|
1
|
Xiong Q, Zhang Y, Li J and Zhu Q: Small
non-coding RNAs in human cancer. Genes (Basel). 13:20722022.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Romano G, Veneziano D, Acunzo M and Croce
CM: Small non-coding RNA and cancer. Carcinogenesis. 38:485–491.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gornalusse G, Spengler RM, Sandford E, Kim
Y, Levy C, Tewari M, Hladik F and Vojtech L: Men who inject opioids
exhibit altered tRNA-Gly-GCC isoforms in semen. Mol Hum Reprod.
29:gaad0032023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wang Y, Weng Q, Ge J, Zhang X, Guo J and
Ye G: tRNA-derived small RNAs: Mechanisms and potential roles in
cancers. Genes Dis. 9:1431–1442. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jia Y, Tan W and Zhou Y: Transfer
RNA-derived small RNAs: Potential applications as novel biomarkers
for disease diagnosis and prognosis. Ann Transl Med. 8:10922020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kim HK, Yeom JH and Kay MA: Transfer
RNA-derived small RNAs: Another layer of gene regulation and novel
targets for disease therapeutics. Mol Ther. 28:2340–2357. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Qin C, Xu PP, Zhang X, Zhang C, Liu CB,
Yang DG, Gao F, Yang ML, Du LJ and Li JJ: Pathological significance
of tRNA-derived small RNAs in neurological disorders. Neural Regen
Res. 15:212–221. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Taxis TM, Bauermann FV, Ridpath JF and
Casas E: Analysis of tRNA halves (tsRNAs) in serum from cattle
challenged with bovine viral diarrhea virus. Genet Mol Biol.
42:374–379. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Drino A, Oberbauer V, Troger C, Janisiw E,
Anrather D, Hartl M, Kaiser S, Kellner S and Schaefer MR:
Production and purification of endogenously modified tRNA-derived
small RNAs. RNA Biol. 17:1104–1115. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Chen Q, Zhang X, Shi J, Yan M and Zhou T:
Origins and evolving functionalities of tRNA-derived small RNAs.
Trends Biochem Sci. 46:790–804. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chu X, He C, Sang B, Yang C, Yin C, Ji M,
Qian A and Tian Y: Transfer RNAs-derived small RNAs and their
application potential in multiple diseases. Front Cell Dev Biol.
10:9544312022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Shen Y, Yu X, Zhu L, Li T, Yan Z and Guo
J: Transfer RNA-derived fragments and tRNA halves: Biogenesis,
biological functions and their roles in diseases. J Mol Med (Berl).
96:1167–1176. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yu X, Xie Y, Zhang S, Song X, Xiao B and
Yan Z: tRNA-derived fragments: Mechanisms underlying their
regulation of gene expression and potential applications as
therapeutic targets in cancers and virus infections. Theranostics.
11:461–469. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yuan Y, Li J, He Z, Fan X, Mao X, Yang M
and Yang D: tRNA-derived fragments as new hallmarks of aging and
age-related diseases. Aging Dis. 12:1304–1322. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lee YS, Shibata Y, Malhotra A and Dutta A:
A novel class of small RNAs: TRNA-derived RNA fragments (tRFs).
Genes Dev. 23:2639–2649. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kumar P, Anaya J, Mudunuri SB and Dutta A:
Meta-analysis of tRNA derived RNA fragments reveals that they are
evolutionarily conserved and associate with AGO proteins to
recognize specific RNA targets. BMC Biol. 12:782014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kumar P, Mudunuri SB, Anaya J and Dutta A:
tRFdb: A database for transfer RNA fragments. Nucleic Acids Res.
43((Database Issue)): D141–145. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhao Y, Li X, Ye C, Huang C, Lv X and Li
J: The biogenesis, mechanism and function of the tRNA-derived small
RNA (tsRNA): A review compared with microRNA. Am J Cancer Res.
13:1656–1666. 2023.PubMed/NCBI
|
|
19
|
Siddiqi S and Matushansky I: Piwis and
piwi-interacting RNAs in the epigenetics of cancer. J Cell Biochem.
113:373–380. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Siddiqi S, Terry M and Matushansky I: Hiwi
mediated tumorigenesis is associated with DNA hypermethylation.
