|
1
|
Folkman J: What is the evidence that
tumors are angiogenesis dependent? J Natl Cancer Inst. 82:4–6.
1990. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Qi S, Deng S, Lian Z and Yu K: Novel drugs
with high efficacy against tumor angiogenesis. Int J Mol Sci.
23:69342022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Pan KF, Yang YC, Lee WJ, Hua KT and Chien
MH: Proteoglycan endocan: A multifaceted therapeutic target in
Cancer. Biochim Biophys Acta Rev Cancer. 1877:1886722022.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chen J, Jiang L, Yu XH, Hu M, Zhang YK,
Liu X, He P and Ouyang X: Endocan: A key player of cardiovascular
disease. Front Cardiovasc Med. 8:7986992022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang SM, Zuo L, Zhou Q, Gui SY, Shi R, Wu
Q, Wei W and Wang Y: Expression and distribution of endocan in
human tissues. Biotech Histochem. 87:172–178. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lu J, Liu Q, Zhu L, Liu Y, Zhu X, Peng S,
Chen M and Li P: Endothelial cell-specific molecule 1 drives
cervical cancer progression. Cell Death Dis. 13:10432022.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Liu W, Yang Y, He B, Ma F, Sun F, Guo M,
Zhang M and Dong Z: ESM1 promotes triple-negative breast cancer
cell proliferation through activating AKT/NF-κB/Cyclin D1 pathway.
Ann Transl Med. 9:5332021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Li J, Yang D, Zhang C, Wei S, Zhao R, Dai
S and Shan B: ESM1 is a promising therapeutic target and prognostic
indicator for esophageal Carcinogenesis/Esophageal squamous cell
carcinoma. Biomed Res Int. 2022:53281922022.PubMed/NCBI
|
|
9
|
Abid MR, Yi X, Yano K, Shih SC and Aird
WC: Vascular endocan is preferentially expressed in tumor
endothelium. Microvasc Res. 72:136–145. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chen LY, Liu X, Wang SL and Qin CY:
Over-expression of the Endocan gene in endothelial cells from
hepatocellular carcinoma is associated with angiogenesis and tumour
invasion. J Int Med Res. 38:498–510. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lassalle P, Molet S, Janin A, Heyden JV,
Tavernier J, Fiers W, Devos R and Tonnel AB: ESM-1 is a novel human
endothelial cell-specific molecule expressed in lung and regulated
by cytokines. J Biol Chem. 271:20458–20464. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kali A and Shetty KS: Endocan: A novel
circulating proteoglycan. Indian J Pharmacol. 46:579–583. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sarrazin S, Adam E, Lyon M, Depontieu F,
Motte V, Landolfi C, Lortat-Jacob H, Bechard D, Lassalle P and
Delehedde M: Endocan or endothelial cell specific molecule-1
(ESM-1): A potential novel endothelial cell marker and a new target
for cancer therapy. Biochim Biophys Acta. 1765:25–37.
2006.PubMed/NCBI
|
|
14
|
Delehedde M, Devenyns L, Maurage CA and
Vivès RR: Endocan in cancers: A lesson from a circulating dermatan
sulfate proteoglycan. Int J Cell Biol. 2013:7050272013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Béchard D, Gentina T, Delehedde M,
Scherpereel A, Lyon M, Aumercier M, Vazeux R, Richet C, Degand P,
Jude B, et al: Endocan is a novel chondroitin sulfate/dermatan
sulfate proteoglycan that promotes hepatocyte growth factor/scatter
factor mitogenic activity. J Biol Chem. 276:48341–48349. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
De Freitas Caires N, Gaudet A, Portier L,
Tsicopoulos A, Mathieu D and Lassalle P: Endocan, sepsis,
pneumonia, and acute respiratory distress syndrome. Crit Care.
22:2802018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Leite AR, Borges-Canha M, Cardoso R, Neves
JS, Castro-Ferreira R and Leite-Moreira A: Novel biomarkers for
evaluation of endothelial dysfunction. Angiology. 71:397–410. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yu PH, Chou SF, Chen CL, Hung H, Lai CY,
Yang PM, Jeng YM, Liaw SF, Kuo HH, Hsu HC, et al: Upregulation of
endocan by Epstein-Barr virus latent membrane protein 1 and its
clinical significance in nasopharyngeal carcinoma. PLoS One.
8:e822542013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Laloglu E, Kumtepe Y, Aksoy H and Topdagi
Yilmaz EP: Serum endocan levels in endometrial and ovarian cancers.
