Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2024 Volume 28 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2024 Volume 28 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Sodium valproate affects the expression of p16INK4a and p21WAFI/Cip1 cyclin‑dependent kinase inhibitors in HeLa cells

  • Authors:
    • Marina Amorim Rocha
    • Adauto Lima Cardoso
    • Cesar Martins
    • Maria Luiza S. Mello
  • View Affiliations / Copyright

    Affiliations: Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, São Paulo 13083‑862, Brazil, Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University, Botucatu, São Paulo 18618‑689, Brazil
    Copyright: © Rocha et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 432
    |
    Published online on: July 11, 2024
       https://doi.org/10.3892/ol.2024.14563
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

p16INK4a and p21WAF1/Cip1 are cyclin‑dependent kinase inhibitors involved in cell cycle control, which can function as oncogenes or tumor suppressors, depending on the context of various extracellular and intracellular signals, and cell type. In human papillomavirus‑induced cervical cancer, p16INK4a shows oncogenic activity and functions as a diagnostic marker of cervical neoplasia, whereas p21WAF1/Cip1 acts as a tumor suppressor and its downregulation is associated with the progression of malignant transformation. Several histone deacetylase (HDAC) inhibitors promote the positive and negative regulation of a number of genes, including p16INK4a and p21WAF1/Cip1; however, the effects of sodium valproate (VPA) on these genes and on the proteins they encode remain uncertain in HeLa cervical cancer cells. In the present study, these effects were investigated in HeLa cells treated with 0.5 or 2 mM VPA for 24 h, using reverse transcription‑quantitative PCR, confocal microscopy and western blotting. The results revealed a decrease in the mRNA expression levels of p16INK4a and a tendency for p16INK4a protein abundance to decrease in the presence of 2 mM VPA. By contrast, an increase in the protein expression levels of p21WAF1/Cip1 was detected in the presence of 0.5 and 2 mM VPA. Furthermore, VPA was confirmed to inhibit HDAC activity and induce global hyperacetylation of histone H3. Notably, VPA was shown to suppress p16INK4a, a biomarker gene of cervical carcinoma, and to increase the abundance of the tumor suppressor protein p21WAF1/Cip1, thus contributing to the basic knowledge regarding the antitumorigenic potential of VPA. Exploration of epigenetic changes associated with the promoters of p16INK4a and p21WAF1/Cip1, such as histone H3 methylation, may provide further information and improve the understanding of these findings.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Chen YQ, Cipriano SC, Arenkiel JM and Miller FR: Tumor suppression by p21WAF1. Cancer Res. 55:4536–4539. 1995.PubMed/NCBI

2 

Yang ZY, Perkins ND, Ohno T, Nabel EG and Nabel GJ: The p21 cyclin-dependent kinase inhibitor suppresses tumorigenicity in vivo. Nat Med. 1:1052–1056. 1995. View Article : Google Scholar : PubMed/NCBI

3 

Kim YT, Cho NH, Park SW and Kim JW: Underexpression of cyclin-dependent kinase (CDK) inhibitors in cervical carcinoma. Gynecol Oncol. 71:38–45. 1998. View Article : Google Scholar : PubMed/NCBI

4 

Kim YT and Zhao M: Aberrant cell cycle regulation in cervical carcinoma. Yonsei Med J. 46:597–613. 2005. View Article : Google Scholar : PubMed/NCBI

5 

Huo W, Zhai S, Wang Y, Qiang X, Na R, Gui H, Wu N, Cao Y and Bai H: Relevance research between the expression of p16INK4a, Notch1, and hTERC genes: The development of HPV16-positive cervical cancer. J Clin Lab Anal. 34:e232072020. View Article : Google Scholar : PubMed/NCBI

6 

Medema RH, Herrera RE, Lam F and Weinberg RA: Growth suppression by p16ink4 requires functional retinoblastoma protein. Proc Natl Acad Sci USA. 92:6289–6293. 1995. View Article : Google Scholar : PubMed/NCBI

7 

Sherr CJ and Roberts JM: CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev. 13:1501–1512. 1999. View Article : Google Scholar : PubMed/NCBI

8 

Israels ED and Israels LG: The cell cycle. Stem Cells. 19:88–91. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Pei XH and Xiong Y: Biochemical and cellular mechanisms of mammalian CDK inhibitors: A few unresolved issues. Oncogene. 24:2787–2795. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Nehls K, Vinokurova S, Schmidt D, Kommoss F, Reuschenbach M, Kisseljov F, Einenkel J, von Knebel Doeberitz M and Wentzeusen N: p16 methylation does not affect protein expression in cervical carcinogenesis. Eur J Cancer. 44:2496–2505. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Lin CK, Liu ST, Chang CC and Huang SM: Regulatory mechanisms of fluvastatin and lovastatin for the p21 induction in human cervical cancer HeLa cells. PLoS One. 14:e02144082019. View Article : Google Scholar : PubMed/NCBI

