1
|
Biller LH and Schrag D: Diagnosis and
treatment of metastatic colorectal cancer: A review. JAMA.
325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Piawah S and Venook AP: Targeted therapy
for colorectal cancer metastases: A review of current methods of
molecularly targeted therapy and the use of tumor biomarkers in the
treatment of metastatic colorectal cancer. Cancer. 125:4139–4147.
2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Holladay L, Luu J, Balendra V and Kmetz K:
Current and potential treatment of colorectal cancer metastasis to
bone. Cancer Treat Res Commun. 37:1007632023. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lo SH: C-terminal tensin-like (CTEN): A
promising biomarker and target for cancer. Int J Biochem Cell Biol.
51:150–154. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lu X, Zhou B, Cao M, Shao Q, Pan Y and
Zhao T: CTEN inhibits tumor angiogenesis and growth by targeting
VEGFA through down-regulation of β-catenin in breast cancer.
Technol Cancer Res Treat. 20:153303382110455062021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Al-Ghamdi S, Cachat J, Albasri A, Ahmed M,
Jackson D, Zaitoun A, Guppy N, Otto WR, Alison MR, Kindle KB and
Ilyas M: C-terminal tensin-like gene functions as an oncogene and
promotes cell motility in pancreatic cancer. Pancreas. 42:135–140.
2013. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sasaki H, Moriyama S, Mizuno K, Yukiue H,
Konishi A, Yano M, Kaji M, Fukai I, Kiriyama M, Yamakawa Y and
Fujii Y: Cten mRNA expression was correlated with tumor progression
in lung cancers. Lung Cancer. 40:151–155. 2003. View Article : Google Scholar : PubMed/NCBI
|
8
|
Albasri A, Al-Ghamdi S, Fadhil W,
Aleskandarany M, Liao YC, Jackson D, Lobo DN, Lo SH, Kumari R,
Durrant L, et al: Cten signals through integrin-linked kinase (ILK)
and may promote metastasis in colorectal cancer. Oncogene.
30:2997–3002. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Asiri A, Toss MS, Raposo TP, Akhlaq M,
Thorpe H, Alfahed A, Asiri A and Ilyas M: Cten promotes
epithelial-mesenchymal transition (EMT) in colorectal cancer
through stabilisation of Src. Pathol Int. 69:381–391. 2019.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Thorpe H, Asiri A, Akhlaq M and Ilyas M:
Cten promotes epithelial-mesenchymal transition through the
post-transcriptional stabilization of Snail. Mol Carcinog.
56:2601–2609. 2017. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Lu X, Gao J, Zhang Y, Zhao T, Cai H and
Zhang T: CTEN induces epithelial-mesenchymal transition (EMT) and
metastasis in non small cell lung cancer cells. PLoS One.
13:e01988232018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Albasri A, Seth R, Jackson D, Benhasouna
A, Crook S, Nateri AS, Chapman R and Ilyas M: C-terminal
Tensin-like (CTEN) is an oncogene which alters cell motility
possibly through repression of E-cadherin in colorectal cancer. J
Pathol. 218:57–65. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Wang YX, Huang CY, Chiu HJ, Huang PH,
Chien HT, Jwo SH and Liao YC: Nuclear-localized CTEN is a novel
transcriptional regulator and promotes cancer cell migration
through its downstream target CDC27. J Physiol Biochem. 79:163–174.
2023. View Article : Google Scholar : PubMed/NCBI
|
14
|
Lu X, Zhang Y, Pan Y, Cao M, Zhou X and
Zhang T: Overexpression of CTEN is associated with gefitinib
resistance in non-small cell lung cancer. Oncol Lett.
21:402021.PubMed/NCBI
|
15
|
Li Y, Mizokami A, Izumi K, Narimoto K,
Shima T, Zhang J, Dai J, Keller ET and Namiki M: CTEN/tensin 4
expression induces sensitivity to paclitaxel in prostate cancer.
Prostate. 70:48–60. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liao YC, Chen NT, Shih YP, Dong Y and Lo
SH: Up-regulation of C-terminal tensin-like molecule promotes the
tumorigenicity of colon cancer through beta-catenin. Cancer Res.
69:4563–4566. 2009. View Article : Google Scholar : PubMed/NCBI
|
17
|
Schwartz L, Supuran CT and Alfarouk KO:
The Warburg effect and the hallmarks of cancer. Anticancer Agents
Med Chem. 17:164–170. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhong X, He X, Wang Y, Hu Z, Huang H, Zhao
S, Wei P and Li D: Warburg effect in colorectal cancer: The
emerging roles in tumor microenvironment and therapeutic
implications. J Hematol Oncol. 15:1602022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Liu J, Liu ZX, Wu QN, Lu YX, Wong CW, Miao
L, Wang Y, Wang Z, Jin Y, He MM, et al: Long noncoding RNA AGPG
regulates PFKFB3-mediated tumor glycolytic reprogramming. Nat
Commun. 11:15072020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Yu S, Zang W, Qiu Y, Liao L and Zheng X:
Deubiquitinase OTUB2 exacerbates the progression of colorectal
cancer by promoting PKM2 activity and glycolysis. Oncogene.
41:46–56. 2022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Shi T, Ma Y, Cao L, Zhan S, Xu Y, Fu F,
Liu C, Zhang G, Wang Z, Wang R, et al: B7-H3 promotes aerobic
glycolysis and chemoresistance in colorectal cancer cells by
regulating HK2. Cell Death Dis. 10:3082019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu M, Huang F, Zhang D, Ju J, Wu XB, Wang
Y, Wang Y, Wu Y, Nie M, Li Z, et al: Heterochromatin protein
HP1gamma promotes colorectal cancer progression and is regulated by
miR-30a. Cancer Res. 75:4593–4604. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen Z, Hu Z, Sui Q, Huang Y, Zhao M, Li
M, Liang J, Lu T, Zhan C, Lin Z, et al: LncRNA FAM83A-AS1
facilitates tumor proliferation and the migration via the
HIF-1α/glycolysis axis in lung adenocarcinoma. Int J Biol Sci.
