang J: Pathway-related molecules of
VEGFC/D-VEGFR3/NRP2 axis in tumor lymphangiogenesis and lymphatic
metastasis. Clin Chim Acta. 461:165–171. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yoon SJ, Shin SH, Yoon SK, Jung JH, You Y,
Han IW, Choi DW and Heo JS: Appraisal of 5-year recurrence-free
survival after surgery in pancreatic ductal adenocarcinoma. J
Hepatobiliary Pancreat Sci. 28:287–296. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Belfiori G, Crippa S, Francesca A,
Pagnanelli M, Tamburrino D, Gasparini G, Partelli S, Andreasi V,
Rubini C, Zamboni G and Falconi M: Long-term survivors after
upfront resection for pancreatic ductal adenocarcinoma: An actual
5-year analysis of disease-specific and post-recurrence survival.
Ann Surg Oncol. 28:8249–8260. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kleeff J, Korc M, Apte M, La Vecchia C,
Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH
and Neoptolemos JP: Pancreatic cancer. Nat Rev Dis Primers.
2:160222016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
De Dosso S, Siebenhüner AR, Winder T,
Meisel A, Fritsch R, Astaras C, Szturz P and Borner M: Treatment
landscape of metastatic pancreatic cancer. Cancer Treat Rev.
96:1021802021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chang JC and Kundranda M: Novel diagnostic
and predictive biomarkers in pancreatic adenocarcinoma. Int J Mol
Sci. 18:6672017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Long J, Zhang Y, Yu X, Yang J, LeBrun DG,
Chen C, Yao Q and Li M: Overcoming drug resistance in pancreatic
cancer. Expert Opin Ther Targets. 15:817–828. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bazira PJ and Mahadevan V: Anatomy of the
pancreas and spleen. Surgery (Oxford). 40:213–218. 2022. View Article : Google Scholar
|
|
39
|
Neesse A, Michl P, Frese KK, Feig C, Cook
N, Jacobetz MA, Lolkema MP, Buchholz M, Olive KP, Gress TM and
Tuveson DA: Stromal biology and therapy in pancreatic cancer. Gut.
60:861–868. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Connor AA and Gallinger S: Pancreatic
cancer evolution and heterogeneity: Integrating omics and clinical
data. Nat Rev Cancer. 22:131–142. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chijimatsu R, Kobayashi S, Takeda Y,
Kitakaze M, Tatekawa S, Arao Y, Nakayama M, Tachibana N, Saito T,
Ennishi D, et al: Establishment of a reference single-cell RNA
sequencing dataset for human pancreatic adenocarcinoma. iScience.
25:1046592022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen Y, McAndrews KM and Kalluri R:
Clinical and therapeutic relevance of cancer-associated
fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Elyada E, Bolisetty M, Laise P, Flynn WF,
Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS,
et al: Cross-species single-cell analysis of pancreatic ductal
adenocarcinoma reveals antigen-presenting cancer-associated
fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Huang H, Wang Z, Zhang Y, Pradhan RN,
Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et
al: Mesothelial cell-derived antigen-presenting cancer-associated
fibroblasts induce expansion of regulatory T cells in pancreatic
cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Rhim AD, Oberstein PE, Thomas DH, Mirek
ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP,
Tattersall IW, et al: Stromal elements act to restrain, rather than
support, pancreatic ductal adenocarcinoma. Cancer Cell. 25:735–747.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Matkar PN, Singh KK, Rudenko D, Kim YJ,
Kuliszewski MA, Prud'homme GJ, Hedley DW and Leong-Poi H: Novel
regulatory role of neuropilin-1 in endothelial-to-mesenchymal
transition and fibrosis in pancreatic ductal adenocarcinoma.
Oncotarget. 7:69489–69506. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Liu X, Lin P, Perrett I, Lin J, Liao YP,
Chang CH, Jiang J, Wu N, Donahue T, Wainberg Z, et al:
Tumor-penetrating peptide enhances transcytosis of silicasome-based
chemotherapy for pancreatic cancer. J Clin Invest. 127:2007–2018.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Pastushenko I and Blanpain C: EMT
transition states during tumor progression and metastasis. Trends
Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Du B and Shim JS: Targeting
epithelial-mesenchymal transition (EMT) to overcome drug resistance
in cancer. Molecules. 21:9652016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mak MP, Tong P, Diao L, Cardnell RJ,
Gibbons DL, William WN, Skoulidis F, Parra ER, Rodriguez-Canales J,
Wistuba II, et al: A patient-derived, pan-cancer EMT signature
identifies global molecular alterations and immune target
enrichment following epithelial-to-mesenchymal transition. Clin
Cancer Res. 22:609–620. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin
X, Liu Q, Dou R and Xiong B: Crosstalk between cancer cells and
tumor associated macrophages is required for mesenchymal
circulating tumor cell-mediated colorectal cancer metastasis. Mol
Cancer. 18:642019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Feldker N, Ferrazzi F, Schuhwerk H,
Widholz SA, Guenther K, Frisch I, Jakob K, Kleemann J, Riegel D,
Bönisch U, et al: Genome-wide cooperation of EMT transcription
factor ZEB1 with YAP and AP-1 in breast cancer. EMBO J.
