Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2024 Volume 28 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 28 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

Machine learning‑based radiomics models accurately predict Crohn's disease‑related anorectal cancer

  • Authors:
    • Yuki Horio
    • Jota Ikeda
    • Kentaro Matsumoto
    • Shinichiro Okada
    • Kentaro Nagano
    • Kurando Kusunoki
    • Ryuichi Kuwahara
    • Kei Kimura
    • Kozo Kataoka
    • Naohito Beppu
    • Motoi Uchino
    • Masataka Ikeda
    • Takeshi Okadome
    • Koichiro Yamakado
    • Hiroki Ikeuchi
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya, Hyogo 663‑8501, Japan, Department of Radiology, Hyogo Medical University, Nishinomiya, Hyogo 663‑8501, Japan, Department of Science and Engineering, Kwansei Gakuin University, Sanda, Hyogo 669‑1330, Japan
  • Article Number: 421
    |
    Published online on: July 3, 2024
       https://doi.org/10.3892/ol.2024.14553
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The radiological diagnosis of Crohn's disease (CD)‑related anorectal cancer is difficult; it is often found in advanced stages and has a poor prognosis because of the difficulty of curative surgery. However, there are no studies on predicting the diagnosis of CD‑related cancer. The present study aimed to develop a predictive model to diagnose CD cancerous lesions more accurately in a way that can be interpreted by clinicians. Patients with CD who developed anorectal CD lesions at Hyogo Medical University (Nishinomiya, Japan) between March 2009 and June 2022 were included in the present study. T2‑weighted and T1‑weighted magnetic resonance (MR) images were utilized for our analysis. Images of anorectal lesions were segmented using open‑source 3D Slicer software, and radiomic features were extracted using PyRadiomics. Six machine learning models were investigated and compared: i) Support vector machine; ii) naive Bayes; iii) random forest; iv) light gradient boosting machine; v) extremely randomized trees; vi) and regularized greedy forest (RGF). SHapley Additive exPlanations (SHAP) values were calculated to assess the extent to which each radiomic feature contributed to the model's predictions compared to baseline, represented as the average of the model's predictions for all test data. The T2‑weighted images of 28 patients with anorectal cancer and 40 non‑cancer patients were analyzed and the contrast‑enhanced T1‑weighted images of 22 cancer and 40 non‑cancer patients. The model with the highest area under the curve (AUC) was the RGF‑based model constructed using T2‑weighted image features, achieving an AUC of 0.944 (accuracy, 0.862; recall, 0.830). The SHAP‑based model explanation suggested a strong association between the diagnosis of CD‑related anorectal cancer and features such as complex lesion texture; greater pixel separation within the same coronal cross‑section; larger, randomly distributed clumps of pixels with the same signal intensity; and a more spherical lesion shape on T2‑weighted images. The MRI radiomics‑based RGF model demonstrated outstanding performance in predicting CD‑related anorectal cancer. These results may affect the diagnosis and surveillance strategies of CD‑related colorectal cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Higashi D, Katsuno H, Kimura H, Takahashi K, Ikeuchi H, Kono T, Nezu R, Hatakeyama K, Kameyama H, Sasaki I, et al: Current state of and problems related to cancer of the intestinal tract associated with Crohn's disease in Japan. Anticancer Res. 36:3761–3766. 2016.PubMed/NCBI

