Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
June-2024 Volume 27 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2024 Volume 27 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review)

  • Authors:
    • Longze Zhang
    • Yanyang Wang
    • Jianmei Gao
    • Xue Zhou
    • Minglei Huang
    • Xianyao Wang
    • Zhixu He
  • View Affiliations / Copyright

    Affiliations: Department of Immunology, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 255
    |
    Published online on: April 9, 2024
       https://doi.org/10.3892/ol.2024.14388
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Esophageal cancer (EC) is a common form of malignant tumor in the digestive system that is classified into two types: Esophageal squamous cell carcinomas (ESCC) and esophageal adenocarcinoma. ESCC is known for its early onset of symptoms, which can be difficult to identify, as well as its rapid progression and tendency to develop drug resistance to chemotherapy and radiotherapy. These factors contribute to the high incidence of disease and low cure rate. Therefore, a diagnostic biomarker and therapeutic target need to be identified for ESCC. Non‑coding RNAs (ncRNAs) are a class of molecules that are transcribed from DNA but do not encode proteins. Initially, ncRNAs were considered to be non‑functional segments generated during transcription. However, with advancements in high‑throughput sequencing technologies in recent years, ncRNAs have been associated with poor prognosis, drug resistance and progression of ESCC. The present study provides a comprehensive overview of the biogenesis, characteristics and functions of ncRNAs, particularly focusing on microRNA, long ncRNAs and circular RNAs. Furthermore, the ncRNAs that could potentially be used as diagnostic biomarkers and therapeutic targets for ESCC are summarized to highlight their application value and prospects in ESCC.
View Figures

Figure 1

Figure 2

View References

1 

Rogers JE, Sewastjanow-Silva M, Waters RE and Ajani JA: Esophageal cancer: Emerging therapeutics. Expert Opin Ther Targets. 26:107–117. 2022. View Article : Google Scholar : PubMed/NCBI

2 

Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, Laversanne M, Ferlay J and Arnold M: The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology. 163:649–658.e2. 2022. View Article : Google Scholar : PubMed/NCBI

3 

He S, Xu J, Liu X and Zhen Y: Advances and challenges in the treatment of esophageal cancer. Acta Pharm Sin B. 11:3379–3392. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Rumgay H, Arnold M, Laversanne M, Whiteman DC, Thrift AP, Wei W, Lemmens VEPP and Soerjomataram I: International trends in esophageal squamous cell carcinoma and adenocarcinoma incidence. Am J Gastroenterol. 116:1072–1076. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Li J, Xu J, Zheng Y, Gao Y, He S, Li H, Zou K, Li N, Tian J, Chen W and He J: Esophageal cancer: Epidemiology, risk factors and screening. Chin J Cancer Res. 33:535–547. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Bhat AA, Nisar S, Maacha S, Carneiro-Lobo TC, Akhtar S, Siveen KS, Wani NA, Rizwan A, Bagga P, Singh M, et al: Cytokine-chemokine network driven metastasis in esophageal cancer; promising avenue for targeted therapy. Mol Cancer. 20:22021. View Article : Google Scholar : PubMed/NCBI

7 

Huang FL and Yu SJ: Esophageal cancer: Risk factors, genetic association, and treatment. Asian J Surg. 41:210–215. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Mattick JS and Makunin IV: Non-coding RNA. Hum Mol Genet. 15:R17–R29. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Liu Y, Liu X, Lin C, Jia X, Zhu H, Song J and Zhang Y: Noncoding RNAs regulate alternative splicing in cancer. J Exp Clin Cancer Res. 40:112021. View Article : Google Scholar : PubMed/NCBI

10 

Mohapatra S, Pioppini C, Ozpolat B and Calin GA: Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer. 20:242021. View Article : Google Scholar : PubMed/NCBI

11 

Poller W, Sahoo S, Hajjar R, Landmesser U and Krichevsky AM: Exploration of the noncoding genome for human-specific therapeutic targets-recent insights at molecular and cellular level. Cells. 12:26602023. View Article : Google Scholar : PubMed/NCBI

12 

Beermann J, Piccoli MT, Viereck J and Thum T: Non-coding RNAs in development and disease: Background, mechanisms, and therapeutic approaches. Physiol Rev. 96:1297–1325. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Zhou B, Yang H, Yang C, Bao YL, Yang SM, Liu J and Xiao YF: Translation of noncoding RNAs and cancer. Cancer Lett. 497:89–99. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Slack FJ and Chinnaiyan AM: The role of non-coding RNAs in oncology. Cell. 179:1033–1055. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Ran H, Yang Y, Luo M, Liu X, Yue B, Chai Z, Zhong J and Wang H: Molecular regulation of yak preadipocyte differentiation and proliferation by LncFAM200B and ceRNA regulatory network analysis. Cells. 11:23662022. View Article : Google Scholar : PubMed/NCBI

16 

Min X, Cai MY, Shao T, Xu ZY, Liao Z, Liu DL, Zhou MY, Wu WP, Zhou YL, Mo MH, et al: A circular intronic RNA ciPVT1 delays endothelial cell senescence by regulating the miR-24-3p/CDK4/pRb axis. Aging Cell. 21:e135292022. View Article : Google Scholar : PubMed/NCBI

17 

Qu J, Xiong X, Hujie G, Ren J, Yan L and Ma L: MicroRNA-132-3p alleviates neuron apoptosis and impairments of learning and memory abilities in Alzheimer's disease by downregulation of HNRNPU stabilized BACE1. Cell Cycle. 20:2309–2320. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Liu CX, Guo SK, Nan F, Xu YF, Yang L and Chen LL: RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol Cell. 82:420–434.e6. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Feng Q, Zhang H, Yao D, Chen WD and Wang YD: Emerging role of non-coding RNAs in esophageal squamous cell carcinoma. Int J Mol Sci. 21:2582019. View Article : Google Scholar : PubMed/NCBI

20 

Miyoshi J, Zhu Z, Luo A, Toden S, Zhou X, Izumi D, Kanda M, Takayama T, Parker IM, Wang M, et al: A microRNA-based liquid biopsy signature for the early detection of esophageal squamous cell carcinoma: A retrospective, prospective and multicenter study. Mol Cancer. 21:442022. View Article : Google Scholar : PubMed/NCBI

21 

Sharma U, Murmu M, Barwal TS, Tuli HS, Jain M, Prakash H, Kaceli T, Jain A and Bishayee A: A pleiotropic role of long non-coding RNAs in the modulation of Wnt/β-catenin and PI3K/Akt/mTOR signaling pathways in esophageal squamous cell carcinoma: Implication in chemotherapeutic drug response. Curr Oncol. 29:2326–2349. 2022. View Article : Google Scholar : PubMed/NCBI

22 

Wang C, Liu WR, Tan S, Zhou JK, Xu X, Ming Y, Cheng J, Li J, Zeng Z, Zuo Y, et al: Characterization of distinct circular RNA signatures in solid tumors. Mol Cancer. 21:632022. View Article : Google Scholar : PubMed/NCBI

23 

Jansson MD and Lund AH: MicroRNA and cancer. Mol Oncol. 6:590–610. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Acunzo M and Croce CM: MicroRNA in cancer and cachexia-a mini-review. J Infect Dis. 212 (Suppl 1):S74–S77. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Mengistu AA and Tenkegna TA: The role of miRNA in plant-virus interaction: A review. Mol Biol Rep. 48:2853–2861. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Peng Y and Croce CM: The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 1:150042016. View Article : Google Scholar : PubMed/NCBI