18:522–535. 2022. View Article : Google Scholar : PubMed/NCBI
|
24
|
Lin S, Li Y, Wang D, Huang C, Marino D,
Bollt O, Wu C, Taylor MD, Li W, DeNicola GM, et al: Fascin promotes
lung cancer growth and metastasis by enhancing glycolysis and
PFKFB3 expression. Cancer Lett. 518:230–242. 2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rao J, Wang H, Ni M, Wang Z, Wang Z, Wei
S, Liu M, Wang P, Qiu J, Zhang L, et al: FSTL1 promotes liver
fibrosis by reprogramming macrophage function through modulating
the intracellular function of PKM2. Gut. 71:2539–2550. 2022.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Liu R, Li Y, Tian L, Shi H, Wang J, Liang
Y, Sun B, Wang S, Zhou M, Wu L, et al: Gankyrin drives metabolic
reprogramming to promote tumorigenesis, metastasis and drug
resistance through activating β-catenin/c-Myc signaling in human
hepatocellular carcinoma. Cancer Lett. 443:34–46. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dai M, Song J, Wang L, Zhou K and Shu L:
HOXC13 promotes cervical cancer proliferation, invasion and Warburg
effect through β-catenin/c-Myc signaling pathway. J Bioenerg
Biomembr. 53:597–608. 2021. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu Y, Huang Y, Zhang J, Pei C, Hu J, Lyu
J and Shen Y: TIMMDC1 knockdown inhibits growth and metastasis of
gastric cancer cells through metabolic inhibition and
AKT/GSK3β/β-catenin signaling pathway. Int J Biol Sci.
14:1256–1267. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Rennoll S and Yochum G: Regulation of MYC
gene expression by aberrant Wnt/β-catenin signaling in colorectal
cancer. World J Biol Chem. 6:290–300. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Ashihara E, Takada T and Maekawa T:
Targeting the canonical Wnt/β-catenin pathway in hematological
malignancies. Cancer Sci. 106:665–671. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wu YB, Li SY, Liu JY, Xue JJ, Xu JF, Chen
T, Cao TY, Zhou H, Wu TT, Dong CL, et al: Long non-coding RNA
NRSN2-AS1 promotes ovarian cancer progression through targeting
PTK2/β-catenin pathway. Cell Death Dis. 14:6962023. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liao YC and Lo SH: Tensins-emerging
insights into their domain functions, biological roles and disease
relevance. J Cell Sci. 134:jcs2540292021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zafari N, Velayati M, Damavandi S, Pourali
G, Mobarhan MG, Nassiri M, Hassanian SM, Khazaei M, Ferns GA and
Avan A: Metabolic pathways regulating colorectal cancer: A
potential therapeutic approach. Curr Pharm Des. 28:2995–3009. 2022.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Nenkov M, Ma Y, Gaßler N and Chen Y:
Metabolic reprogramming of colorectal cancer cells and the
microenvironment: Implication for therapy. Int J Mol Sci.
22:62622021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Zhao S, Guan B, Mi Y, Shi D, Wei P, Gu Y,
Cai S, Xu Y, Li X, Yan D, et al: LncRNA MIR17HG promotes colorectal
cancer liver metastasis by mediating a glycolysis-associated
positive feedback circuit. Oncogene. 40:4709–4724. 2021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Asiri A, Raposo TP, Alfahed A and Ilyas M:
TGFβ1-induced cell motility but not cell proliferation is mediated
through Cten in colorectal cancer. Int J Exp Pathol. 99:323–330.
2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Fleming JC, Woo J, Moutasim K, Hanley CJ,
Frampton SJ, Wood O, Ward M, Woelk CH, Ottensmeier CH, Hafizi S, et
al: CTEN induces tumour cell invasion and survival and is
prognostic in radiotherapy-treated head and neck cancer. Cancers
(Basel). 12:29632020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Yang J, Ren B, Yang G, Wang H, Chen G, You
L, Zhang T and Zhao Y: The enhancement of glycolysis regulates
pancreatic cancer metastasis. Cell Mol Life Sci. 77:305–321. 2020.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Feng J, Li J, Wu L, Yu Q, Ji J, Wu J, Dai
W and Guo C: Emerging roles and the regulation of aerobic
glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res.
39:1262020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fang Y, Shen ZY, Zhan YZ, Feng XC, Chen
KL, Li YS, Deng HJ, Pan SM, Wu DH and Ding Y: CD36 inhibits
β-catenin/c-myc-mediated glycolysis through ubiquitination of GPC4
to repress colorectal tumorigenesis. Nat Commun. 10:39812019.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Liang Y, Rao Z, Du D, Wang Y and Fang T:
Butyrate prevents the migration and invasion, and aerobic
glycolysis in gastric cancer via inhibiting Wnt/β-catenin/c-Myc
signaling. Drug Dev Res. 84:532–541. 2023. View Article : Google Scholar : PubMed/NCBI
|
42
|
Raposo TP, Alfahed A, Nateri AS and Ilyas
M: Tensin4 (TNS4) is upregulated by Wnt signalling in adenomas in
multiple intestinal neoplasia (Min) mice. Int J Exp Pathol.
101:80–86. 2020. View Article : Google Scholar : PubMed/NCBI
|