J Clin Lab Anal. 31:e220792017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xu H, Chen X and Huang Z: Identification
of ESM1 overexpressed in head and neck squamous cell carcinoma.
Cancer Cell Int. 19:1182019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Baghy K, Tátrai P, Regős E and Kovalszky
I: Proteoglycans in liver cancer. World J Gastroenterol.
22:379–393. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Cai L, Leng ZG, Guo YH, Lin SJ, Wu ZR, Su
ZP, Lu JL, Wei LF, Zhuge QC, Jin K and Wu ZB: Dopamine agonist
resistance-related endocan promotes angiogenesis and cells
viability of prolactinomas. Endocrine. 52:641–651. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Chang Y, Niu W, Lian PL, Wang XQ, Meng ZX,
Liu Y and Zhao R: Endocan-expressing microvessel density as a
prognostic factor for survival in human gastric cancer. World J
Gastroenterol. 22:5422–5429. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang H, Shen YW, Zhang LJ, Chen JJ, Bian
HT, Gu WJ, Zhang H, Chen HZ, Zhang WD and Luan X: Targeting
endothelial cell-specific molecule 1 protein in cancer: A promising
therapeutic approach. Front Oncol. 11:6871202021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zolali E, Rezabakhsh A, Nabat E, Jaberi H,
Rahbarghazi R and Garjani A: Metformin effect on Endocan biogenesis
in human endothelial cells under diabetic condition. Arch Med Res.
50:304–314. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zeng M, Xie Z, Zhang J, Li S, Wu Y and Yan
X: Arctigenin attenuates vascular inflammation induced by high salt
through TMEM16A/ESM1/VCAM-1 pathway. Biomedicines. 10:27602022.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hortal J, Giannella M, Pérez MJ, Barrio
JM, Desco M, Bouza E and Muñoz P: Incidence and risk factors for
ventilator-associated pneumonia after major heart surgery.
Intensive Care Med. 35:1518–1525. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Daly C, Pasnikowski E, Burova E, Wong V,
Aldrich TH, Griffiths J, Ioffe E, Daly TJ, Fandl JP, Papadopoulos
N, et al: Angiopoietin-2 functions as an autocrine protective
factor in stressed endothelial cells. Proc Natl Acad Sci USA.
103:15491–15496. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Baeriswyl V and Christofori G: The
angiogenic switch in carcinogenesis. Semin Cancer Biol. 19:329–337.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Apte RS, Chen DS and Ferrara N: VEGF in
signaling and disease: Beyond discovery and development. Cell.
176:1248–1264. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ellis LM and Hicklin DJ: VEGF-targeted
therapy: Mechanisms of anti-tumour activity. Nat Rev Cancer.
8:579–591. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ferrara N and Henzel WJ: Pituitary
follicular cells secrete a novel heparin-binding growth factor
specific for vascular endothelial cells. Biochem Biophys Res
Commun. 161:851–858. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Duran CL, Borriello L, Karagiannis GS,
Entenberg D, Oktay MH and Condeelis JS: Targeting Tie2 in the tumor
microenvironment: From Angiogenesis to Dissemination. Cancers
(Basel). 13:57302021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bremnes RM, Camps C and Sirera R:
Angiogenesis in non-small cell lung cancer: The prognostic impact
of neoangiogenesis and the cytokines VEGF and bFGF in tumours and
blood. Lung Cancer. 51:143–158. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Huang H: Matrix metalloproteinase-9
(MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent
advances. Sensors (Basel). 18:32492018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kessenbrock K, Plaks V and Werb Z: Matrix
metalloproteinases: Regulators of the tumor microenvironment. Cell.
141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Rust R, Gantner C and Schwab ME: Pro- and
antiangiogenic therapies: Current status and clinical implications.
FASEB J. 33:34–48. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Viallard C and Larrivée B: Tumor
angiogenesis and vascular normalization: Alternative therapeutic
targets. Angiogenesis. 20:409–426. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Phng LK, Stanchi F and Gerhardt H:
Filopodia are dispensable for endothelial tip cell guidance.