PLoS One. 7:e337112012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Pekarsky Y, Balatti V, Palamarchuk A,
Rizzotto L, Veneziano D, Nigita G, Rassenti LZ, Pass HI, Kipps TJ,
Liu CG, et al: Dysregulation of a family of short noncoding RNAs,
tsRNAs, in human cancer. Proc Natl Acad Sci USA. 113:5071–5076.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang X, He X, Liu C, Liu J, Hu Q, Pan T,
Duan X, Liu B, Zhang Y, Chen J, et al: IL-4 Inhibits the biogenesis
of an epigenetically suppressive pIWI-interacting RNA to upregulate
CD1a molecules on monocytes/dendritic cells. J Immunol.
196:1591–1603. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
He L and Hannon GJ: MicroRNAs: Small RNAs
with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li J, Zhu L, Cheng J and Peng Y: Transfer
RNA-derived small RNA: A rising star in oncology. Semin Cancer
Biol. 75:29–37. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Goodarzi H, Liu X, Nguyen HC, Zhang S,
Fish L and Tavazoie SF: Endogenous tRNA-derived fragments suppress
breast cancer progression via YBX1 displacement. Cell. 161:790–802.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Akiyama Y, Kharel P, Abe T, Anderson P and
Ivanov P: Isolation and initial structure-functional
characterization of endogenous tRNA-derived stress-induced RNAs.
RNA Biol. 17:1116–1124. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Couvillion MT, Bounova G, Purdom E, Speed
TP and Collins K: A Tetrahymena Piwi bound to mature tRNA 3′
fragments activates the exonuclease Xrn2 for RNA processing in the
nucleus. Mol Cell. 48:509–520. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kim HK, Xu J, Chu K, Park H, Jang H, Li P,
Valdmanis PN, Zhang QC and Kay MA: A tRNA-derived small RNA
regulates ribosomal protein S28 protein levels after translation
initiation in humans and mice. Cell Rep. 29:3816–3824. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fu BF and Xu CY: Transfer RNA-derived
small RNAs: Novel regulators and biomarkers of cancers. Front
Oncol. 12:8435982022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang J, Ma G, Ge H, Han X, Mao X, Wang X,
Veeramootoo JS, Xia T, Liu X and Wang S: Circulating tRNA-derived
small RNAs (tsRNAs) signature for the diagnosis and prognosis of
breast cancer. NPJ Breast Cancer. 7:42021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Xu J, Wang Y, Li X, Zheng M, Li Y and
Zhang W: Clinical value assessment for serum hsa_tsr013526 in the
diagnosis of gastric carcinoma. Environ Toxicol. 39:2753–2767.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Huang T, Chen C, Du J, Zheng Z, Ye S, Fang
S and Liu K: A tRF-5a fragment that regulates radiation resistance
of colorectal cancer cells by targeting MKNK1. J Cell Mol Med.
27:4021–4033. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Qin C, Chen ZH, Cao R, Shi MJ and Tian Y:
A novel tiRNA-Gly-GCC-1 promotes progression of urothelial bladder
carcinoma and directly targets TLR4. Cancers (Basel). 14:45552022.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Liang Y, Zhang X, Peng J, Liu J, Chen H
and Guo S: Vitamin D-mediated tsRNA-07804 triggers mitochondrial
dysfunction and suppresses non-small cell lung cancer progression
by targeting CRKL. J Cancer Res Clin Oncol. 150:512024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Tu M, Zuo Z, Chen C, Zhang X, Wang S, Chen
C and Sun Y: Transfer RNA-derived small RNAs (tsRNAs) sequencing
revealed a differential expression landscape of tsRNAs between
glioblastoma and low-grade glioma. Gene. 855:1471142023. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Deng H, Wang J, Ye D, Chen J, Qiu S, Tang
M, Zhou C, Shen Y, Fang S, Shen Z, et al: A 5′-tiRNA fragment that
inhibits proliferation and migration of laryngeal squamous cell
carcinoma by targeting PIK3CD. Genomics. 114:1103922022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhao R, Yang Z, Zhao B, Li W, Liu Y, Chen
X, Cao J, Zhang J, Guo Y, Xu L, et al: A novel tyrosine
tRNA-derived fragment, tRFTyr, induces oncogenesis and
lactate accumulation in LSCC by interacting with LDHA. Cell Mol
Biol Lett. 28:492023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Panoutsopoulou K, Magkou P, Dreyer T, Dorn
J, Obermayr E, Mahner S, van Gorp T, Braicu I, Magdolen V,
Zeillinger R, et al: tRNA-derived small RNA
3′U-tRFValCAC promotes tumour migration and early
progression in ovarian cancer. Eur J Cancer. 180:134–145. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhao C, Tolkach Y, Schmidt D, Muders M,
Kristiansen G, Müller SC and Ellinger J: tRNA-halves are prognostic
biomarkers for patients with prostate cancer. Urol Oncol.
