You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Medzhitov R: Origin and physiological roles of inflammation. Nature. 454:428–435. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C and Flavell RA: Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 13:759–771. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS and Pujari VB: Inflammation and cancer. Ann Afr Med. 18:121–126. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang YZ and Li YY: Inflammatory bowel disease: Pathogenesis. World J Gastroenterol. 20:91–99. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Choi WT, Yozu M, Miller GC, Shih AR, Kumarasinghe P, Misdraji J, Harpaz N and Lauwers GY: Nonconventional dysplasia in patients with inflammatory bowel disease and colorectal carcinoma: A multicenter clinicopathologic study. Mod Pathol. 33:933–943. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen ED, Wang D, Lauwers GY and Choi WT: Increased histologic inflammation is an independent risk factor for nonconventional dysplasia in ulcerative colitis. Histopathology. 81:644–652. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lukas M: Inflammatory bowel disease as a risk factor for colorectal cancer. Dig Dis. 28:619–624. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Eaden JA, Abrams KR and Mayberry JF: The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut. 48:526–535. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Lutgens MWMD, van Oijen MGH, van der Heijden GJMG, Vleggaar FP, Siersema PD and Oldenburg B: Declining risk of colorectal cancer in inflammatory bowel disease: An updated meta-analysis of population-based cohort studies. Inflamm Bowel Dis. 19:789–799. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Xia Y, Parker AS and Verma IM: IKK biology. Immunol Rev. 246:239–253. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Karin M and Ben-Neriah Y: Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu Rev Immunol. 18:621–663. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF and Karin M: IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 118:285–296. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Koliaraki V, Pasparakis M and Kollias G: IKKβ in intestinal mesenchymal cells promotes initiation of colitis-associated cancer. J Exp Med. 212:2235–2251. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Schön S, Flierman I, Ofner A, Stahringer A, Holdt LM, Kolligs FT and Herbst A: β-catenin regulates NF-κB activity via TNFRSF19 in colorectal cancer cells. Int J Cancer. 135:1800–1811. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Popivanova BK, Kitamura K, Wu Y, Kondo T, Kagaya T, Kaneko S, Oshima M, Fujii C and Mukaida N: Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest. 118:560–570. 2008.PubMed/NCBI | |
|
Hamilton KE, Simmons JG, Ding S, Van Landeghem L and Lund PK: Cytokine induction of tumor necrosis factor receptor 2 is mediated by STAT3 in colon cancer cells. Mol Cancer Res. 9:1718–1731. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Onizawa M, Nagaishi T, Kanai T, Nagano K, Oshima S, Nemoto Y, Yoshioka A, Totsuka T, Okamoto R, Nakamura T, et al: Signaling pathway via TNF-alpha/NF-kappaB in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis. Am J Physiol Gastrointest Liver Physiol. 296:G850–G859. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Q, Man SM, Gurung P, Liu Z, Vogel P, Lamkanfi M and Kanneganti TD: Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation. J Immunol. 193:4779–4782. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bozec D, Iuga AC, Roda G, Dahan S and Yeretssian G: Critical function of the necroptosis adaptor RIPK3 in protecting from intestinal tumorigenesis. Oncotarget. 7:46384–46400. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Fukata M, Hernandez Y, Conduah D, Cohen J, Chen A, Breglio K, Goo T, Hsu D, Xu R and Abreu MT: Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors. Inflamm Bowel Dis. 15:997–1006. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fukata M, Chen A, Vamadevan AS, Cohen J, Breglio K, Krishnareddy S, Hsu D, Xu R, Harpaz N, Dannenberg AJ, et al: Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology. 133:1869–1881. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Luo Q, Zeng L, Tang C, Zhang Z, Chen Y and Zeng C: TLR9 induces colitis-associated colorectal carcinogenesis by regulating NF-κB expression levels. Oncol Lett. 20:1102020. View Article : Google Scholar : PubMed/NCBI | |
|