2 

Sasaki H, Ikeuchi H, Bando T, Hirose K, Hirata A, Chohno T, Horio Y, Tomita N, Hirota S, Ide Y, et al: Clinicopathological characteristics of cancer associated with Crohn's disease. Surg Today. 47:35–41. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Kim J, Lee HS, Park SH, Yang SK, Ye BD, Yang DH, Kim KJ, Byeon JS, Yoon YS, Yu CS and Kim J: Pathologic features of colorectal carcinomas associated with Crohn's disease in Korean population. Pathol Res Pract. 213:250–255. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Uchino M, Ikeuchi H, Hata K, Minagawa T, Horio Y, Kuwahara R, Nakamura S, Watanabe K, Saruta M, Fujii T, et al: Intestinal cancer in patients with Crohn's disease: A systematic review and meta-analysis. J Gastroenterol Hepatol. 36:329–336. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Yano Y, Matsui T, Hirai F, Okado Y, Sato Y, Tsurumi K, Ishikawa S, Beppu T, Koga A, Yoshizawa N, et al: Cancer risk in Japanese Crohn's disease patients: Investigation of the standardized incidence ratio. J Gastroenterol Hepatol. 28:1300–1305. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Thomas M, Bienkowski R, Vandermeer TJ, Trostle D and Cagir B: Malignant transformation in perianal fistulas of Crohn's disease: A systematic review of literature. J Gastrointest Surg. 14:66–73. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Hirsch D, Wangsa D, Zhu YJ, Hu Y, Edelman DC, Meltzer PS, Heselmeyer-Haddad K, Ott C, Kienle P, Galata C, et al: Dynamics of genome alterations in Crohn's disease-associated colorectal carcinogenesis. Clin Cancer Res. 24:4997–5011. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Palmieri C, Müller G, Kroesen AJ, Galata C, Rink AD, Morgenstern J and Kruis W: Perianal fistula-associated carcinoma in Crohn's disease: A multicentre retrospective case control study. J Crohns Colitis. 15:1686–1693. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Shwaartz C, Munger JA, Deliz JR, Bornstein JE, Gorfine SR, Chessin DB, Popowich DA and Bauer JJ: Fistula-associated anorectal cancer in the setting of Crohn's disease. Dis Colon Rectum. 59:1168–1173. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Beaugerie L, Carrat F, Nahon S, Zeitoun JD, Sabaté JM, Peyrin-Biroulet L, Colombel JF, Allez M, Fléjou JF, Kirchgesner J, et al: High risk of anal and rectal cancer in patients with anal and/or perianal Crohn's disease. Clin Gastroenterol Hepatol. 16:892–899.e2. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Galata C, Hirsch D, Reindl W, Post S, Kienle P, Boutros M, Gaiser T and Horisberger K: Clinical and histopathologic features of colorectal adenocarcinoma in Crohn's disease. J Clin Gastroenterol. 52:635–640. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Ogino T, Mizushima T, Fujii M, Sekido Y, Eguchi H, Nezu R, Ikeuchi H, Motoi U, Futami K, Okamoto K, et al: Crohn's disease-associated anorectal cancer has a poor prognosis with high local recurrence: A subanalysis of the nationwide Japanese study. Am J Gastroenterol. 118:1626–1637. 2023. View Article : Google Scholar : PubMed/NCBI

13 

Hirano Y, Futami K, Higashi D, Mikami K and Maekawa T: Anorectal cancer surveillance in Crohn's disease. J Anus Rectum Colon. 2:145–154. 2018. View Article : Google Scholar : PubMed/NCBI

14 

Horvat N, Carlos Tavares Rocha C, Clemente Oliveira B, Petkovska I and Gollub MJ: MRI of rectal cancer: Tumor staging, imaging techniques, and management. Radiographics. 39:367–387. 2019. View Article : Google Scholar : PubMed/NCBI

15 

Lad SV, Haider MA, Brown CJ and Mcleod RS: MRI appearance of perianal carcinoma in Crohn's disease. J Magn Reson Imaging. 26:1659–1662. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Devon KM, Brown CJ, Burnstein M and McLeod RS: Cancer of the anus complicating perianal Crohn's disease. Dis Colon Rectum. 52:211–216. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Xu Y, Liu X, Cao X, Huang C, Liu E, Qian S, Liu X, Wu Y, Dong F, Qiu CW, et al: Artificial intelligence: A powerful paradigm for scientific research. Innovation (Camb). 2:1001792021.PubMed/NCBI

18 

Lundberg SM and Lee SI: A unified approach to interpreting model predictions. Adv Neural Inf Process Syst. 30:4765–4774. 2017.PubMed/NCBI

19 

Shapley LS: A value for n-person games. Contributions to the Theory of Games. 2:307–317. 1953.