36:503.e1–503.e7. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Di Fazio A and Gullerova M: An old friend
with a new face: TRNA-derived small RNAs with big regulatory
potential in cancer biology. Br J Cancer. 128:1625–1635. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gu X, Zhang Y, Qin X, Ma S, Huang Y and Ju
S: Transfer RNA-derived small RNA: An emerging small non-coding RNA
with key roles in cancer. Exp Hematol Oncol. 11:352022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pekarsky Y, Balatti V and Croce CM:
tRNA-derived fragments (tRFs) in cancer. J Cell Commun Signal.
17:47–54. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang J, Ma G, Li M, Han X, Xu J, Liang M,
Mao X, Chen X, Xia T, Liu X, et al: Plasma tRNA fragments derived
from 5′ ends as novel diagnostic biomarkers for early-stage breast
cancer. Mol Ther Nucleic Acids. 21:954–964. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhang Y, Bi Z, Dong X, Yu M, Wang K and
Song X, Xie L and Song X: tRNA-derived fragments: TRF-Gly-CCC-046,
tRF-Tyr-GTA-010 and tRF-Pro-TGG-001 as novel diagnostic biomarkers
for breast cancer. Thorac Cancer. 12:2314–2323. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sun C, Huang X, Li J, Fu Z, Hua Y, Zeng T,
He Y, Duan N, Yang F, Liang Y, et al: Exosome-transmitted
tRF-16-K8J7K1B promotes tamoxifen resistance by reducing
drug-induced cell apoptosis in breast cancer. Cancers (Basel).
15:8992023. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhang Z, Liu Z, Zhao W, Zhao X and Tao Y:
tRF-19-W4PU732S promotes breast cancer cell malignant activity by
targeting inhibition of RPL27A (ribosomal protein-L27A).
Bioengineered. 13:2087–2098. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Mo D, He F, Zheng J, Chen H, Tang L and
Yan F: tRNA-derived fragment tRF-17-79MP9PP attenuates cell
invasion and migration via THBS1/TGF-β1/Smad3 axis in breast
cancer. Front Oncol. 11:6560782021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ma J and Liu F: Study of tRNA-derived
fragment tRF-20-S998LO9D in pan-cancer. Dis Markers.
2022:87993192022. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen F, Song C, Meng F, Zhu Y, Chen X,
Fang X, Ma D, Wang Y and Zhang C: 5′-tRF-GlyGCC promotes breast
cancer metastasis by increasing fat mass and obesity-associated
protein demethylase activity. Int J Biol Macromol. 226:397–409.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Mo D, Jiang P, Yang Y, Mao X, Tan X, Tang
X, Wei D, Li B, Wang X, Tang L, et al: A tRNA fragment,
5′-tiRNAVal, suppresses the Wnt/β-catenin signaling
pathway by targeting FZD3 in breast cancer. Cancer Lett. 457:60–73.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang B, Li D, Ilnytskyy Y, Kovalchuk I and
Kovalchuk O: A miR-34a-guided, tRNAiMet-derived, piR_019752-like
fragment (tRiMetF31) suppresses migration and angiogenesis of
breast cancer cells via targeting PFKFB3. Cell Death Discov.
8:3552022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Xu W, Zheng J, Wang X, Zhou B, Chen H, Li
G and Yan F: tRF-Val-CAC-016 modulates the transduction of
CACNA1d-mediated MAPK signaling pathways to suppress the
proliferation of gastric carcinoma. Cell Commun Signal. 20:682022.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang Y, Gu X, Qin X, Huang Y and Ju S:
Evaluation of serum tRF-23-Q99P9P9NDD as a potential biomarker for
the clinical diagnosis of gastric cancer. Mol Med. 28:632022.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gu X, Zhang Y, Huang Y and Ju S:
Comprehensive evaluation of serum tRF-17-WS7K092 as a promising
biomarker for the diagnosis of gastric cancer. J Oncol.