Girondel C, Lévesque K, Langlois MJ, Pasquin S, Saba-El-Leil MK, Rivard N, Friesel R, Servant MJ, Gauchat JF, Lesage S and Meloche S: Loss of interleukin-17 receptor D promotes chronic inflammation-associated tumorigenesis. Oncogene. 40:452–464. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hardbower DM, Coburn LA, Asim M, Singh K, Sierra JC, Barry DP, Gobert AP, Piazuelo MB, Washington MK and Wilson KT: EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis. Oncogene. 36:3807–3819. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rizzo A, De Mare V, Rocchi C, Stolfi C, Colantoni A, Neurath MF, Macdonald TT, Pallone F, Monteleone G and Fantini MC: Smad7 induces plasticity in tumor-infiltrating Th17 cells and enables TNF-alpha-mediated killing of colorectal cancer cells. Carcinogenesis. 35:1536–1546. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bhat AA, Ahmad R, Uppada SB, Singh AB and Dhawan P: Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells. Exp Cell Res. 349:119–127. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kawai N, Tsuji S, Tsujii M, Ito T, Yasumaru M, Kakiuchi Y, Kimura A, Komori M, Sasaki Y, Hayashi N, et al: Tumor necrosis factor alpha stimulates invasion of Src-activated intestinal cells. Gastroenterology. 122:331–339. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, Lozano G, Pikarsky E, Forshew T, Rosenfeld N, et al: Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell. 23:634–646. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM and Yu H: Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell. 15:283–293. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Atreya R and Neurath MF: Signaling molecules: The pathogenic role of the IL-6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. Curr Drug Targets. 9:369–374. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T, Canli O, Schwitalla S, et al: gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 15:91–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Pathria P, Gotthardt D, Prchal-Murphy M, Putz EM, Holcmann M, Schlederer M, Grabner B, Crncec I, Svinka J, Musteanu M, et al: Myeloid STAT3 promotes formation of colitis-associated colorectal cancer in mice. OncoImmunology. 4:e9985292015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Wang DH, Yang X, Sun Y and Yang CS: Colitis-induced IL11 promotes colon carcinogenesis. Carcinogenesis. 42:557–569. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Heichler C, Scheibe K, Schmied A, Geppert CI, Schmid B, Wirtz S, Thoma OM, Kramer V, Waldner MJ, Büttner C, et al: STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut. 69:1269–1282. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, He X, Chen Z, Ke J, He X, Yuan R, Cai Z, Chen X, Wu X and Lan P: Activation of the mTORC1 and STAT3 pathways promotes the malignant transformation of colitis in mice. Oncol Rep. 32:1873–1880. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto S, Hara T, Mitsuyama K, Yamamoto M, Tsuruta O, Sata M, Scheller J, Rose-John S, Kado S and Takada T: Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble-IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J Immunol. 184:1543–1551. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Rizzo A, Di Giovangiulio M, Stolfi C, Franzè E, Fehling HJ, Carsetti R, Giorda E, Colantoni A, Ortenzi A, Rugge M, et al: RORγt-expressing Tregs drive the growth of colitis-associated colorectal cancer by controlling IL6 in dendritic cells. Cancer Immunol Res. 6:1082–1092. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ, Ziegler PK, Nguyen PM, Preaudet A, Farid R, Edwards KM, et al: Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell. 24:257–271. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L and Karin M: IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 15:103–113. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Stolfi C, Rizzo A, Franzè E, Rotondi A, Fantini MC, Sarra M, Caruso R, Monteleone I, Sileri P, Franceschilli L, et al: Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J Exp Med. 208:2279–2290. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, Ueha S, Yamazaki S, Kawauchi M, Nakamura E, et al: Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 12:22812021. View Article : Google Scholar : PubMed/NCBI | |
|