27 

Wahid F, Shehzad A, Khan T and Kim YY: MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 1803:1231–1243. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Budakoti M, Panwar AS, Molpa D, Singh RK, Büsselberg D, Mishra AP, Coutinho HDM and Nigam M: Micro-RNA: The darkhorse of cancer. Cell Signal. 83:1099952021. View Article : Google Scholar : PubMed/NCBI

29 

Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Wilson RC, Tambe A, Kidwell MA, Noland CL, Schneider CP and Doudna JA: Dicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis. Mol Cell. 57:397–407. 2015. View Article : Google Scholar : PubMed/NCBI

31 

He B, Zhao Z, Cai Q, Zhang Y, Zhang P, Shi S, Xie H, Peng X, Yin W, Tao Y and Wang X: miRNA-based biomarkers, therapies, and resistance in cancer. Int J Biol Sci. 16:2628–2647. 2020. View Article : Google Scholar : PubMed/NCBI

32 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Ho PTB, Clark IM and Le LTT: MicroRNA-based diagnosis and therapy. Int J Mol Sci. 23:71972022. View Article : Google Scholar

34 

Iqbal MA, Arora S, Prakasam G, Calin GA and Syed MA: MicroRNA in lung cancer: Role, mechanisms, pathways and therapeutic relevance. Mol Aspects Med. 70:3–20. 2019. View Article : Google Scholar : PubMed/NCBI

35 

O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI

36 

Medley JC, Panzade G and Zinovyeva AY: microRNA strand selection: Unwinding the rules. Wiley Interdiscip Rev RNA. 12:e16272021. View Article : Google Scholar : PubMed/NCBI

37 

Bartel DP: Metazoan MicroRNAs. Cell. 173:20–51. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Sun Q, Hao Q and Prasanth KV: Nuclear long noncoding RNAs: Key regulators of gene expression. Trends Genet. 34:142–157. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Cao Q, Guo Z, Yan Y, Wu J and Song C: Exosomal long noncoding RNAs in aging and age-related diseases. IUBMB Life. 71:1846–1856. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Kour S and Rath PC: Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev. 26:1–21. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar : PubMed/NCBI

42 

He Z, Yang D, Fan X, Zhang M, Li Y, Gu X and Yang M: The roles and mechanisms of lncRNAs in liver fibrosis. Int J Mol Sci. 21:14822020. View Article : Google Scholar : PubMed/NCBI

43 

Aboudehen K: Regulation of mTOR signaling by long non-coding RNA. Biochim Biophys Acta Gene Regul Mech. 1863:1944492020. View Article : Google Scholar : PubMed/NCBI

44 

Jain AK, Xi Y, McCarthy R, Allton K, Akdemir KC, Patel LR, Aronow B, Lin C, Li W, Yang L, et al: LncPRESS1 Is a p53-regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56. Mol Cell. 64:967–981. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Du Z, Wen X, Wang Y, Jia L, Zhang S, Liu Y, Zhou L, Li H, Yang W, Wang C, et al: Chromatin lncRNA Platr10 controls stem cell pluripotency by coordinating an intrachromosomal regulatory network. Genome Biol. 22:2332021. View Article : Google Scholar : PubMed/NCBI

46 

Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, et al: LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics. 10:10823–10837. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Su K, Wang N, Shao Q, Liu H, Zhao B and Ma S: The role of a ceRNA regulatory network based on lncRNA MALAT1 site in cancer progression. Biomed Pharmacother. 137:1113892021. View Article : Google Scholar : PubMed/NCBI

48 

Huang W, Sun YM, Pan Q, Fang K, Chen XT, Zeng ZC, Chen TQ, Zhu SX, Huang LB, Luo XQ, et al: The snoRNA-like lncRNA LNC-SNO49AB drives leukemia by activating the RNA-editing enzyme ADAR1. Cell Discov. 8:1172022. View Article : Google Scholar : PubMed/NCBI

49 

Yang X, Ye T, Liu H, Lv P, Duan C, Wu X, Jiang K, Lu H, Xia D, Peng E, et al: Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Mol Cancer. 20:42021. View Article : Google Scholar : PubMed/NCBI

50 

Hu Q and Zhou T: EIciRNA-mediated gene expression: Tunability and bimodality. FEBS Lett. 592:3460–3471. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Zhou X and Du J: CircRNAs: Novel therapeutic targets in multiple myeloma. Mol Biol Rep. 49:10667–10676. 2022. View Article : Google Scholar : PubMed/NCBI

52 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Vahabi A, Rezaie J, Hassanpour M, Panahi Y and Nemati M, Rasmi Y and Nemati M: Tumor cells-derived exosomal CircRNAs: Novel cancer drivers, molecular mechanisms, and clinical opportunities. Biochem Pharmacol. 200:1150382022. View Article : Google Scholar : PubMed/NCBI

54 

Amicone L, Marchetti A and Cicchini C: Exosome-associated circRNAs as key regulators of EMT in cancer. Cells. 11:17162022. View Article : Google Scholar : PubMed/NCBI

55 

Guo X, Chang X, Wang Z, Jiang C and Wei Z: CircRNAs: Promising factors for regulating angiogenesis in colorectal cancer. Clin Transl Oncol. 24:1673–1681. 2022. View Article : Google Scholar : PubMed/NCBI

56 

Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Zhang LX, Gao J, Long X, Zhang PF, Yang X, Zhu SQ, Pei X, Qiu BQ, Chen SW, Lu F, et al: The circular RNA circHMGB2 drives immunosuppression and anti-PD-1 resistance in lung adenocarcinomas and squamous cell carcinomas via the miR-181a-5p/CARM1 axis. Mol Cancer. 21:1102022. View Article : Google Scholar : PubMed/NCBI

59 

Hollensen AK, Thomsen HS, Lloret-Llinares M, Kamstrup AB, Jensen JM, Luckmann M, Birkmose N, Palmfeldt J, Jensen TH, Hansen TB and Damgaard CK: circZNF827 nucleates a transcription inhibitory complex to balance neuronal differentiation. Elife. 9:e584782020. View Article : Google Scholar : PubMed/NCBI

60 

Misir S, Wu N and Yang BB: Specific expression and functions of circular RNAs. Cell Death Differ. 29:481–491. 2022. View Article : Google Scholar : PubMed/NCBI

61 

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI

62 

Wang X, Ma R, Zhang X, Cui L, Ding Y, Shi W, Guo C and Shi Y: Crosstalk between N6-methyladenosine modification and circular RNAs: Current understanding and future directions. Mol Cancer. 20:1212021. View Article : Google Scholar : PubMed/NCBI

63 

Lin H, Wang Y, Wang P, Long F and Wang T: Mutual regulation between N6-methyladenosine (m6A) modification and circular RNAs in cancer: Impacts on therapeutic resistance. Mol Cancer. 21:1482022. View Article : Google Scholar : PubMed/NCBI

64 

Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6)A promotes cap-independent translation. Cell. 163:999–1010. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Li R, Jiang J, Shi H, Qian H, Zhang X and Xu W: CircRNA: A rising star in gastric cancer. Cell Mol Life Sci. 77:1661–1680. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Duan JL, Chen W, Xie JJ, Zhang ML, Nie RC, Liang H, Mei J, Han K, Xiang ZC, Wang FW, et al: A novel peptide encoded by N6-methyladenosine modified circMAP3K4 prevents apoptosis in hepatocellular carcinoma. Mol Cancer. 21:932022. View Article : Google Scholar : PubMed/NCBI

68 

Lei M, Zheng G, Ning Q, Zheng J and Dong D: Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI

69 

Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, et al: Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 509:91–95. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Yu XM, Li SJ, Yao ZT, Xu JJ, Zheng CC, Liu ZC, Ding PB, Jiang ZL, Wei X, Zhao LP, et al: N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene. 42:1101–1116. 2023. View Article : Google Scholar : PubMed/NCBI

71 

Huang X, Liu C, Li H, Dai T, Luo G, Zhang C, Li T and Lü M: Hypoxia-responsive lncRNA G077640 promotes ESCC tumorigenesis via the H2AX-HIF1α-glycolysis axis. Carcinogenesis. 44:383–393. 2023. View Article : Google Scholar : PubMed/NCBI

72 

Xiao Z, Feng X, Zhou Y, Li P, Luo J, Zhang W, Zhou J, Zhao J, Wang D, Wang Y, et al: Exosomal miR-10527-5p inhibits migration, invasion, lymphangiogenesis and lymphatic metastasis by affecting Wnt/β-catenin signaling via Rab10 in esophageal squamous cell carcinoma. Int J Nanomedicine. 18:95–114. 2023. View Article : Google Scholar : PubMed/NCBI

73 

Cui Y, Zhang C, Ma S, Li Z, Wang W, Li Y, Ma Y, Fang J, Wang Y, Cao W and Guan F: RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 40:2942021. View Article : Google Scholar : PubMed/NCBI

74 

Ren K, Li Y, Lu H, Li Z, Li Z, Wu K, Li Z and Han X: Long noncoding RNA HOTAIR controls cell cycle by functioning as a competing endogenous RNA in esophageal squamous cell carcinoma. Transl Oncol. 9:489–497. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Xu T, Hu Y, Zhao Y, Qi Y, Zhang S and Li P: Hsa_circ_0046534 accelerates esophageal squamous cell carcinoma proliferation and metastasis via regulating MMP2 expression by sponging miR-339-5p. Cell Signal. 112:1109062023. View Article : Google Scholar : PubMed/NCBI

76 

Xian D, Yang S, Liu Y, Liu Q, Huang D and Wu Y: MicroRNA-196a-5p facilitates the onset and progression via targeting ITM2B in esophageal squamous cell carcinoma. Pathol Int. 74:129–138. 2024. View Article : Google Scholar : PubMed/NCBI

77 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Zhang Y, Dong X, Guo X, Li C, Fan Y, Liu P, Yuan D, Ma X, Wang J, Zheng J, et al: LncRNA-BC069792 suppresses tumor progression by targeting KCNQ4 in breast cancer. Mol Cancer. 22:412023. View Article : Google Scholar : PubMed/NCBI

79 

Liu QL, Zhang Z, Wei X and Zhou ZG: Noncoding RNAs in tumor metastasis: Molecular and clinical perspectives. Cell Mol Life Sci. 78:6823–6850. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Enkhnaran B, Zhang GC, Zhang NP, Liu HN, Wu H, Xuan S, Yu XN, Song GQ, Shen XZ, Zhu JM, et al: microRNA-106b-5p promotes cell growth and sensitizes chemosensitivity to sorafenib by targeting the BTG3/Bcl-xL/p27 signaling pathway in hepatocellular carcinoma. J Oncol. 2022:19715592022. View Article : Google Scholar : PubMed/NCBI

81 

Wang H, Peng D, Gan M, He Z and Kuang Y: CPEB3 overexpression caused by miR-106b-5p inhibition inhibits esophageal carcinoma in-vitro progression and metastasis. Anticancer Drugs. 33:335–351. 2022. View Article : Google Scholar : PubMed/NCBI

82 

Yang F, Sun Z, Wang D and Du T: MiR-106b-5p regulates esophageal squamous cell carcinoma progression by binding to HPGD. BMC Cancer. 22:3082022. View Article : Google Scholar : PubMed/NCBI

83 

Deng W, Fan W, Li P, Yao J, Qi J, Chi H, Ji G and Zhao J: microRNA-497-mediated Smurf2/YY1/HIF2α axis in tumor growth and metastasis of esophageal squamous cell carcinoma. J Biochem Mol Toxicol. 36:e231822022. View Article : Google Scholar : PubMed/NCBI

84 

He Z, Chen J, Chen X, Wang H, Tang L and Han C: microRNA-377 acts as a suppressor in esophageal squamous cell carcinoma through CBX3-dependent P53/P21 pathway. J Cell Physiol. 236:107–120. 2021. View Article : Google Scholar : PubMed/NCBI

85 

Ren L, Fang X, Shrestha SM, Ji Q, Ye H, Liang Y, Liu Y, Feng Y, Dong J and Shi R: LncRNA SNHG16 promotes development of oesophageal squamous cell carcinoma by interacting with EIF4A3 and modulating RhoU mRNA stability. Cell Mol Biol Lett. 27:892022. View Article : Google Scholar : PubMed/NCBI

86 

Yang X, Zeng T, Liu Z, He W, Hu M, Tang T, Chen L and Xing L: Long noncoding RNA GK-IT1 promotes esophageal squamous cell carcinoma by regulating MAPK1 phosphorylation. Cancer Med. 11:4555–4574. 2022. View Article : Google Scholar : PubMed/NCBI

87 

Xue ST, Zheng B, Cao SQ, Ding JC, Hu GS, Liu W and Chen C: Long non-coding RNA LINC00680 functions as a ceRNA to promote esophageal squamous cell carcinoma progression through the miR-423-5p/PAK6 axis. Mol Cancer. 21:692022. View Article : Google Scholar : PubMed/NCBI

88 

Xiong G, Diao D, Lu D, Liu X, Liu Z, Mai S, Feng S, Dong X and Cai K: Circular RNA circNELL2 acts as the sponge of miR-127-5p to promote esophageal squamous cell carcinoma progression. Onco Targets Ther. 13:9245–9255. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Li Z, Qin X, Bian W, Li Y, Shan B, Yao Z and Li S: Exosomal lncRNA ZFAS1 regulates esophageal squamous cell carcinoma cell proliferation, invasion, migration and apoptosis via microRNA-124/STAT3 axis. J Exp Clin Cancer Res. 38:4772019. View Article : Google Scholar : PubMed/NCBI

90 

Tian Z, Li Z, Zhu Y, Meng L, Liu F, Sang M and Wang G: Hypermethylation-mediated inactivation of miR-124 predicts poor prognosis and promotes tumor growth at least partially through targeting EZH2/H3K27me3 in ESCC. Clin Exp Metastasis. 36:381–391. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Zeng B, Liu Z, Zhu H, Zhang X, Yang W, Li X and Cheng C: CircRNA_2646 functions as a ceRNA to promote progression of esophageal squamous cell carcinoma via inhibiting miR-124/PLP2 signaling pathway. Cell Death Discov. 7:992021. View Article : Google Scholar : PubMed/NCBI

92 

Yao D, Lin S, Chen S and Wang Z: circHIPK3 regulates cell proliferation and migration by sponging microRNA-124 and regulating serine/threonine kinase 3 expression in esophageal squamous cell carcinoma. Bioengineered. 13:9767–9780. 2022. View Article : Google Scholar : PubMed/NCBI

93 

Cheng J, Ma H, Yan M, Zhang Z and Xing W: Circ_0007624 suppresses the development of esophageal squamous cell carcinoma via targeting miR-224-5p/CPEB3 to inactivate the EGFR/PI3K/AKT signaling. Cell Signal. 99:1104482022. View Article : Google Scholar : PubMed/NCBI