2022:84387262022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zheng J, Li C, Zhu Z, Yang F, Wang X,
Jiang P and Yan F: A 5′-tRNA derived fragment
namedtiRNA-Val-CAC-001 works as a suppressor in gastric cancer.
Cancer Manag Res. 14:2323–2337. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xu W, Zhou B, Wang J, Tang L, Hu Q, Wang J
and Chen H, Zheng J, Yan F and Chen H: tRNA-derived fragment
tRF-Glu-TTC-027 regulates the progression of gastric carcinoma via
MAPK signaling pathway. Front Oncol. 11:7337632021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shen Y, Yu X, Ruan Y, Li Z, Xie Y, Yan Z
and Guo J: Global profile of tRNA-derived small RNAs in gastric
cancer patient plasma and identification of tRF-33-P4R8YP9LON4VDP
as a new tumor suppressor. Int J Med Sci. 18:1570–1579. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li X, Zhang Y, Li Y, Gu X and Ju S: A
comprehensive evaluation of serum tRF-29-R9J8909NF5JP as a novel
diagnostic and prognostic biomarker for gastric cancer. Mol
Carcinog. 62:1504–1517. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wang Y, Li Z, Weng Q, Zheng Y, Lin Y, Guo
J and Ye G: Clinical diagnostic values of transfer RNA-derived
fragment tRF-41-YDLBRY73W0K5KKOVD and its effects on the growth of
gastric cancer cells. DNA Cell Biol. 42:176–187. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cui H, Li H, Wu H, Du F, Xie X, Zeng S,
Zhang Z, Dong K, Shang L, Jing C, et al: A novel 3′tRNA-derived
fragment tRF-Val promotes proliferation and inhibits apoptosis by
targeting EEF1A1 in gastric cancer. Cell Death Dis. 13:4712022.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shen Y, Xie Y, Yu X, Zhang S, Wen Q, Ye G
and Guo J: Clinical diagnostic values of transfer RNA-derived
fragment tRF-19-3L7L73JD and its effects on the growth of gastric
cancer cells. J Cancer. 12:3230–3238. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Huang Y, Zhang H, Gu X, Qin S, Zheng M,
Shi X, Peng C and Ju S: Elucidating the role of serum
tRF-31-U5YKFN8DYDZDD as a novel diagnostic biomarker in gastric
cancer (GC). Front Oncol. 11:7237532021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang H, Huang W, Fan X, He X, Chen S, Yu S
and Zhang Y: The tRNA-derived fragment tRF-24-V29K9UV3IU functions
as a miRNA-like RNA to prevent gastric cancer progression by
inhibiting GPR78 expression. J Oncol. 2022:87776972022.PubMed/NCBI
|
|
64
|
Tong L, Zhang W, Qu B, Zhang F, Wu Z, Shi
J, Chen X, Song Y and Wang Z: The tRNA-derived fragment-3017A
promotes metastasis by inhibiting NELL2 in human gastric cancer.
Front Oncol. 10:5709162020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhu L, Li Z, Yu X, Ruan Y, Shen Y, Shao Y,
Zhang X, Ye G and Guo J: The tRNA-derived fragment 5026a inhibits
the proliferation of gastric cancer cells by regulating the
PTEN/PI3K/AKT signaling pathway. Stem Cell Res Ther. 12:4182021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wu Y, Yang X, Jiang G, Zhang H, Ge L, Chen
F, Li J, Liu H and Wang H: 5′-tRF-GlyGCC: A tRNA-derived small RNA
as a novel biomarker for colorectal cancer diagnosis. Genome Med.
13:202021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lu S, Wei X, Tao L, Dong D, Hu W, Zhang Q,
Tao Y, Yu C, Sun D and Cheng H: A novel tRNA-derived fragment
tRF-3022b modulates cell apoptosis and M2 macrophage polarization
via binding to cytokines in colorectal cancer. J Hematol Oncol.