Liang J, Nagahashi M, Kim EY, Harikumar KB, Yamada A, Huang WC, Hait NC, Allegood JC, Price MM, Avni D, et al: Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell. 23:107–120. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lee H, Deng J, Kujawski M, Yang C, Liu Y, Herrmann A, Kortylewski M, Horne D, Somlo G, Forman S, et al: STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med. 16:1421–1428. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pillon-Thomas S, Niu G, Kay H, Mulé J, Kerr WG, et al: Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med. 11:1314–1321. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Park SB, Choi B, Lee BJ, Kim NJ, Jeong YA, Joo MK, Kim HJ, Park JJ, Kim JS, Noh YS and Lee HJ: Intestinal epithelial deletion of sphk1 prevents colitis-associated cancer development by inhibition of epithelial STAT3 activation. Dig Dis Sci. 65:2284–2293. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Becker C, Fantini MC, Schramm C, Lehr HA, Wirtz S, Nikolaev A, Burg J, Strand S, Kiesslich R, Huber S, et al: TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity. 21:491–501. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Kortylewski M, Xin H, Kujawski M, Lee H, Liu Y, Harris T, Drake C, Pardoll D and Yu H: Regulation of the IL-23 and IL-12 balance by Stat3 signaling in the tumor microenvironment. Cancer Cell. 15:114–123. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Olesch C, Sirait-Fischer E, Berkefeld M, Fink AF, Susen RM, Ritter B, Michels BE, Steinhilber D, Greten FR, Savai R, et al: S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. J Clin Invest. 130:5461–5476. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tewari D, Bawari S, Sharma S, DeLiberto LK and Bishayee A: Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther. 227:1078762021. View Article : Google Scholar : PubMed/NCBI | |
|
White BD, Chien AJ and Dawson DW: Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology. 142:219–232. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Bian J, Dannappel M, Wan C and Firestein R: Transcriptional regulation of Wnt/β-catenin pathway in colorectal cancer. Cells. 9:21252020. View Article : Google Scholar : PubMed/NCBI | |
|
Takayama T, Ohi M, Hayashi T, Miyanishi K, Nobuoka A, Nakajima T, Satoh T, Takimoto R, Kato J, Sakamaki S and Niitsu Y: Analysis of K-ras, APC, and beta-catenin in aberrant crypt foci in sporadic adenoma, cancer, and familial adenomatous polyposis. Gastroenterology. 121:599–611. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al: The consensus molecular subtypes of colorectal cancer. Nat Med. 21:1350–1356. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Brown JB, Lee G, Managlia E, Grimm GR, Dirisina R, Goretsky T, Cheresh P, Blatner NR, Khazaie K, Yang GY, et al: Mesalamine inhibits epithelial beta-catenin activation in chronic ulcerative colitis. Gastroenterology. 138:595–605, 605.e1-e3. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Claessen MMH, Schipper MEI, Oldenburg B, Siersema PD, Offerhaus GJA and Vleggaar FP: WNT-pathway activation in IBD-associated colorectal carcinogenesis: Potential biomarkers for colonic surveillance. Cell Oncol. 32:303–310. 2010.PubMed/NCBI | |
|
Chakrabarty S, Varghese VK, Sahu P, Jayaram P, Shivakumar BM, Pai CG and Satyamoorthy K: Targeted sequencing-based analyses of candidate gene variants in ulcerative colitis-associated colorectal neoplasia. Br J Cancer. 117:136–143. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ma B and Hottiger MO: Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol. 7:3782016. View Article : Google Scholar : PubMed/NCBI | |
|
Rubinstein MR, Wang X, Liu W, Hao Y, Cai G and Han YW: Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 14:195–206. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Morin PJ, Maouyo D and Sears CL: Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 124:392–400. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Iwakura Y and Ishigame H: The IL-23/IL-17 axis in inflammation. J Clin Invest. 116:1218–1222. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D and Yu H: IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J Exp Med. 206:1457–1464. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chen XW and Zhou SF: Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis. Drug Des Devel Ther. 9:2941–2946. 2015.PubMed/NCBI | |
|