Development. 140:4031–4040. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Barău A, Ruiz-Sauri A, Valencia G,
Gómez-Mateo Mdel C, Sabater L, Ferrandez A and Llombart-Bosch A:
High microvessel density in pancreatic ductal adenocarcinoma is
associated with high grade. Virchows Arch. 462:541–546. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Di Maggio F, Arumugam P, Delvecchio FR,
Batista S, Lechertier T, Hodivala-Dilke K and Kocher HM: Pancreatic
stellate cells regulate blood vessel density in the stroma of
pancreatic ductal adenocarcinoma. Pancreatology. 16:995–1004. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ramjiawan RR, Griffioen AW and Duda DG:
Anti-angiogenesis for cancer revisited: Is there a role for
combinations with immunotherapy? Angiogenesis. 20:185–204. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Morikawa S, Baluk P, Kaidoh T, Haskell A,
Jain RK and McDonald DM: Abnormalities in pericytes on blood
vessels and endothelial sprouts in tumors. Am J Pathol.
160:985–1000. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Dejana E, Tournier-Lasserve E and
Weinstein BM: The control of vascular integrity by endothelial cell
junctions: Molecular basis and pathological implications. Dev Cell.
16:209–221. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Baluk P, Morikawa S, Haskell A, Mancuso M
and McDonald DM: Abnormalities of basement membrane on blood
vessels and endothelial sprouts in tumors. Am J Pathol.
163:1801–1815. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Rocha SF, Schiller M, Jing D, Li H, Butz
S, Vestweber D, Biljes D, Drexler HC, Nieminen-Kelhä M, Vajkoczy P,
et al: Esm1 modulates endothelial tip cell behavior and vascular
permeability by enhancing VEGF bioavailability. Circ Res.
115:581–590. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Su T, Zhong Y, Demetriades AM, Shen J, Sui
A, Yao Y, Gao Y, Zhu Y, Shen X and Xie B: Endocan blockade
suppresses experimental ocular neovascularization in mice. Invest
Ophthalmol Vis Sci. 59:930–939. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li YK, Zeng T, Guan Y, Liu J, Liao NC,
Wang MJ, Chen KX, Luo XY, Chen CY, Quan FF, et al: Validation of
ESM1 related to ovarian cancer and the biological function and
prognostic significance. Int J Biol Sci. 19:258–280. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
He Y, Lin L, Ou Y, Hu X, Xu C and Wang C:
Endothelial cell-specific molecule 1 (ESM1) promoted by
transcription factor SPI1 acts as an oncogene to modulate the
malignant phenotype of endometrial cancer. Open Med (Wars).
17:1376–1389. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li D, Su X, Xue S, Yao L, Yu D, Tang X and
Huang Y: Targeting ESM1/VEGFα signaling axis: A promising
therapeutic avenue for angiogenesis in cervical squamous cell
carcinoma. J Cancer. 14:1725–1735. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Roudnicky F, Poyet C, Wild P, Krampitz S,
Negrini F, Huggenberger R, Rogler A, Stöhr R, Hartmann A,
Provenzano M, et al: Endocan is upregulated on tumor vessels in
invasive bladder cancer where it mediates VEGF-A-induced
angiogenesis. Cancer Res. 73:1097–1106. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Shahcheraghi SH, Tchokonte-Nana V, Lotfi
M, Lotfi M, Ghorbani A and Sadeghnia HR: Wnt/beta-catenin and
PI3K/Akt/mTOR signaling pathways in Glioblastoma: Two main targets
for drug design: A Review. Curr Pharm Des. 26:1729–1741. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang L, Dong Z, Li S and Chen T: ESM1
promotes angiogenesis in colorectal cancer by activating
PI3K/Akt/mTOR pathway, thus accelerating tumor progression. Aging
(Albany NY). 15:2920–2936. 2023.PubMed/NCBI
|
|
54
|
Namjoo M, Ghafouri H, Assareh E, Aref AR,
Mostafavi E, Hamrahi Mohsen A, Balalaie S, Broussy S and Asghari
SM: A VEGFB-based peptidomimetic inhibits VEGFR2-Mediated
PI3K/Akt/mTOR and PLCγ/ERK signaling and elicits apoptotic,
antiangiogenic, and antitumor activities. Pharmaceuticals (Basel).
16:9062023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yang YC, Pan KF, Lee WJ, Chang JH, Tan P,
Gu CC, Chang WM, Yang SF, Hsiao M, Hua KT and Chien MH: Circulating
proteoglycan endocan mediates EGFR-Driven progression of non-small
cell lung cancer. Cancer Res. 80:3292–3304. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Rao L, Giannico D, Leone P, Solimando AG,
Maiorano E, Caporusso C, Duda L, Tamma R, Mallamaci R, Susca N, et
al: HB-EGF-EGFR signaling in bone marrow endothelial cells mediates
angiogenesis associated with multiple myeloma. Cancers (Basel).