12 

Li M, Yang J, Liu K, Yang J, Zhan X, Wang L, Shen X, Chen J and Mao Z: p16 promotes proliferation in cervical carcinoma cells through CDK6-HuR-IL1A axis. J Cancer. 11:1457–1467. 2020. View Article : Google Scholar : PubMed/NCBI

13 

Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, Dallenbach-Hellweg G, Schmidt D and von Knebel Doeberitz M: Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 92:276–284. 2001. View Article : Google Scholar : PubMed/NCBI

14 

van de Putte G, Holm R, Lie AK, Tropé CG and Kristensen GB: Expression of p27, p21, and p16 protein in early squamous cervical cancer and its relation to prognosis. Gynecol Oncol. 89:140–147. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Volgareva G, Zavalishina L, Andreeva Y, Frank G, Krutikova E, Golovina D, Bliev A, Spitkovsky D, Ermilova V and Kisseljov F: Protein p16 as a marker of dysplastic and neoplastic alterations in cervical epithelial cells. BMC Cancer. 4:582004. View Article : Google Scholar : PubMed/NCBI

16 

Bahnassy AA, Zekri AR, Alam El-Din HM, Aboubakr AA, Kamel K, El-Sabah MT and Mokhtar NM: The role of cyclins and cyclins inhibitors in the multistep process of HPV-associated cervical carcinoma. J Egypt Natl Cancer Inst. 18:292–302. 2006.PubMed/NCBI

17 

Yoruker EE, Mert U, Bugra D, Yamaner S and Dalay N: Promoter and histone methylation and p16(INK4A) gene expression in colon cancer. Exp Ther Med. 4:865–870. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Zhang CY, Bao W and Wang LH: Downregulation of p16(ink4a) inhibits cell proliferation and induces G1 cell cycle arrest in cervical cancer cells. Int J Mol Med. 33:1577–1585. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Wu H, Zhang J and Shi H: Expression of cancer stem markers could be influenced by silencing of p16 gene in HeLa cervical carcinoma cells. Eur J Gynaecol Oncol. 37:221–225. 2016.PubMed/NCBI

20 

Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB and Sidransky D: 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1:686–692. 1995. View Article : Google Scholar : PubMed/NCBI

21 

Lin Z, Gao M, Zhang X, Kim YS, Lee ES, Kim HK and Kim I: The hypermethylation and protein expression of p16 INK4A and DNA repair gene O6-methylguanine-DNA methyltransferase in various uterine cervical lesions. J Cancer Res Clin Oncol. 131:364–370. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Beyer S, Zhu J, Mayr D, Kuhn C, Schulze S, Hofmann S, Dannecker C, Jeschke U and Kost BP: Histone H3 acetyl K9 and histone H3 tri methyl K4 as prognostic markers for patients with cervical cancer. Int J Mol Sci. 18:4772017. View Article : Google Scholar : PubMed/NCBI

23 

Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Tolga Emre NC, Schreiber SL, Mellor J and Kouzarides T: Active genes are tri-methylated at K4 of histone H3. Nature. 419:407–411. 2002. View Article : Google Scholar : PubMed/NCBI

24 

Cai Y, Zhang Y, Loh YP, Tng JQ, Lim MC, Cao Z, Raju A, Aiden EL, Li S, Manikandan L, et al: H3K27me3-rich genomic regions can function as silencers to repress gene expression via chromatin interactions. Nature Commun. 12:7192021. View Article : Google Scholar : PubMed/NCBI

25 

McLaughlin-Drubin ME, Crum CP and Münger K: Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc Natl Acad Sci USA. 108:2130–2135. 2011. View Article : Google Scholar : PubMed/NCBI

26 

McLaughlin-Drubin ME, Park D and Munger K: Tumor suppressor p16INK4A is necessary for survival of cervical carcinoma cell lines. Proc Natl Acad Sci USA. 110:16175–16180. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Yokoyama Y, Takahashi Y, Morishita S, Hashimoto M and Tamaya T: Introduction of p21(Waf1/Cip1) gene into a carcinoma cell line of the uterine cervix with inactivated p53. Cancer Lett. 116:233–239. 1997. View Article : Google Scholar : PubMed/NCBI

28 

Fang JY and Lu YY: Effects of histone acetylation and DNA methylation on p21(WAF1) regulation. World J Gastroenterol. 8:400–405. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Chen YX, Fang JY, Lu R and Qiu DK: Expression of p21(WAF1) is related to acetylation of histone H3 in total chromatin in human colorectal cancer. World J Gastroenterol. 13:2209–2213. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Karmodiya K, Krebs AR, Oulad-Abdelghani M, Kimura H and Tora L: H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics. 13:4242012. View Article : Google Scholar : PubMed/NCBI