Hyun YS, Han DS, Lee AR, Eun CS, Youn J and Kim HY: Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis. 33:931–936. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, McClanahan T, Kastelein RA and Oft M: IL-23 promotes tumour incidence and growth. Nature. 442:461–465. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Popa C, Netea MG, van Riel PLCM, van der Meer JWM and Stalenhoef AFH: The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res. 48:751–762. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G and Goeddel DV: TNF-R1 signaling: A beautiful pathway. Science. 296:1634–1635. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Balkwill F: TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 25:409–416. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E and Ben-Neriah Y: NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 431:461–466. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Seidelin JB and Nielsen OH: Continuous cytokine exposure of colonic epithelial cells induces DNA damage. Eur J Gastroenterol Hepatol. 17:363–369. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Porter RJ, Arends MJ, Churchhouse AMD and Din S: Inflammatory bowel disease-associated colorectal cancer: Translational risks from mechanisms to medicines. J Crohns Colitis. 15:2131–2141. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Huycke MM, Abrams V and Moore DR: Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis. 23:529–536. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kay J, Thadhani E, Samson L and Engelward B: Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst). 83:1026732019. View Article : Google Scholar : PubMed/NCBI | |
|
Rachmilewitz D, Stamler JS, Bachwich D, Karmeli F, Ackerman Z and Podolsky DK: Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn's disease. Gut. 36:718–723. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Meira LB, Bugni JM, Green SL, Lee CW, Pang B, Borenshtein D, Rickman BH, Rogers AB, Moroski-Erkul CA, McFaline JL, et al: DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest. 118:2516–2525. 2008.PubMed/NCBI | |
|
Rajamäki K, Taira A, Katainen R, Välimäki N, Kuosmanen A, Plaketti RM, Seppälä TT, Ahtiainen M, Wirta EV, Vartiainen E, et al: Genetic and epigenetic characteristics of inflammatory bowel disease-associated colorectal cancer. Gastroenterology. 161:592–607. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Burmer GC, Rabinovitch PS, Haggitt RC, Crispin DA, Brentnall TA, Kolli VR, Stevens AC and Rubin CE: Neoplastic progression in ulcerative colitis: Histology, DNA content, and loss of a p53 allele. Gastroenterology. 103:1602–1610. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Yaeger R, Shah MA, Miller VA, Kelsen JR, Wang K, Heins ZJ, Ross JS, He Y, Sanford E, Yantiss RK, et al: Genomic alterations observed in colitis-associated cancers are distinct from those found in sporadic colorectal cancers and vary by type of inflammatory bowel disease. Gastroenterology. 151:278–287.e6. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hussain SP, Amstad P, Raja K, Ambs S, Nagashima M, Bennett WP, Shields PG, Ham AJ, Swenberg JA, Marrogi AJ and Harris CC: Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: A cancer-prone chronic inflammatory disease. Cancer Res. 60:3333–3337. 2000.PubMed/NCBI | |
|
Rabinovitch PS, Dziadon S, Brentnall TA, Emond MJ, Crispin DA, Haggitt RC and Bronner MP: Pancolonic chromosomal instability precedes dysplasia and cancer in ulcerative colitis. Cancer Res. 59:5148–5153. 1999.PubMed/NCBI | |
|
Redston MS, Papadopoulos N, Caldas C, Kinzler KW and Kern SE: Common occurrence of APC and K-ras gene mutations in the spectrum of colitis-associated neoplasias. Gastroenterology. 108:383–392. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Kraus S and Arber N: Inflammation and colorectal cancer. Curr Opin Pharmacol. 9:405–410. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Mármol I, Sánchez-de-Diego C, Pradilla Dieste A, Cerrada E and Rodriguez Yoldi M: Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci. 18:1972017. View Article : Google Scholar : PubMed/NCBI | |
|
Rubin CE, Haggitt RC, Burmer GC, Brentnall TA, Stevens AC, Levine DS, Dean PJ, Kimmey M, Perera DR and Rabinovitch PS: DNA aneuploidy in colonic biopsies predicts future development of dysplasia in ulcerative colitis. Gastroenterology. 103:1611–1620. 1992. View Article : Google Scholar : PubMed/NCBI | |
|