94 

Chen Z, Yao N, Gu H, Song Y, Ye Z, Li L, Lu P and Shao Q: Circular RNA_LARP4 sponges miR-1323 and hampers progression of esophageal squamous cell carcinoma through modulating PTEN/PI3K/AKT pathway. Dig Dis Sci. 65:2272–2283. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Jiang Q, Wang H, Yuan D, Qian X, Ma X, Yan M and Xing W: Circular_0086414 induces SPARC like 1 (SPARCL1) production to inhibit esophageal cancer cell proliferation, invasion and glycolysis and induce cell apoptosis by sponging miR-1290. Bioengineered. 13:12099–12114. 2022. View Article : Google Scholar : PubMed/NCBI

96 

Zheng S, Liu B and Guan X: The role of tumor microenvironment in invasion and metastasis of esophageal squamous cell carcinoma. Front Oncol. 12:9112852022. View Article : Google Scholar : PubMed/NCBI

97 

Wang X, Han J, Liu Y, Hu J, Li M, Chen X and Xu L: miR-17-5p and miR-4443 promote esophageal squamous cell carcinoma development by targeting TIMP2. Front Oncol. 11:6058942021. View Article : Google Scholar : PubMed/NCBI

98 

Liang Y, Duan L, Lu J and Xia J: Engineering exosomes for targeted drug delivery. Theranostics. 11:3183–3195. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, Sabet S, Khoshbakht MA, Hashemi M, Hushmandi K, et al: Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol. 15:832022. View Article : Google Scholar : PubMed/NCBI

100 

Liu T, Li P, Li J, Qi Q, Sun Z, Shi S, Xie Y, Liu S, Wang Y, Du L and Wang C: Exosomal and intracellular miR-320b promotes lymphatic metastasis in esophageal squamous cell carcinoma. Mol Ther Oncolytics. 23:163–180. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Cui D, Zhu Y, Yan D, Lee NPY, Han L, Law S, Tsao GSW and Cheung ALM: Dual inhibition of cMET and EGFR by microRNA-338-5p suppresses metastasis of esophageal squamous cell carcinoma. Carcinogenesis. 42:995–1007. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Zhao R, Shan Y, Zhou X, Zhang C, Zhao R, Zhao L and Shan B: MicroRNA-485-5p suppresses the progression of esophageal squamous cell carcinoma by targeting flotillin-1 and inhibits the epithelial-mesenchymal transition. Oncol Rep. 45:932021. View Article : Google Scholar : PubMed/NCBI

103 

Cheng W, Yang F and Ma Y: lncRNA TPT1-AS1 promotes cell migration and invasion in esophageal squamous-cell carcinomas by regulating the miR-26a/HMGA1 axis. Open Med (Wars). 18:202205332023. View Article : Google Scholar : PubMed/NCBI

104 

Yang R, Wan J, Ma L, Zhou F, Yang Z, Li Z, Zhang M and Ming L: TMEM44-AS1 promotes esophageal squamous cell carcinoma progression by regulating the IGF2BP2-GPX4 axis in modulating ferroptosis. Cell Death Discov. 9:4312023. View Article : Google Scholar : PubMed/NCBI

105 

Wang J, Huang TJ, Mei Y, Luo FF, Xie DH, Peng LX, Liu BQ, Fan ML, Zhang JB, Zheng ST, et al: Novel long noncoding RNA LINC02820 augments TNF signaling pathway to remodel cytoskeleton and potentiate metastasis in esophageal squamous cell carcinoma. Cancer Gene Ther. 30:375–387. 2023. View Article : Google Scholar : PubMed/NCBI

106 

Li H, Lin PH, Gupta P, Li X, Zhao SL, Zhou X, Li Z, Wei S, Xu L, Han R, et al: MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Mol Cancer. 20:1182021. View Article : Google Scholar : PubMed/NCBI

107 

Zhang Y, Yue C, Krichevsky AM and Garkavtsev I: Repression of the stress granule protein G3BP2 inhibits immune checkpoint molecule PD-L1. Mol Oncol. Feb 1–2021.(Epub ahead of print).

108 

Zheng Y, Wu J, Deng R, Lin C, Huang Y, Yang X, Wang C, Yang M, He Y, Lu J, et al: G3BP2 regulated by the lncRNA LINC01554 facilitates esophageal squamous cell carcinoma metastasis through stabilizing HDGF transcript. Oncogene. 41:515–526. 2022. View Article : Google Scholar : PubMed/NCBI

109 

Zhang H, Wang Y, Zhang W, Wu Q, Fan J and Zhan Q: BAALC-AS1/G3BP2/c-Myc feedback loop promotes cell proliferation in esophageal squamous cell carcinoma. Cancer Commun (Lond). 41:240–257. 2021. View Article : Google Scholar : PubMed/NCBI

110 

Wu K, Wang Z, Huang Y, Yao L, Kang N, Ge W, Zhang R and He W: LncRNA PTPRG-AS1 facilitates glycolysis and stemness properties of esophageal squamous cell carcinoma cells through miR-599/PDK1 axis. J Gastroenterol Hepatol. 37:507–517. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Shi Y, Fang N, Li Y, Guo Z, Jiang W, He Y, Ma Z and Chen Y: Circular RNA LPAR3 sponges microRNA-198 to facilitate esophageal cancer migration, invasion, and metastasis. Cancer Sci. 111:2824–2836. 2020. View Article : Google Scholar : PubMed/NCBI

112 

Xu Z, Tie X, Li N, Yi Z, Shen F and Zhang Y: Circular RNA hsa_circ_0000654 promotes esophageal squamous cell carcinoma progression by regulating the miR-149-5p/IL-6/STAT3 pathway. IUBMB Life. 72:426–439. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Wang J, Wang Q, Gong Y, Hu Q, Zhang H, Ke S and Chen Y: Knockdown of circRNA circ_0087378 represses the tumorigenesis and progression of esophageal squamous cell carcinoma through modulating the miR-140-3p/E2F3 axis. Front Oncol. 10:6072312021. View Article : Google Scholar : PubMed/NCBI

114 

Brown MS, Muller KE and Pattabiraman DR: Quantifying the epithelial-to-mesenchymal transition (EMT) from bench to bedside. Cancers (Basel). 14:11382022. View Article : Google Scholar : PubMed/NCBI

115 

Huang Y, Hong W and Wei X: The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 15:1292022. View Article : Google Scholar : PubMed/NCBI

116 

Zhu C, Bi W, Li H and Wang W: CircLONP2 accelerates esophageal squamous cell carcinoma progression via direct MiR-27b-3p-ZEB1 axis. Front Oncol. 12:8228392022. View Article : Google Scholar : PubMed/NCBI

117 

Chen X, Sun H, Zhao Y, Zhang J, Xiong G, Cui Y and Lei C: CircRNA circ_0004370 promotes cell proliferation, migration, and invasion and inhibits cell apoptosis of esophageal cancer via miR-1301-3p/COL1A1 axis. Open Med (Wars). 16:104–116. 2021. View Article : Google Scholar : PubMed/NCBI

118 

Xu P, Wang L, Liu Q, Gao P, Hu F, Xie X, Jiang L, Bi R, Ding F, Yang Q and Xiao H: The abnormal expression of circ-ARAP2 promotes ESCC progression through regulating miR-761/FOXM1 axis-mediated stemness and the endothelial-mesenchymal transition. J Transl Med. 20:3182022. View Article : Google Scholar : PubMed/NCBI

119 

Song B, Liu X, Dong H and Roy R: miR-140-3P induces chemotherapy resistance in esophageal carcinoma by targeting the NFYA-MDR1 axis. Appl Biochem Biotechnol. 195:973–991. 2023. View Article : Google Scholar : PubMed/NCBI