12:1732020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and
Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med.
19:1997–2007. 2020.PubMed/NCBI
|
|
58
|
Lee W, Ku SK, Kim SW and Bae JS: Endocan
elicits severe vascular inflammatory responses in vitro and in
vivo. J Cell Physiol. 229:620–630. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Guma M, Rius J, Duong-Polk KX, Haddad GG,
Lindsey JD and Karin M: Genetic and pharmacological inhibition of
JNK ameliorates hypoxia-induced retinopathy through interference
with VEGF expression. Proc Natl Acad Sci USA. 106:8760–8765. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Volpi G, Facchinetti F, Moretto N, Civelli
M and Patacchini R: Cigarette smoke and α,β-unsaturated aldehydes
elicit VEGF release through the p38 MAPK pathway in human airway
smooth muscle cells and lung fibroblasts. Br J Pharmacol.
163:649–661. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhou J, Ji Q and Li Q: Resistance to
anti-EGFR therapies in metastatic colorectal cancer: Underlying
mechanisms and reversal strategies. J Exp Clin Cancer Res.
40:3282021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jiang N, Hu Y, Wang M, Zhao Z and Li M:
The notch signaling pathway contributes to angiogenesis and tumor
immunity in breast cancer. Breast Cancer (Dove Med Press).
14:291–309. 2022.PubMed/NCBI
|
|
63
|
Kang N, Liang X, Fan B, Zhao C, Shen B, Ji
X and Liu Y: Endothelial-Specific Molecule 1 inhibition lessens
productive angiogenesis and tumor metastasis to overcome
bevacizumab resistance. Cancers (Basel). 14:56812022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Huang YG, Wang Y, Zhu RJ, Tang K, Tang XB
and Su XM: EMS1/DLL4-Notch signaling axis augments cell
cycle-mediated tumorigenesis and progress in human adrenocortical
carcinoma. Front Oncol. 11:7715792021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yan M and Plowman GD: Delta-like 4/Notch
signaling and its therapeutic implications. Clin Cancer Res.
13:7243–7246. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pitulescu ME, Schmidt I, Giaimo BD,
Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D,
Rocha SF, et al: Dll4 and Notch signalling couples sprouting
angiogenesis and artery formation. Nat Cell Biol. 19:915–927. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gilmore TD: NF-κB and human cancer: What
have we learned over the Past 35 Years? Biomedicines. 9:8892021.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kumar SK and Mani KP: Endocan alters
nitric oxide production in endothelial cells by targeting AKT/eNOS
and NFkB/iNOS signaling. Nitric Oxide. 117:26–33. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yu M, Qi B, Xiaoxiang W, Xu J and Liu X:
Baicalein increases cisplatin sensitivity of A549 lung
adenocarcinoma cells via PI3K/Akt/NF-κB pathway. Biomed
Pharmacother. 90:677–685. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang D, Li H, Luo X, Liu D, Wei Q and Ye
X: Integrated 16S rDNA, metabolomics, and TNF-α/NF-κB signaling
pathway analyses to explain the modulatory effect of Poria cocos
aqueous extract on anxiety-like behavior. Phytomedicine.
104:1543002022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Xiong H, Ye J, Xie K, Hu W, Xu N and Yang
H: Exosomal IL-8 derived from Lung Cancer and Colon Cancer cells
induced adipocyte atrophy via NF-κB signaling pathway. Lipids
Health Dis. 21:1472022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Szade A, Grochot-Przeczek A, Florczyk U,
Jozkowicz A and Dulak J: Cellular and molecular mechanisms of
inflammation-induced angiogenesis. IUBMB Life. 67:145–159. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xiao Y and Yu D: Tumor microenvironment as
a therapeutic target in cancer. Pharmacol Ther. 221:1077532021.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Shao C, Yang F, Miao S, Liu W, Wang C, Shu
Y and Shen H: Role of hypoxia-induced exosomes in tumor biology.
Mol Cancer. 17:1202018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Forsythe JA, Jiang BH, Iyer NV, Agani F,
Leung SW, Koos RD and Semenza GL: Activation of vascular
endothelial growth factor gene transcription by hypoxia-inducible
factor 1. Mol Cell Biol. 16:4604–4613. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lv X, Li J, Zhang C, Hu T, Li S, He S, Yan
H, Tan Y, Lei M, Wen M and Zuo J: The role of hypoxia-inducible
factors in tumor angiogenesis and cell metabolism. Genes Dis.