20 

Rodríguez-Pérez R and Bajorath J: Interpretation of compound activity predictions from complex machine learning models using local approximations and shapley values. J Med Chem. 63:8761–8777. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Li R, Shinde A, Liu A, Glaser S, Lyou Y, Yuh B, Wong J and Amini A: Machine learning-based interpretation and visualization of nonlinear interactions in prostate cancer survival. JCO Clin Cancer Inform. 4:637–646. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Li W, Liu Y, Liu W, Tang ZR, Dong S, Li W, Zhang K, Xu C, Hu Z, Wang H, et al: Machine learning-based prediction of lymph node metastasis among osteosarcoma patients. Front Oncol. 12:7971032022. View Article : Google Scholar : PubMed/NCBI

23 

Li W, Dong S, Wang H, Wu R, Wu H, Tang ZR, Zhang J, Hu Z and Yin C: Risk analysis of pulmonary metastasis of chondrosarcoma by establishing and validating a new clinical prediction model: A clinical study based on SEER database. BMC Musculoskelet Disord. 22:5292021. View Article : Google Scholar : PubMed/NCBI

24 

Kora P, Ooi CP, Faust O, Raghavendra U, Gudigar A, Chan WY, Meenakshi K, Swaraja K, Plawiak P and Acharya UR: Transfer learning techniques for medical image analysis: A review. Biocybern Biomed Eng. 42:79–107. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Singh D, Kumar V and Vaishali Kaur M: Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks. Eur J Clin Microbiol Infect Dis. 39:1379–1389. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Kwon H, Park J and Lee Y: Stacking ensemble technique for classifying breast cancer. Healthc Inform Res. 25:283–288. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, et al: The image biomarker standardization initiative: Standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology. 295:328–338. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D, Zheng J, Goldman D, Moskowitz C, Fine SW, et al: Haralick texture analysis of prostate MRI: Utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 25:2840–2850. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Liang C, Huang Y, He L, Chen X, Ma Z, Dong D, Tian J, Liang C and Liu Z: The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I–II and stage III–IV colorectal cancer. Oncotarget. 7:31401–31412. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Matsuno H, Mizushima T, Nezu R, Nakajima K, Takahashi H, Haraguchi N, Nishimura J, Hata T, Yamamoto H, Doki Y and Mori M: Detection of anorectal cancer among patients with Crohn's disease undergoing surveillance with various biopsy methods. Digestion. 94:24–29. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Ky A, Sohn N, Weinstein MA and Korelitz BI: Carcinoma arising in anorectal fistulas of Crohn's disease. Dis Colon Rectum. 41:992–996. 1998. View Article : Google Scholar : PubMed/NCBI

32 

Park YW, Eom J, Kim D, Ahn SS, Kim EH, Kang SG, Chang JH, Kim SH and Lee SK: Correction to: A fully automatic multiparametric radiomics model for differentiation of adult pilocytic astrocytomas from high-grade gliomas. Eur Radiol. 32:57842022. View Article : Google Scholar : PubMed/NCBI

33 

Du R, Lee VH, Yuan H, Lam KO, Pang HH, Chen Y, Lam EY, Khong PL, Lee AW, Kwong DL and Vardhanabhuti V: Radiomics model to predict early progression of nonmetastatic nasopharyngeal carcinoma after intensity modulation radiation therapy: A multicenter study. Radiol Artif Intell. 1:e1800752019. View Article : Google Scholar : PubMed/NCBI

34 

Wang Y, Lang J, Zuo JZ, Dong Y, Hu Z, Xu X, Zhang Y, Wang Q, Yang L, Wong STC, et al: The radiomic-clinical model using the SHAP method for assessing the treatment response of whole-brain radiotherapy: a multicentric study. Eur Radiol. 32:8737–8747. 2022. View Article : Google Scholar : PubMed/NCBI

35 

LeCun Y, Bengio Y and Hinton G: Deep learning. Nature. 521:436–444. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Hussein S, Kandel P, Bolan CW, Wallace MB and Bagci U: Lung and pancreatic tumor characterization in the deep learning era: Novel supervised and unsupervised learning approaches. IEEE Trans Med Imaging. 38:1777–1787. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Hirsch D and Gaiser T: Crohn's disease-associated colorectal carcinogenesis: TP53 mutations and copy number gains of chromosome arm 5p as (early) markers of tumor progression. Pathologe. 39 (Suppl 2):S253–S261. 2018.(In German). View Article : Google Scholar