Carethers JM: Screening for colorectal cancer in African Americans: Determinants and rationale for an earlier age to commence screening. Dig Dis Sci. 60:711–721. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Colotta F, Allavena P, Sica A, Garlanda C and Mantovani A: Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis. 30:1073–1081. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fujiwara I, Yashiro M, Kubo N, Maeda K and Hirakawa K: Ulcerative colitis-associated colorectal cancer is frequently associated with the microsatellite instability pathway. Dis Colon Rectum. 51:1387–1394. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Din S, Wong K, Mueller MF, Oniscu A, Hewinson J, Black CJ, Miller ML, Jiménez-Sánchez A, Rabbie R, Rashid M, et al: Mutational analysis identifies therapeutic biomarkers in inflammatory bowel disease-associated colorectal cancers. Clin Cancer Res. 24:5133–5142. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sato F, Harpaz N, Shibata D, Xu Y, Yin J, Mori Y, Zou TT, Wang S, Desai K, Leytin A, et al: Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. Cancer Res. 62:1148–1151. 2002.PubMed/NCBI | |
|
Azarschab P, Porschen R, Gregor M, Blin N and Holzmann K: Epigenetic control of the E-cadherin gene (CDH1) by CpG methylation in colectomy samples of patients with ulcerative colitis. Genes Chromosomes Cancer. 35:121–126. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kuester D, Guenther T, Biesold S, Hartmann A, Bataille F, Ruemmele P, Peters B, Meyer F, Schubert D, Bohr UR, et al: Aberrant methylation of DAPK in long-standing ulcerative colitis and ulcerative colitis-associated carcinoma. Pathol Res Pract. 206:616–624. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Vincan E and Barker N: The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis. 25:657–663. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kinchen J, Chen HH, Parikh K, Antanaviciute A, Jagielowicz M, Fawkner-Corbett D, Ashley N, Cubitt L, Mellado-Gomez E, Attar M, et al: Structural remodeling of the human colonic mesenchyme in inflammatory bowel disease. Cell. 175:372–386.e17. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lin WW and Karin M: A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 117:1175–1183. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Thiesen S, Janciauskiene S, Uronen-Hansson H, Agace W, Högerkorp CM, Spee P, Håkansson K and Grip O: CD14(hi)HLA-DR(dim) macrophages, with a resemblance to classical blood monocytes, dominate inflamed mucosa in Crohn's disease. J Leukoc Biol. 95:531–541. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ruffell B, Affara NI and Coussens LM: Differential macrophage programming in the tumor microenvironment. Trends Immunol. 33:119–126. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gordon S: Alternative activation of macrophages. Nat Rev Immunol. 3:23–35. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, et al: A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood. 107:2112–2122. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Dinapoli MR, Calderon CL and Lopez DM: The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. J Exp Med. 183:1323–1329. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Li L, Xu C, Wang Y, Wang Z, Chen M, Jiang Z, Pan J, Yang C, Li X, et al: Cross-talk between the gut microbiota and monocyte-like macrophages mediates an inflammatory response to promote colitis-associated tumourigenesis. Gut. 70:1495–1506. 2020.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Sime W, Juhas M and Sjölander A: Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration. Eur J Cancer. 49:3320–3334. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Martinez FO, Sica A, Mantovani A and Locati M: Macrophage activation and polarization. Front Biosci. 13:453–461. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Maisonneuve C, Tsang DKL, Foerster EG, Robert LM, Mukherjee T, Prescott D, Tattoli I, Lemire P, Winer DA, Winer S, et al: Nod1 promotes colorectal carcinogenesis by regulating the immunosuppressive functions of tumor-infiltrating myeloid cells. Cell Rep. 34:1086772021. View Article : Google Scholar : PubMed/NCBI | |
|
Ibrahim ML, Klement JD, Lu C, Redd PS, Xiao W, Yang D, Browning DD, Savage NM, Buckhaults PJ, Morse HC III and Liu K: Myeloid-derived suppressor cells produce IL-10 to elicit DNMT3b-dependent IRF8 silencing to promote colitis-associated colon tumorigenesis. Cell Rep. 25:3036–3046.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Suzuki E, Kapoor V, Jassar AS, Kaiser LR and Albelda SM: Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 11:6713–6721. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bronte V, Serafini P, Apolloni E and Zanovello P: Tumor-induced immune dysfunctions caused by myeloid suppressor cells. J Immunother. 24:431–446. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Katoh H, Wang D, Daikoku T, Sun H, Dey SK and Dubois RN: CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell. 24:631–644. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM and Chen SH: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66:1123–1131. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sinha P, Clements VK, Bunt SK, Albelda SM and Ostrand-Rosenberg S: Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol. 179:977–983. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 313:1960–1964. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F and Galon J: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71:1263–1271. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Wu P, Wu D, Ni C, Ye J, Chen W, Hu G, Wang Z, Wang C, Zhang Z, Xia W, et al: γδT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity. 40:785–800. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sade-Feldman M, Kanterman J, Ish-Shalom E, Elnekave M, Horwitz E and Baniyash M: Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation. Immunity. 38:541–554. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
He D, Li H, Yusuf N, Elmets CA, Li J, Mountz JD and Xu H: IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol. 184:2281–2288. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Ohkura N, Kitagawa Y and Sakaguchi S: Development and maintenance of regulatory T cells. Immunity. 38:414–423. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Friedrich C, Hagemann SC, Korte WH, Goharani N, Cording S, Eberl G, Sparwasser T and Lochner M: Regulatory T cells promote a protective Th17-associated immune response to intestinal bacterial infection with C. rodentium. Mucosal Immunol. 7:1290–1301. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chang LY, Lin YC, Mahalingam J, Huang CT, Chen TW, Kang CW, Peng HM, Chu YY, Chiang JM, Dutta A, et al: Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res. 72:1092–1102. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, Huang E, Greenson J, Chang A, Roliński J, et al: IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol. 186:4388–4395. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD, Ham S, Sandall BP, Khan MW, Mahvi DM, et al: Expression of RORγt marks a pathogenic regulatory T cell subset in human colon cancer. Sci Transl Med. 4:164ra1592012. View Article : Google Scholar : PubMed/NCBI | |
|
Olguín JE, Medina-Andrade I, Molina E, Vázquez A, Pacheco-Fernández T, Saavedra R, Pérez-Plasencia C, Chirino YI, Vaca-Paniagua F, Arias-Romero LE, et al: Early and partial reduction in CD4+Foxp3+ regulatory T cells during colitis-associated colon cancer induces CD4+ and CD8+ T cell activation inhibiting tumorigenesis. J Cancer. 9:239–249. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Koliaraki V, Roulis M and Kollias G: Tpl2 regulates intestinal myofibroblast HGF release to suppress colitis-associated tumorigenesis. J Clin Invest. 122:4231–4242. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Neufert C, Becker C, Türeci Ö, Waldner MJ, Backert I, Floh K, Atreya I, Leppkes M, Jefremow A, Vieth M, et al: Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J Clin Invest. 123:1428–1443. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki S, Baba T, Shinagawa K, Matsushima K and Mukaida N: Crucial involvement of the CCL3-CCR5 axis-mediated fibroblast accumulation in colitis-associated carcinogenesis in mice. Int J Cancer. 135:1297–1306. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kawamura T, Yamamoto M, Suzuki K, Suzuki Y, Kamishima M, Sakata M, Kurachi K, Setoh M, Konno H and Takeuchi H: Tenascin-C produced by intestinal myofibroblasts promotes colitis-associated cancer development through angiogenesis. Inflamm Bowel Dis. 25:732–741. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fujita M, Ito-Fujita Y, Iyoda T, Sasada M, Okada Y, Ishibashi K, Osawa T, Kodama H, Fukai F and Suzuki H: Peptide TNIIIA2 Derived from tenascin-C contributes to malignant progression in colitis-associated colorectal cancer via β1-integrin activation in fibroblasts. Int J Mol Sci. 20:27522019. View Article : Google Scholar : PubMed/NCBI | |
|