4:19–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sun H, Zhang H, Li K, Wu H, Zhan X, Fang
F, Qin Y and Wei Y: ESM-1 promotes adhesion between monocytes and
endothelial cells under intermittent hypoxia. J Cell Physiol.
234:1512–1521. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Fukumoto M, Kondo K, Uni K, Ishiguro T,
Hayashi M, Ueda S, Mori I, Niimi K, Tashiro F, Miyazaki S, et al:
Tip-cell behavior is regulated by transcription factor FoxO1 under
hypoxic conditions in developing mouse retinas. Angiogenesis.
21:203–214. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gu X, Zhang J, Shi Y, Shen H, Li Y, Chen Y
and Liang L: ESM1/HIF-1α pathway modulates chronic intermittent
hypoxia-induced non-small-cell lung cancer proliferation, stemness
and epithelial-mesenchymal transition. Oncol Rep. 45:1226–1234.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wigner P, Grębowski R, Bijak M,
Saluk-Bijak J and Szemraj J: The interplay between oxidative
stress, inflammation and angiogenesis in bladder cancer
development. Int J Mol Sci. 22:44832021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wu L, Saxena S and Singh RK: Neutrophils
in the tumor microenvironment. Adv Exp Med Biol. 1224:1–20. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tang L, Zhao Y, Wang D, Deng W, Li C, Li
Q, Huang S and Shu C: Endocan levels in peripheral blood predict
outcomes of acute respiratory distress syndrome. Mediators Inflamm.
2014:6251802014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Reinhart K, Meisner M and Brunkhorst FM:
Markers for sepsis diagnosis: What is useful? Crit Care Clin.
22:503–519. ix–x. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kim KS, Lee YA, Ji HI, Song R, Kim JY, Lee
SH, Hong SJ, Yoo MC and Yang HI: Increased expression of endocan in
arthritic synovial tissues: Effects of adiponectin on the
expression of endocan in fibroblast-like synoviocytes. Mol Med Rep.
11:2695–2702. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Murthi P, Sarkis R, Lim R, Nguyen-Ngo C,
Pratt A, Liong S and Lappas M: Endocan expression is increased in
the placenta from obese women with gestational diabetes mellitus.
Placenta. 48:38–48. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Leroy X, Aubert S, Zini L, Franquet H,
Kervoaze G, Villers A, Delehedde M, Copin MC and Lassalle P:
Vascular endocan (ESM-1) is markedly overexpressed in clear cell
renal cell carcinoma. Histopathology. 56:180–187. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Basim P and Argun D: A comparison of the
circulating endocan levels between the inflammatory and malignant
diseases of the same organ: The breast. J Invest Surg.
34:1207–1213. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Scherpereel A, Gentina T, Grigoriu B,
Sénéchal S, Janin A, Tsicopoulos A, Plénat F, Béchard D, Tonnel AB
and Lassalle P: Overexpression of endocan induces tumor formation.
Cancer Res. 63:6084–6089. 2003.PubMed/NCBI
|
|
89
|
Steiner N, Hajek R, Sevcikova S, Borjan B,
Untergasser G, Göbel G and Gunsilius E: The plasma levels of the
angiogenic cytokine endocan are elevated in patients with multiple
myeloma. Anticancer Res. 38:5087–5092. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ozaki K, Toshikuni N, George J, Minato T,
Matsue Y, Arisawa T and Tsutsumi M: Serum endocan as a novel
prognostic biomarker in patients with hepatocellular carcinoma. J
Cancer. 5:221–230. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lin LY, Yeh YC, Chu CH, Won JGS, Shyr YM,
Chao Y, Li CP, Wang SE and Chen MH: Endocan expression is
correlated with poor progression-free survival in patients with
pancreatic neuroendocrine tumors. Medicine (Baltimore).
96:e82622017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Maurage CA, Adam E, Minéo JF, Sarrazin S,
Debunne M, Siminski RM, Baroncini M, Lassalle P, Blond S and
Delehedde M: Endocan expression and localization in human
glioblastomas. J Neuropathol Exp Neurol. 68:633–641. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Huang X, Chen C, Wang X, Zhang JY, Ren BH,
Ma DW, Xia L, Xu XY and Xu L: Prognostic value of endocan
expression in cancers: Evidence from meta-analysis. Onco Targets
Ther. 9:6297–6304. 2016. View Article : Google Scholar : PubMed/NCBI
|