120 

Zhao F, Tian H, Wang Y, Zhang J, Liu F and Fu L: LINC01004-SPI1 axis-activated SIGLEC9 in tumor-associated macrophages induces radioresistance and the formation of immunosuppressive tumor microenvironment in esophageal squamous cell carcinoma. Cancer Immunol Immunother. 72:1835–1851. 2023. View Article : Google Scholar : PubMed/NCBI

121 

Wu J, Liu Y, Huang X, Cheng Y, Qian Z, Ni X, Chen S, Lin M and Luo J: LncRNA DGCR5 silencing enhances the radio-sensitivity of human esophageal squamous cell carcinoma via negatively regulating the Warburg effect. Radiat Res. 199:264–272. 2023. View Article : Google Scholar : PubMed/NCBI

122 

Zuo J, Zhao M, Fan Z, Liu B, Wang Y, Li Y, Lv P, Xing L, Zhang X and Shen H: MicroRNA-153-3p regulates cell proliferation and cisplatin resistance via Nrf-2 in esophageal squamous cell carcinoma. Thorac Cancer. 11:738–747. 2020. View Article : Google Scholar : PubMed/NCBI

123 

Qiao Y, Zhang C, Li A, Wang D, Luo Z, Ping Y, Zhou B, Liu S, Li H, Yue D, et al: IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene. 37:873–883. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Che Y, Wang J, Li Y, Lu Z, Huang J, Sun S, Mao S, Lei Y, Zang R, Sun N and He L: Cisplatin-activated PAI-1 secretion in the cancer-associated fibroblasts with paracrine effects promoting esophageal squamous cell carcinoma progression and causing chemoresistance. Cell Death Dis. 9:7592018. View Article : Google Scholar : PubMed/NCBI

125 

Zhuang J, Shen L, Li M, Sun J, Hao J, Li J, Zhu Z, Ge S, Zhang D, Guo H, et al: Cancer-associated fibroblast-derived miR-146a-5p generates a niche that promotes bladder cancer stemness and chemoresistance. Cancer Res. 83:1611–1627. 2023. View Article : Google Scholar : PubMed/NCBI

126 

Kang SH, Oh SY, Lee KY, Lee HJ, Kim MS, Kwon TG, Kim JW, Lee ST, Choi SY and Hong SH: Differential effect of cancer-associated fibroblast-derived extracellular vesicles on cisplatin resistance in oral squamous cell carcinoma via miR-876-3p. Theranostics. 14:460–479. 2024. View Article : Google Scholar : PubMed/NCBI

127 

Zhao Q, Huang L, Qin G, Qiao Y, Ren F, Shen C, Wang S, Liu S, Lian J, Wang D, et al: Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 518:35–48. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Guo D, Jin J, Liu J, Dong X, Li D and He Y: MicroRNA-29b regulates the radiosensitivity of esophageal squamous cell carcinoma by regulating the BTG2-mediated cell cycle. Strahlenther Onkol. 197:829–835. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Wu Q, Zhang H, Yang D, Min Q, Wang Y, Zhang W and Zhan Q: The m6A-induced lncRNA CASC8 promotes proliferation and chemoresistance via upregulation of hnRNPL in esophageal squamous cell carcinoma. Int J Biol Sci. 18:4824–4836. 2022. View Article : Google Scholar : PubMed/NCBI

130 

Jia Y, Tian C, Wang H, Yu F, Lv W, Duan Y, Cheng Z, Wang X, Wang Y, Liu T, et al: Long non-coding RNA NORAD/miR-224-3p/MTDH axis contributes to CDDP resistance of esophageal squamous cell carcinoma by promoting nuclear accumulation of β-catenin. Mol Cancer. 20:1622021. View Article : Google Scholar : PubMed/NCBI

131 

Tong Y, Yang L, Yu C, Zhu W, Zhou X, Xiong Y, Wang W, Ji F, He D and Cao X: Tumor-secreted exosomal lncRNA POU3F3 promotes cisplatin resistance in ESCC by inducing fibroblast differentiation into CAFs. Mol Ther Oncolytics. 18:1–13. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Wang P, Yang Z, Ye T, Shao F, Li J, Sun N and He J: lncTUG1/miR-144-3p affect the radiosensitivity of esophageal squamous cell carcinoma by competitively regulating c-MET. J Exp Clin Cancer Res. 39:72020. View Article : Google Scholar : PubMed/NCBI

133 

Liu Z, Lu X, Wen L, You C, Jin X and Liu J: Hsa_circ_0014879 regulates the radiosensitivity of esophageal squamous cell carcinoma through miR-519-3p/CDC25A axis. Anticancer Drugs. 33:e349–e361. 2022. View Article : Google Scholar : PubMed/NCBI

134 

Cheng J, Zhang R, Yan M and Li Y: Circular RNA hsa_circ_0000277 promotes tumor progression and DDP resistance in esophageal squamous cell carcinoma. BMC Cancer. 22:2382022. View Article : Google Scholar : PubMed/NCBI

135 

Zhou S, Guo Z, Lv X and Zhang X: CircGOT1 promotes cell proliferation, mobility, and glycolysis-mediated cisplatin resistance via inhibiting its host gene GOT1 in esophageal squamous cell cancer. Cell Cycle. 21:247–260. 2022. View Article : Google Scholar : PubMed/NCBI

136 

Liu Z, Gu S, Wu K, Li L, Dong C, Wang W and Zhou Y: CircRNA-DOPEY2 enhances the chemosensitivity of esophageal cancer cells by inhibiting CPEB4-mediated Mcl-1 translation. J Exp Clin Cancer Res. 40:3612021. View Article : Google Scholar : PubMed/NCBI

137 

Zhu H, Du F and Cao C: Restoration of circPSMC3 sensitizes gefitinib-resistant esophageal squamous cell carcinoma cells to gefitinib by regulating miR-10a-5p/PTEN axis. Cell Biol Int. 45:107–116. 2021. View Article : Google Scholar : PubMed/NCBI

138 

Tang Q, Zhao S, Zhou N, He J, Zu L, Liu T, Song Z, Chen J, Peng L and Xu S: PD-1/PD-L1 immune checkpoint inhibitors in neoadjuvant therapy for solid tumors (review). Int J Oncol. 62:492023. View Article : Google Scholar : PubMed/NCBI

139 

Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu K: Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI

140 

Jiang W, Pan S, Chen X, Wang ZW and Zhu X: The role of lncRNAs and circRNAs in the PD-1/PD-L1 pathway in cancer immunotherapy. Mol Cancer. 20:1162021. View Article : Google Scholar : PubMed/NCBI

141 

Fang Z, Jiang C and Li S: The potential regulatory roles of circular RNAs in tumor immunology and immunotherapy. Front Immunol. 11:6175832021. View Article : Google Scholar : PubMed/NCBI

142 

Gao C, Xu YJ, Qi L, Bao YF, Zhang L and Zheng L: CircRNA VIM silence synergizes with sevoflurane to inhibit immune escape and multiple oncogenic activities of esophageal cancer by simultaneously regulating miR-124/PD-L1 axis. Cell Biol Toxicol. 38:825–845. 2022. View Article : Google Scholar : PubMed/NCBI

143 

Jin W, Wang L, Cheng S and Lv H: Prognostic value of microRNA-378 in esophageal cancer and its regulatory effect on tumor progression. Exp Ther Med. 22:7042021. View Article : Google Scholar : PubMed/NCBI

144 

Kim S, Kim GH, Park SJ, Kwon CH, I H, Lee MW and Lee BE: Exosomal MicroRNA analyses in esophageal squamous cell carcinoma cell lines. J Clin Med. 11:44262022. View Article : Google Scholar : PubMed/NCBI