38 

Fujita M, Matsubara N, Matsuda I, Maejima K, Oosawa A, Yamano T, Fujimoto A, Furuta M, Nakano K, Oku-Sasaki A, et al: Genomic landscape of colitis-associated cancer indicates the impact of chronic inflammation and its stratification by mutations in the Wnt signaling. Oncotarget. 9:969–981. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Ronneberger O, Fischer P and Brox T: U-net: Convolutional networks for biomedical image segmentation. Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III 18. Springer; Cham: pp. 234–241. 2015

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Horio Y, Ikeda J, Matsumoto K, Okada S, Nagano K, Kusunoki K, Kuwahara R, Kimura K, Kataoka K, Beppu N, Beppu N, et al: Machine learning‑based radiomics models accurately predict Crohn's disease‑related anorectal cancer. Oncol Lett 28: 421, 2024.
APA
Horio, Y., Ikeda, J., Matsumoto, K., Okada, S., Nagano, K., Kusunoki, K. ... Ikeuchi, H. (2024). Machine learning‑based radiomics models accurately predict Crohn's disease‑related anorectal cancer. Oncology Letters, 28, 421. https://doi.org/10.3892/ol.2024.14553
MLA
Horio, Y., Ikeda, J., Matsumoto, K., Okada, S., Nagano, K., Kusunoki, K., Kuwahara, R., Kimura, K., Kataoka, K., Beppu, N., Uchino, M., Ikeda, M., Okadome, T., Yamakado, K., Ikeuchi, H."Machine learning‑based radiomics models accurately predict Crohn's disease‑related anorectal cancer". Oncology Letters 28.3 (2024): 421.
Chicago
Horio, Y., Ikeda, J., Matsumoto, K., Okada, S., Nagano, K., Kusunoki, K., Kuwahara, R., Kimura, K., Kataoka, K., Beppu, N., Uchino, M., Ikeda, M., Okadome, T., Yamakado, K., Ikeuchi, H."Machine learning‑based radiomics models accurately predict Crohn's disease‑related anorectal cancer". Oncology Letters 28, no. 3 (2024): 421. https://doi.org/10.3892/ol.2024.14553
Copy and paste a formatted citation
x
Spandidos Publications style
Horio Y, Ikeda J, Matsumoto K, Okada S, Nagano K, Kusunoki K, Kuwahara R, Kimura K, Kataoka K, Beppu N, Beppu N, et al: Machine learning‑based radiomics models accurately predict Crohn's disease‑related anorectal cancer. Oncol Lett 28: 421, 2024.
APA
Horio, Y., Ikeda, J., Matsumoto, K., Okada, S., Nagano, K., Kusunoki, K. ... Ikeuchi, H. (2024). Machine learning‑based radiomics models accurately predict Crohn's disease‑related anorectal cancer. Oncology Letters, 28, 421. https://doi.org/10.3892/ol.2024.14553
MLA
Horio, Y., Ikeda, J., Matsumoto, K., Okada, S., Nagano, K., Kusunoki, K., Kuwahara, R., Kimura, K., Kataoka, K., Beppu, N., Uchino, M., Ikeda, M., Okadome, T., Yamakado, K., Ikeuchi, H."Machine learning‑based radiomics models accurately predict Crohn's disease‑related anorectal cancer". Oncology Letters 28.3 (2024): 421.
Chicago
Horio, Y., Ikeda, J., Matsumoto, K., Okada, S., Nagano, K., Kusunoki, K., Kuwahara, R., Kimura, K., Kataoka, K., Beppu, N., Uchino, M., Ikeda, M., Okadome, T., Yamakado, K., Ikeuchi, H."Machine learning‑based radiomics models accurately predict Crohn's disease‑related anorectal cancer". Oncology Letters 28, no. 3 (2024): 421. https://doi.org/10.3892/ol.2024.14553
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team