15:1762022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tsiakanikas P, Adamopoulos PG, Tsirba D,
Artemaki PI, Papadopoulos IN, Kontos CK and Scorilas A: High
expression of a tRNAPro derivative associates with poor
survival and independently predicts colorectal cancer recurrence.
Biomedicines. 10:11202022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen H, Xu Z, Cai H, Peng Y, Yang L and
Wang Z: Identifying differentially expressed tRNA-derived small
fragments as a biomarker for the progression and metastasis of
colorectal cancer. Dis Markers. 2022:26461732022.PubMed/NCBI
|
|
70
|
Luan N, Chen Y, Li Q, Mu Y, Zhou Q, Ye X,
Deng Q, Ling L and Wang J and Wang J: TRF-20-M0NK5Y93 suppresses
the metastasis of colon cancer cells by impairing the
epithelial-to-mesenchymal transition through targeting Claudin-1.
Am J Transl Res. 13:124–142. 2021.PubMed/NCBI
|
|
71
|
Luan N and Wang J, Sheng B, Zhou Q, Ye X,
Zhu X, Sun J, Tang Z and Wang J: tRF-20-M0NK5Y93-induced MALAT1
promotes colon cancer metastasis through alternative splicing of
SMC1A. Am J Cancer Res. 13:852–871. 2023.PubMed/NCBI
|
|
72
|
Tao EW, Wang HL, Cheng WY, Liu QQ, Chen YX
and Gao QY: A specific tRNA half, 5′tiRNA-His-GTG, responds to
hypoxia via the HIF1α/ANG axis and promotes colorectal cancer
progression by regulating LATS2. J Exp Clin Cancer Res. 40:672021.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hu F, Niu Y, Mao X, Cui J, Wu X, Simone CB
II, Kang HS, Qin W and Jiang L: tsRNA-5001a promotes proliferation
of lung adenocarcinoma cells and is associated with postoperative
recurrence in lung adenocarcinoma patients. Transl Lung Cancer Res.
10:3957–3972. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ren J, Wu X, Shang FF, Qi Y, Tang Z, Wen
C, Cao W, Cheng Q, Tan L, Chen H, et al: The tRNA-Cys-GCA derived
tsRNAs suppress tumor progression of gliomas via regulating VAV2.
Dis Markers. 2022:87083122022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xu B, Liang J, Zou H, Wang J, Xiong Y and
Pei J: Identification of Novel tRNA-Leu-CAA-Derived tsRNAs for the
diagnosis and prognosis of diffuse gliomas. Cancer Manag Res.
14:2609–2623. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Panoutsopoulou K, Dreyer T, Dorn J,
Obermayr E, Mahner S, Gorp TV, Braicu I, Zeillinger R, Magdolen V,
Avgeris M, et al: tRNA(GlyGCC)-derived internal fragment
(i-tRF-GlyGCC) in ovarian cancer treatment outcome and progression.
Cancers (Basel). 14:242021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Wang L, Liu Y, Yan W, Huang C, Ding Z,
Yang J, Jiang S and Sun L: Clinical significance of high expression
of tRF-Glu-TTC-2 in prostate carcinoma and its effect on growth. Am
J Mens Health. 16:155798832211359702022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yang C, Lee M, Song G and Lim W:
tRNALys-derived fragment alleviates cisplatin-induced
apoptosis in prostate cancer cells. Pharmaceutics. 13:552021.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yang N, Li R, Liu R, Yang S, Zhao Y, Xiong
W and Qiu L: The emerging function and promise of tRNA-Derived
small RNAs in cancer. J Cancer. 15:1642–1656. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen Q, Li D, Jiang L, Wu Y, Yuan H, Shi
G, Liu F, Wu P and Jiang K: Biological functions and clinical
significance of tRNA-derived small fragment (tsRNA) in tumors:
Current state and future perspectives. Cancer Lett. 587:2167012024.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Salehi M, Kamali MJ, Rajabzadeh A, Minoo
S, Mosharafi H, Saeedi F and Daraei A: tRNA-derived fragments: Key
determinants of cancer metastasis with emerging therapeutic and
diagnostic potentials. Arch Biochem Biophys. 753:1099302024.
View Article : Google Scholar : PubMed/NCBI
|