Bai YP, Shang K, Chen H, Ding F, Wang Z, Liang C, Xu Y, Sun MH and Li YY: FGF-1/-3/FGFR4 signaling in cancer-associated fibroblasts promotes tumor progression in colon cancer through Erk and MMP-7. Cancer Sci. 106:1278–1287. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hamilton KE, Chatterji P, Lundsmith ET, Andres SF, Giroux V, Hicks PD, Noubissi FK, Spiegelman VS and Rustgi AK: Loss of stromal IMP1 promotes a tumorigenic microenvironment in the colon. Mol Cancer Res. 13:1478–1486. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Aoki T, Tsuruyama T and Narumiya S: Definition of prostaglandin E2-EP2 signals in the colon tumor microenvironment that amplify inflammation and tumor growth. Cancer Res. 75:2822–2832. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Natividad JMM and Verdu EF: Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacol Res. 69:42–51. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Slack E, Hapfelmeier S, Stecher B, Velykoredko Y, Stoel M, Lawson MA, Geuking MB, Beutler B, Tedder TF, Hardt WD, et al: Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science. 325:617–620. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Nagao-Kitamoto H, Kitamoto S and Kamada N: Inflammatory bowel disease and carcinogenesis. Cancer Metastasis Rev. 41:301–316. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fantini MC and Guadagni I: From inflammation to colitis-associated colorectal cancer in inflammatory bowel disease: Pathogenesis and impact of current therapies. Dig Liver Dis. 53:558–565. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, van Sinderen D, Taranto MP, de Valdez GF, de Giori GS and Sesma F: B-group vitamin production by lactic acid bacteria-current knowledge and potential applications. J Appl Microbiol. 111:1297–1309. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Quaglio AEV, Grillo TG, De Oliveira ECS, Stasi LCD and Sassaki LY: Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol. 28:4053–4060. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Thursby E and Juge N: Introduction to the human gut microbiota. Biochem J. 474:1823–1836. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Yan H and Ajuwon KM: Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One. 12:e01795862017. View Article : Google Scholar : PubMed/NCBI | |
|
Isobe J, Maeda S, Obata Y, Iizuka K, Nakamura Y, Fujimura Y, Kimizuka T, Hattori K, Kim YG, Morita T, et al: Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon. Int Immunol. 32:243–258. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gomaa EZ: Human gut microbiota/microbiome in health and diseases: A review. Antonie Van Leeuwenhoek. 113:2019–2040. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kinnebrew MA, Ubeda C, Zenewicz LA, Smith N, Flavell RA and Pamer EG: Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J Infect Dis. 201:534–543. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, et al: Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 504:446–450. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang M, Zhou Q, Dorfman RG, Huang X, Fan T, Zhang H, Zhang J and Yu C: Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterol. 16:842016. View Article : Google Scholar : PubMed/NCBI | |
|
Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL, Shi H, Robertson KD, Munn DH and Liu K: Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. Am J Physiol Gastrointest Liver Physiol. 302:G1405–G1415. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Janeway CA Jr: Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 54:1–13. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Kawai T and Akira S: Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 34:637–650. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Cario E and Podolsky DK: Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 68:7010–7017. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Fukata M, Shang L, Santaolalla R, Sotolongo J, Pastorini C, España C, Ungaro R, Harpaz N, Cooper HS, Elson G, et al: Constitutive activation of epithelial TLR4 augments inflammatory responses to mucosal injury and drives colitis-associated tumorigenesis. Inflamm Bowel Dis. 17:1464–1473. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Frantz AL, Rogier EW, Weber CR, Shen L, Cohen DA, Fenton LA, Bruno ME and Kaetzel CS: Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol. 5:501–512. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmed I, Roy BC, Khan SA, Septer S and Umar S: Microbiome, metabolome and inflammatory bowel disease. Microorganisms. 4:202016. View Article : Google Scholar : PubMed/NCBI | |
|
Parekh PJ, Balart LA and Johnson DA: The influence of the gut microbiome on obesity, metabolic syndrome and gastrointestinal disease. Clin Transl Gastroenterol. 6:e912015. View Article : Google Scholar : PubMed/NCBI | |
|