39:e1032092020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li Y, Lui KO and Zhou B: Reassessing
endothelial-to-mesenchymal transition in cardiovascular diseases.
Nat Rev Cardiol. 15:445–456. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gorelova A, Berman M and Al Ghouleh I:
Endothelial-to-mesenchymal transition in pulmonary arterial
hypertension. Antioxid Redox Signal. 34:891–914. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Liu ZH, Zhang Y, Wang X, Fan XF, Zhang Y,
Li X, Gong YS and Han LP: SIRT1 activation attenuates cardiac
fibrosis by endothelial-to-mesenchymal transition. Biomed
Pharmacother. 118:1092272019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cancer Genome Atlas Research Network.
Electronic address, . simpleandrew_aguirre@dfci.harvard.edu;
Cancer Genome Atlas Research Network: Integrated genomic
characterization of pancreatic ductal adenocarcinoma. Cancer Cell.
32:185–203.e13. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Reya T and Clevers H: Wnt signalling in
stem cells and cancer. Nature. 434:843–850. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ishii H, Iwatsuki M, Ieta K, Ohta D,
Haraguchi N, Mimori K and Mori M: Cancer stem cells and
chemoradiation resistance. Cancer Sci. 99:1871–1877. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Noguchi K, Eguchi H, Konno M, Kawamoto K,
Nishida N, Koseki J, Wada H, Marubashi S, Nagano H, Doki Y, et al:
Susceptibility of pancreatic cancer stem cells to reprogramming.
Cancer Sci. 106:1182–1187. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Grun D, Adhikary G and Eckert RL: NRP-1
interacts with GIPC1 and SYX to activate p38 MAPK signaling and
cancer stem cell survival. Mol Carcinog. 58:488–499. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Stacker SA, Williams SP, Karnezis T,
Shayan R, Fox SB and Achen MG: Lymphangiogenesis and lymphatic
vessel remodelling in cancer. Nat Rev Cancer. 14:159–172. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang J, Huang Y, Zhang J, Xing B, Xuan W,
Wang H, Huang H, Yang J and Tang J: NRP-2 in tumor
lymphangiogenesis and lymphatic metastasis. Cancer Lett.
418:176–184. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chen L, Wang L, Yan J, Ma C, Lu J, Chen G,
Chen S, Su F, Wang W and Su X: 131I-labeled monoclonal antibody
targeting neuropilin receptor type-2 for tumor SPECT imaging. Int J
Oncol. 50:649–659. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Miyauchi JT, Caponegro MD, Chen D, Choi
MK, Li M and Tsirka SE: Deletion of neuropilin 1 from microglia or
bone marrow-derived macrophages slows glioma progression. Cancer
Res. 78:685–694. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Grandclement C and Borg C: Neuropilins: A
new target for cancer therapy. Cancers (Basel). 3:1899–1928. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Peng K, Bai Y, Zhu Q, Hu B and Xu Y:
Targeting VEGF-neuropilin interactions: A promising antitumor
strategy. Drug Discov Today. 24:656–664. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang S, Zhang Z and Gao Q: Transfer of
microRNA-25 by colorectal cancer cell-derived extracellular
vesicles facilitates colorectal cancer development and metastasis.
Mol Ther Nucleic Acids. 23:552–564. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wang X, Hu H and Liu H: RNA binding
protein Lin28B confers gastric cancer cells stemness via directly
binding to NRP-1. Biomed Pharmacother. 104:383–389. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Piskounova E, Polytarchou C, Thornton JE,
LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D and Gregory RI:
Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct
mechanisms. Cell. 147:1066–1079. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu Y, Wang D, Zhou M, Chen H, Wang H, Min
J, Chen J, Wu S, Ni X, Zhang Y, et al: The KRAS/Lin28B axis
maintains stemness of pancreatic cancer cells via the let-7i/TET3
pathway. Mol Oncol. 15:262–278. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho
J, Yeom KH, Han J and Kim VN: TUT4 in concert with Lin28 suppresses
microRNA biogenesis through pre-microRNA uridylation. Cell.
138:696–708. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang L, Chen Y, Li C, Liu J, Ren H, Li L,
Zheng X, Wang H and Han Z: RNA binding protein PUM2 promotes the
stemness of breast cancer cells via competitively binding to
neuropilin-1 (NRP-1) mRNA with miR-376a. Biomed Pharmacother.
114:1087722019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Jimenez-Hernandez LE, Vazquez-Santillan K,
Castro-Oropeza R, Martinez-Ruiz G, Muñoz-Galindo L, Gonzalez-Torres
C, Cortes-Gonzalez CC, Victoria-Acosta G, Melendez-Zajgla J and
Maldonado V: NRP1-positive lung cancer cells possess
tumor-initiating properties. Oncol Rep. 39:349–357. 2018.PubMed/NCBI
|
|
74
|
Gerstberger S, Hafner M and Tuschl T: A
census of human RNA-binding proteins. Nat Rev Genet. 15:829–845.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Uniewicz KA, Cross MJ and Fernig DG:
Exogenous recombinant dimeric neuropilin-1 is sufficient to drive
angiogenesis. J Biol Chem. 286:12–23. 2011. View Article : Google Scholar : PubMed/NCBI
|