145 

Wen J, Wang G, Xie X, Lin G, Yang H, Luo K, Liu Q, Ling Y, Xie X, Lin P, et al: Prognostic value of a four-miRNA signature in patients with lymph node positive locoregional esophageal squamous cell carcinoma undergoing complete surgical resection. Ann Surg. 273:523–531. 2021. View Article : Google Scholar : PubMed/NCBI

146 

Okuda Y, Shimura T, Iwasaki H, Fukusada S, Nishigaki R, Kitagawa M, Katano T, Okamoto Y, Yamada T, Horike SI and Kataoka H: Urinary microRNA biomarkers for detecting the presence of esophageal cancer. Sci Rep. 11:85082021. View Article : Google Scholar : PubMed/NCBI

147 

Zhang J, Ling X, Fang C and Ma J: Identification and validation of an eight-lncRNA signature that predicts prognosis in patients with esophageal squamous cell carcinoma. Cell Mol Biol Lett. 27:392022. View Article : Google Scholar : PubMed/NCBI

148 

Cao S, Wang X, Liu X, Li J, Duan L, Gao Z, Lun S, Zhu Y, Yang H, Zhang H and Zhou F: Integrative analysis of angiogenesis-related long non-coding RNA and identification of a six-DEARlncRNA signature associated with prognosis and therapeutic response in esophageal squamous cell carcinoma. Cancers (Basel). 14:41952022. View Article : Google Scholar : PubMed/NCBI

149 

Liu Y, Wang L, Liu H, Li C and He J: The prognostic significance of metabolic syndrome and a related Six-lncRNA signature in esophageal squamous cell carcinoma. Front Oncol. 10:612020. View Article : Google Scholar : PubMed/NCBI

150 

Xie K, Zheng C, Gu W, Jiang Z, Luo C, Luo J, Diao Y, Wang G, Cong Z, Yao X, et al: A RASSF8-AS1 based exosomal lncRNAs panel used for diagnostic and prognostic biomarkers for esophageal squamous cell carcinoma. Thorac Cancer. 13:3341–3352. 2022. View Article : Google Scholar : PubMed/NCBI

151 

Huang E, Fu J, Yu Q, Xie P, Yang Z, Ji H, Wang L, Luo G, Zhang Y and Li K: CircRNA hsa_circ_0004771 promotes esophageal squamous cell cancer progression via miR-339-5p/CDC25A axis. Epigenomics. 12:587–603. 2020. View Article : Google Scholar : PubMed/NCBI

152 

Wang W, Zhu D, Zhao Z, Sun M, Wang F, Li W, Zhang J and Jiang G: RNA sequencing reveals the expression profiles of circRNA and identifies a four-circRNA signature acts as a prognostic marker in esophageal squamous cell carcinoma. Cancer Cell Int. 21:1512021. View Article : Google Scholar : PubMed/NCBI

153 

Hu X, Wu D, He X, Zhao H, He Z, Lin J, Wang K, Wang W, Pan Z, Lin H and Wang M: circGSK3β promotes metastasis in esophageal squamous cell carcinoma by augmenting β-catenin signaling. Mol Cancer. 18:1602019. View Article : Google Scholar : PubMed/NCBI

154 

Bu J, Gu L, Liu X, Nan X, Zhang X, Meng L, Zheng Y, Liu F, Li J, Li Z, et al: The circRNA circADAMTS6 promotes progression of ESCC and correlates with prognosis. Sci Rep. 12:137572022. View Article : Google Scholar : PubMed/NCBI

155 

Wang Q, Liu H, Liu Z, Yang L, Zhou J, Cao X and Sun H: Circ-SLC7A5, a potential prognostic circulating biomarker for detection of ESCC. Cancer Genet. 240:33–39. 2020. View Article : Google Scholar : PubMed/NCBI

156 

Zhao Q, Zhu X, Ke JM, Su XY, Yi J, Wu DL, Lin J and Deng ZQ: Circular RNA BMI1 serves as a potential target for diagnosis and treatment in esophageal cancer. Technol Cancer Res Treat. 20:153303382110330752021. View Article : Google Scholar : PubMed/NCBI

157 

Tang Y, Gao Z and Liu R: Identification and function of circular RNA hsa_circ_0071106: A novel biomarker for differentiation degree of esophageal squamous cell carcinoma. Pathol Res Pract. 233:1538752022. View Article : Google Scholar : PubMed/NCBI

158 

Chen B, Dragomir MP, Yang C, Li Q, Horst D and Calin GA: Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther. 7:1212022. View Article : Google Scholar : PubMed/NCBI

159 

Veneziano D, Di Bella S, Nigita G, Laganà A, Ferro A and Croce CM: Noncoding RNA: Current deep sequencing data analysis approaches and challenges. Hum Mutat. 37:1283–1298. 2016. View Article : Google Scholar : PubMed/NCBI

160 

Anastasiadou E, Faggioni A, Trivedi P and Slack F: The nefarious nexus of noncoding RNAs in cancer. Int J Mol Sci. 19:20722018. View Article : Google Scholar : PubMed/NCBI

161 

Nemeth K, Bayraktar R, Ferracin M and Calin GA: Non-coding RNAs in disease: From mechanisms to therapeutics. Nat Rev Genet. 25:211–232. 2024. View Article : Google Scholar : PubMed/NCBI

162 

Sugihara H, Ishimoto T, Miyake K, Izumi D, Baba Y, Yoshida N, Watanabe M and Baba H: Noncoding RNA expression aberration is associated with cancer progression and is a potential biomarker in esophageal squamous cell carcinoma. Int J Mol Sci. 16:27824–27834. 2015. View Article : Google Scholar : PubMed/NCBI

163 

Li R, Chai L, Lei L, Guo R and Wen X: MiR-671-5p sponging activity of circMMP1 promotes esophageal squamous cancer progression. Thorac Cancer. 14:2924–2933. 2023. View Article : Google Scholar : PubMed/NCBI

164 

Nan Y, Luo Q, Wu X, Chang W, Zhao P, Liu S and Liu Z: HCP5 prevents ubiquitination-mediated UTP3 degradation to inhibit apoptosis by activating c-Myc transcriptional activity. Mol Ther. 31:552–568. 2023. View Article : Google Scholar : PubMed/NCBI

165 

Qiao G, Zhang W and Dong K: Regulation of ferroptosis by noncoding RNAs: A novel promise treatment in esophageal squamous cell carcinoma. Mol Cell Biochem. 477:2193–2202. 2022. View Article : Google Scholar : PubMed/NCBI

166 

Song W and Zou SB: Prognostic role of lncRNA HOTAIR in esophageal squamous cell carcinoma. Clin Chim Acta. 463:169–173. 2016. View Article : Google Scholar : PubMed/NCBI

167 

Sang L, Yang L, Ge Q, Xie S, Zhou T and Lin A: Subcellular distribution, localization, and function of noncoding RNAs. Wiley Interdiscip Rev RNA. 13:e17292022. View Article : Google Scholar : PubMed/NCBI

168 

Shi X, Liu X, Pan S, Ke Y, Li Y, Guo W, Wang Y, Ruan Q, Zhang X and Ma H: A novel autophagy-related long non-coding RNA signature to predict prognosis and therapeutic response in esophageal squamous cell carcinoma. Int J Gen Med. 14:8325–8339. 2021. View Article : Google Scholar : PubMed/NCBI

169 

Zhu T, Ma Z, Wang H, Wei D, Wang B, Zhang C, Fu L, Li Z and Yu G: Immune-related long non-coding RNA signature and clinical nomogram to evaluate survival of patients suffering esophageal squamous cell carcinoma. Front Cell Dev Biol. 9:6419602021. View Article : Google Scholar : PubMed/NCBI