Ghouri YA, Tahan V and Shen B: Secondary causes of inflammatory bowel diseases. World J Gastroenterol. 26:3998–4017. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Richard ML, Liguori G, Lamas B, Brandi G, da Costa G, Hoffmann TW, Pierluigi Di Simone M, Calabrese C, Poggioli G, Langella P, et al: Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes. 9:131–142. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Muller M, Hansmannel F, Arnone D, Choukour M, Ndiaye NC, Kokten T, Houlgatte R and Peyrin-Biroulet L: Genomic and molecular alterations in human inflammatory bowel disease-associated colorectal cancer. United European Gastroenterol J. 8:675–684. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Pan HW, Du LT, Li W, Yang YM, Zhang Y and Wang CX: Biodiversity and richness shifts of mucosa-associated gut microbiota with progression of colorectal cancer. Res Microbiol. 171:107–114. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Proença MA, Biselli JM, Succi M, Severino FE, Berardinelli GN, Caetano A, Reis RM, Hughes DJ and Silva AE: Relationship between Fusobacterium nucleatum, inflammatory mediators and microRNAs in colorectal carcinogenesis. World J Gastroenterol. 24:5351–5365. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tahara T, Hirata I, Nakano N, Tahara S, Horiguchi N, Kawamura T, Okubo M, Ishizuka T, Yamada H, Yoshida D, et al: Potential link between Fusobacterium enrichment and DNA methylation accumulation in the inflammatory colonic mucosa in ulcerative colitis. Oncotarget. 8:61917–61926. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Geis AL, Fan H, Wu X, Wu S, Huso DL, Wolfe JL, Sears CL, Pardoll DM and Housseau F: Regulatory T-cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov. 5:1098–1109. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wick EC, Rabizadeh S, Albesiano E, Wu X, Wu S, Chan J, Rhee KJ, Ortega G, Huso DL, Pardoll D, et al: Stat3 activation in murine colitis induced by enterotoxigenic Bacteroides fragilis. Inflamm Bowel Dis. 20:821–834. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Purcell RV, Permain J and Keenan JI: Enterotoxigenic Bacteroides fragilis activates IL-8 expression through Stat3 in colorectal cancer cells. Gut Pathog. 14:162022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, et al: A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 15:1016–1022. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Arthur JC, Perez-Chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, et al: Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 338:120–123. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
de Almeida CV, Taddei A and Amedei A: The controversial role of Enterococcus faecalis in colorectal cancer. Therap Adv Gastroenterol. 11:17562848187836062018. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Oh J, Xue M, Huh WJ, Wang J, Gonzalez-Hernandez JA, Rice TA, Martin AL, Song D, Crawford JM, et al: Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science. 378:eabm32332022. View Article : Google Scholar : PubMed/NCBI | |
|
Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JJ, Boelens PG, van de Velde CJ and Watanabe T: Colorectal cancer. Nat Rev Dis Primers. 1:150652015. View Article : Google Scholar : PubMed/NCBI | |
|
Vallée A, Lecarpentier Y and Vallée JN: Targeting the canonical WNT/β-catenin pathway in cancer treatment using non-steroidal anti-inflammatory drugs. Cells. 8:7262019. View Article : Google Scholar : PubMed/NCBI | |
|
Dihlmann S and von Knebel Doeberitz M: Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics. Int J Cancer. 113:515–524. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Dihlmann S, Siermann A and von Knebel Doeberitz M: The nonsteroidal anti-inflammatory drugs aspirin and indomethacin attenuate beta-catenin/TCF-4 signaling. Oncogene. 20:645–653. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Tuynman JB, Vermeulen L, Boon EM, Kemper K, Zwinderman AH, Peppelenbosch MP and Richel DJ: Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res. 68:1213–1220. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Sonu I, Lin MV, Blonski W and Lichtenstein GR: Clinical pharmacology of 5-ASA compounds in inflammatory bowel disease. Gastroenterol Clin North Am. 39:559–599. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Graham PM, Li JZ, Dou X, Zhu H, Misra HP, Jia Z and Li Y: Protection against peroxynitrite-induced DNA damage by mesalamine: Implications for anti-inflammation and anti-cancer activity. Mol Cell Biochem. 378:291–298. 2013. View Article : Google Scholar : PubMed/NCBI |