170 

Liao G, Tang J and Bai J: Early development of esophageal squamous cell cancer: Stem cells, cellular origins and early clone evolution. Cancer Lett. 555:2160472023. View Article : Google Scholar : PubMed/NCBI

171 

Hu XY, Wang R, Jin J, Liu XJ, Cui AL, Sun LQ, Li YP, Li Y, Wang YC, Zhen YS, et al: An EGFR-targeting antibody-drug conjugate LR004-VC-MMAE: potential in esophageal squamous cell carcinoma and other malignancies. Mol Oncol. 13:246–263. 2019. View Article : Google Scholar : PubMed/NCBI

172 

Mimura K, Kono K, Maruyama T, Watanabe M, Izawa S, Shiba S, Mizukami Y, Kawaguchi Y, Inoue M, Kono T, et al: Lapatinib inhibits receptor phosphorylation and cell growth and enhances antibody-dependent cellular cytotoxicity of EGFR- and HER2-overexpressing esophageal cancer cell lines. Int J Cancer. 129:2408–2416. 2011. View Article : Google Scholar : PubMed/NCBI

173 

Meng L, Wu H, Wu J, Ding Pa, He J, Sang M and Liu L: Mechanisms of immune checkpoint inhibitors: Insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis. 15:32024. View Article : Google Scholar : PubMed/NCBI

174 

Ding L, Lu S and Li Y: Regulation of PD-1/PD-L1 pathway in cancer by noncoding RNAs. Pathol Oncol Res. 26:651–663. 2020. View Article : Google Scholar : PubMed/NCBI

175 

Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, Hossain MT, Zhu X, Du K, Hu F, et al: A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer. 20:1582021. View Article : Google Scholar : PubMed/NCBI

176 

Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, Wu C, Zhou Q, Hu W, Wu C and Jiang J: A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 18:472019. View Article : Google Scholar : PubMed/NCBI

177 

Imazeki H and Kato K: Development of chemotherapeutics for unresectable advanced esophageal cancer. Expert Rev Anticancer Ther. 20:1083–1092. 2020. View Article : Google Scholar : PubMed/NCBI

178 

Fukuda T, Baba H, Okumura T, Kanda M, Akashi T, Tanaka H, Miwa T, Watanabe T, Hirano K, Sekine S, et al: miR-877-3p as a potential tumour suppressor of oesophageal squamous cell carcinoma. Anticancer Res. 43:35–43. 2023. View Article : Google Scholar : PubMed/NCBI

179 

Yu J, Chen S, Niu Y, Liu M, Zhang J, Yang Z, Gao P, Wang W, Han X and Sun G: Functional significance and therapeutic potential of miRNA-20b-5p in esophageal squamous cell carcinoma. Mol Ther Nucleic Acids. 21:315–331. 2020. View Article : Google Scholar : PubMed/NCBI

180 

Xing Y, Zha WJ, Li XM, Li H, Gao F, Ye T, Du WQ and Liu YC: Circular RNA circ-Foxo3 inhibits esophageal squamous cell cancer progression via the miR-23a/PTEN axis. J Cell Biochem. 121:2595–2605. 2020. View Article : Google Scholar : PubMed/NCBI

181 

Jin Y, Meng Q, Zhang B, Xie C, Chen X, Tian B, Wang J, Shih TC, Zhang Y, Cao J, et al: Cancer-associated fibroblasts-derived exosomal miR-3656 promotes the development and progression of esophageal squamous cell carcinoma via the ACAP2/PI3K-AKT signaling pathway. Int J Biol Sci. 17:3689–3701. 2021. View Article : Google Scholar : PubMed/NCBI

182 

Shou Y, Wang X, Liang Y, Liu X and Chen K: Exosomes-derived miR-154-5p attenuates esophageal squamous cell carcinoma progression and angiogenesis by targeting kinesin family member 14. Bioengineered. 13:4610–4620. 2022. View Article : Google Scholar : PubMed/NCBI

183 

Yang J, Zhang Q, Zhao P, Qiao T, Cao Z, Gao F, Liu M and Wu S: DNA methyltransferase 3 beta regulates promoter methylation of microRNA-149 to augment esophageal squamous cell carcinoma development through the ring finger protein 2/Wnt/β-catenin axis. Bioengineered. 13:4010–4027. 2022. View Article : Google Scholar : PubMed/NCBI

184 

Yan J, Shi L, Lin S and Li Y: MicroRNA-624-mediated ARRDC3/YAP/HIF1alpha axis enhances esophageal squamous cell carcinoma cell resistance to cisplatin and paclitaxel. Bioengineered. 12:5334–5347. 2021. View Article : Google Scholar : PubMed/NCBI

185 

Suyal G, Pandey P, Saraya A and Sharma R: Tumour suppressor role of microRNA-335-5p in esophageal squamous cell carcinoma by targeting TTK (Mps1). Exp Mol Pathol. 124:1047382022. View Article : Google Scholar : PubMed/NCBI

186 

Zhang L, Yu S, Yin X, Tu M, Cai L, Zhang Y, Yu L, Zhang S, Pan X and Huang Y: MiR-942-5p inhibits tumor migration and invasion through targeting CST1 in esophageal squamous cell carcinoma. PLoS One. 18:e02770062023. View Article : Google Scholar : PubMed/NCBI

187 

Wang J, Li J, Cheng D, Zhang K, Liu W, Xue Q, Du R, Zhou L, Yeung YT, Bai R, et al: miR-132-3p promotes heat stimulation-induced esophageal squamous cell carcinoma tumorigenesis by targeting KCNK2. Mol Carcinog. 62:583–597. 2023. View Article : Google Scholar : PubMed/NCBI

188 

Xu J, Wang J, Liu L, Chen L, Hu S and Liu F: MicroRNA-196b is related to the overall survival of patients with esophageal squamous cell carcinoma and facilitates tumor progression by regulating SOCS2 (Suppressor Of Cytokine Signaling 2). Bioengineered. 12:7737–7746. 2021. View Article : Google Scholar : PubMed/NCBI

189 

Xue J, Xiao P, Yu X and Zhang X: A positive feedback loop between AlkB homolog 5 and miR-193a-3p promotes growth and metastasis in esophageal squamous cell carcinoma. Hum Cell. 34:502–514. 2021. View Article : Google Scholar : PubMed/NCBI

190 

Li P, Liu X, Xing W, Qiu H, Li R, Liu S and Sun H: Exosome-derived miR-200a promotes esophageal cancer cell proliferation and migration via the mediating Keap1 expression. Mol Cell Biochem. 477:1295–1308. 2022. View Article : Google Scholar : PubMed/NCBI

191 

Luo XJ, He MM, Liu J, Zheng JB, Wu QN, Chen YX, Meng Q, Luo KJ, Chen DL, Xu RH, et al: LncRNA TMPO-AS1 promotes esophageal squamous cell carcinoma progression by forming biomolecular condensates with FUS and p300 to regulate TMPO transcription. Exp Mol Med. 54:834–847. 2022. View Article : Google Scholar : PubMed/NCBI

192 

Zhao Y, Zhang Q, Liu H, Wang N, Zhang X and Yang S: lncRNA PART1, manipulated by transcriptional factor FOXP2, suppresses proliferation and invasion in ESCC by regulating the miR-18a-5p/SOX6 signaling axis. Oncol Rep. 45:1118–1132. 2021. View Article : Google Scholar : PubMed/NCBI

193 

Tang J, Xu H, Liu Q, Zheng J, Pan C, Li Z, Wen W, Wang J, Zhu Q, Wang Z and Chen L: LncRNA LOC146880 promotes esophageal squamous cell carcinoma progression via miR-328-5p/FSCN1/MAPK axis. Aging (Albany NY). 13:14198–14218. 2021. View Article : Google Scholar : PubMed/NCBI

194 

Niu Y, Guo Y, Li Y, Shen S, Liang J, Guo W and Dong Z: LncRNA GATA2-AS1 suppresses esophageal squamous cell carcinoma progression via the mir-940/PTPN12 axis. Exp Cell Res. 416:1131302022. View Article : Google Scholar : PubMed/NCBI

195 

Chen L, Lu J, Xu T, Yan Z, Guo Y, Dong Z and Guo W: KTN1-AS1, a SOX2-mediated lncRNA, activates epithelial-mesenchymal transition process in esophageal squamous cell carcinoma. Sci Rep. 12:201862022. View Article : Google Scholar : PubMed/NCBI

196 

Dong Z, Yang L, Lu J, Guo Y, Shen S, Liang J and Guo W: Downregulation of LINC00886 facilitates epithelial-mesenchymal transition through SIRT7/ELF3/miR-144 pathway in esophageal squamous cell carcinoma. Clin Exp Metastasis. 39:661–677. 2022. View Article : Google Scholar : PubMed/NCBI

197 

Pan C, Chen G, Zhao X, Xu X and Liu J: lncRNA BBOX1-AS1 silencing inhibits esophageal squamous cell cancer progression by promoting ferroptosis via miR-513a-3p/SLC7A11 axis. Eur J Pharmacol. 934:1753172022. View Article : Google Scholar : PubMed/NCBI

198 

Zhang H, Pan E, Zhang Y, Zhao C, Liu Q, Pu Y and Yin L: LncRNA RPL34-AS1 suppresses the proliferation, migration and invasion of esophageal squamous cell carcinoma via targeting miR-575/ACAA2 axis. BMC Cancer. 22:10172022. View Article : Google Scholar : PubMed/NCBI

199 

Lu JT, Yan ZY, Xu TX, Zhao F, Liu L, Li F and Guo W: Reciprocal regulation of LINC00941 and SOX2 promotes progression of esophageal squamous cell carcinoma. Cell Death Dis. 14:722023. View Article : Google Scholar : PubMed/NCBI

200 

Fu X, Chen X, Si Y, Yao Y, Jiang Z and Chen K: Long non-coding RNA NCK1-AS1 is overexpressed in esophageal squamous cell carcinoma and predicts survival. Bioengineered. 13:8302–8310. 2022. View Article : Google Scholar : PubMed/NCBI

201 

Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du D, Wan J, Yin H, Xing Y, Li H, et al: IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis. J Exp Clin Cancer Res. 41:3472022. View Article : Google Scholar : PubMed/NCBI

202 

Song H, Tian D, Sun J, Mao X, Kong W, Xu D, Ji Y, Qiu B, Zhan M and Wang J: circFAM120B functions as a tumor suppressor in esophageal squamous cell carcinoma via the miR-661/PPM1L axis and the PKR/p38 MAPK/EMT pathway. Cell Death Dis. 13:3612022. View Article : Google Scholar : PubMed/NCBI

203 

Guan X, Guan X, Wang Y, Lan T, Cheng T, Cui Y and Xu H: Circ_0003340 downregulation mitigates esophageal squamous cell carcinoma progression by targeting miR-940/PRKAA1 axis. Thorac Cancer. 13:1164–1175. 2022. View Article : Google Scholar : PubMed/NCBI

204 

Liang W, Wang C, Wang J and Zhang M: Hsa_circ_0023984 regulates cell proliferation, migration, and invasion in esophageal squamous cancer via regulating miR-1294/PI3K/Akt/c-Myc pathway. Appl Biochem Biotechnol. 194:1–16. 2022. View Article : Google Scholar : PubMed/NCBI

205 

Qian CJ, Tong YY, Wang YC, Teng XS and Yao J: Circ_0001093 promotes glutamine metabolism and cancer progression of esophageal squamous cell carcinoma by targeting miR-579-3p/glutaminase axis. J Bioenerg Biomembr. 54:119–134. 2022. View Article : Google Scholar : PubMed/NCBI

206 

Tang R, Zhou Q, Xu Q, Lu L and Zhou Y: Circular RNA circ_0006948 promotes esophageal squamous cell carcinoma progression by regulating microRNA-3612/LASP1 axis. Dig Dis Sci. 67:2158–2172. 2022. View Article : Google Scholar : PubMed/NCBI

207 

Wang J, Li X, Duan C and Jia Y: CircFNDC3B knockdown restrains the progression of oesophageal squamous cell carcinoma through miR-214-3p/CDC25A axis. Clin Exp Pharmacol Physiol. 49:1209–1220. 2022. View Article : Google Scholar : PubMed/NCBI

208 

Sun Z, Zhang S, Zhang N, Wang J, Wang J and Liu J: Circ_0005231 promotes the progression of esophageal squamous cell carcinoma via sponging miR-383-5p and regulating KIAA0101. Thorac Cancer. 13:1751–1762. 2022. View Article : Google Scholar : PubMed/NCBI

209 

Wang YM, Zhao QW, Sun ZY, Lin HP, Xu X, Cao M, Fu YJ, Zhao XJ, Ma XM and Ye Q: Circular RNA hsa_circ_0003823 promotes the tumor progression, metastasis and apatinib resistance of esophageal squamous cell carcinoma by miR-607/CRISP3 axis. Int J Biol Sci. 18:5787–5808. 2022. View Article : Google Scholar : PubMed/NCBI

210 

Meng F, Zhang X, Wang Y, Lin J, Tang Y, Zhang G, Qiu B, Zeng X, Liu W and He X: Hsa_circ_0021727 (circ-CD44) promotes ESCC progression by targeting miR-23b-5p to activate the TAB1/NFκB pathway. Cell Death Dis. 14:92023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang L, Wang Y, Gao J, Zhou X, Huang M, Wang X and He Z: Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review). Oncol Lett 27: 255, 2024.
APA
Zhang, L., Wang, Y., Gao, J., Zhou, X., Huang, M., Wang, X., & He, Z. (2024). Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review). Oncology Letters, 27, 255. https://doi.org/10.3892/ol.2024.14388
MLA
Zhang, L., Wang, Y., Gao, J., Zhou, X., Huang, M., Wang, X., He, Z."Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review)". Oncology Letters 27.6 (2024): 255.
Chicago
Zhang, L., Wang, Y., Gao, J., Zhou, X., Huang, M., Wang, X., He, Z."Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review)". Oncology Letters 27, no. 6 (2024): 255. https://doi.org/10.3892/ol.2024.14388
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang L, Wang Y, Gao J, Zhou X, Huang M, Wang X and He Z: Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review). Oncol Lett 27: 255, 2024.
APA
Zhang, L., Wang, Y., Gao, J., Zhou, X., Huang, M., Wang, X., & He, Z. (2024). Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review). Oncology Letters, 27, 255. https://doi.org/10.3892/ol.2024.14388
MLA
Zhang, L., Wang, Y., Gao, J., Zhou, X., Huang, M., Wang, X., He, Z."Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review)". Oncology Letters 27.6 (2024): 255.
Chicago
Zhang, L., Wang, Y., Gao, J., Zhou, X., Huang, M., Wang, X., He, Z."Non‑coding RNA: A promising diagnostic biomarker and therapeutic target for esophageal squamous cell carcinoma (Review)". Oncology Letters 27, no. 6 (2024): 255. https://doi.org/10.3892/ol.2024.14388
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team