31 

Sami S, Höti N, Xu HM, Shen Z and Huang X: Valproic acid inhibits the growth of cervical cancer both in vitro and in vivo. J Biochem. 144:357–362. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Tsai C, Leslie JS, Franko-Tobin LG, Prasnal MC, Yang T, Vienna Mackey L, Fuselier JA, Coy DH, Liu M, Yu C and Sun L: Valproic acid suppresses cervical cancer tumor progression possibly via activating Notch1 signaling and enhances receptor-targeted cancer chemotherapeutic via activating somatostatin receptor type II. Arch Gynecol Obstetr. 288:393–400. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Mawatari T, Ninomiya I, Inokuchi M, Harada S, Hayashi H, Oyama K, Makino I, Nakagawara H, Miyashita T, Tajima H, et al: Valproic acid inhibits proliferation of HER2-expressing breast cancer cells by inducing cell cycle arrest and apoptosis through Hsp70 acetylation. Int J Oncol. 47:2073–2081. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Lipska K, Filip A and Gumieniczek A: The impact of chlorambucil and valproic acid on cell viability, apoptosis, and expression of p21, HDM2, BCL2 and MCL1 genes in chronic lymphocytic leukemia. Cells. 10:10882021. View Article : Google Scholar : PubMed/NCBI

35 

Luna-Palencia GR, Correa-Basurto J, Trujillo-Ferrara J, Meraz-Ríos MA and Vásquez-Moctezuma I: Epigenetic evaluation of N-(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative with activity against HeLa cells. Curr Mol Pharmacol. 14:570–578. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Richon VM, Sandhoff TW, Rifkind RA and Marks PA: Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 97:10014–10019. 2000. View Article : Google Scholar : PubMed/NCBI

37 

Minucci S and Pelicci PG: Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 6:38–51. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Lin YC, Lin JH, Chou CW, Chang YF, Yeh SH and Chen CC: Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res. 68:2375–2383. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Lee S, Park JR, Seo MS, Roh KH, Park SB, Hwang JW, Sun B, Seo K, Lee YS, Kang SK, et al: Histone deacetylase inhibitors decrease proliferation potential and multilineage differentiation capability of human mesenchymal stem cells. Cell Prolif. 42:711–720. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Aizawa S and Yamamuro Y: Valproate administration to mice increases hippocampal p21 expression by altering genomic DNA methylation. Neuroreport. 26:915–920. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Guo Q, Li X, Han H, Li C, Liu S, Gao W and Sun G: Histone lysine methylation in TGF-β1 mediated p21 gene expression in rat mesangial cells. Biomed Res Int. 2016:69272342016. View Article : Google Scholar : PubMed/NCBI

42 

Li X, Li C, Li X, Cui P, Li Q, Guo Q, Han H, Liu S and Sun G: Involvement of histone lysine methylation in p21 gene expression in rat kidney in vivo and rat mesangial cells in vitro under diabetic conditions. J Diabetes Res. 2016:38532422016. View Article : Google Scholar : PubMed/NCBI

43 

Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG and Heinzel T: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20:6969–6978. 2001. View Article : Google Scholar : PubMed/NCBI

44 

Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA and Klein PS: Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem. 276:36734–36741. 2001. View Article : Google Scholar : PubMed/NCBI

45 

Peterson GM and Naunton M: Valproate: A simple chemical with so much to offer. J Clin Pharm Therap. 30:417–421. 2005. View Article : Google Scholar

46 

Terbach N and Williams RSB: Structure-function studies for the panacea, valproic acid. Biochem Soc Trans. 37:1126–1132. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Tomson T, Battino D and Perucca E: Valproic acid after five decades of use in epilepsy: Time to reconsider the indications of a time-honoured drug. Lancet Neurol. 15:210–218. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Makarević J, Rutz J, Juengel E, Maxeiner S, Tsaur I, Chun FKH, Bereiter-Hahn J and Blaheta RA: Influence of the HDAC inhibitor valproic acid on the growth and proliferation of temsirolimus-resistant prostate cancer cells in vitro. Cancers (Basel). 11:5662019. View Article : Google Scholar : PubMed/NCBI

49 

Romoli M, Mazzocchetti P, D'Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, Calabresi P and Costa C: Valproic acid and epilepsy: From molecular mechanisms to clinical evidences. Curr Neuropharmacol. 17:926–946. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Zhang Y, Zhang Y, Li M, Meng F, Yu Z, Chen Y and Cui G: Combination of SB431542, CHIR99021 and PD0325901 has a synergic effect on abrogating valproic acid-induced epithelial-mesenchymal transition and stemness in HeLa, 5637 and SCC-15 cells. Oncol Rep. 41:3545–3554. 2019.PubMed/NCBI

51 

Han W, Yu F, Wang R, Guan W and Zhi F: Valproic acid sensitizes glioma cells to luteolin through induction of apoptosis and autophagy via Akt signaling. Cell Mol Neurobiol. 41:1625–1634. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Johannessen CU and Johannessen SI: Valproate: Past, present, and future. CNS Drug Rev. 9:199–216. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Chateauvieux S, Morceau F, Dicato M and Diederich M: Molecular and therapeutic potential and toxicity of valproic acid. J Biomed Biotechnol. 2010:4793642010. View Article : Google Scholar : PubMed/NCBI

54 

Mello MLS: Sodium valproate-induced chromatin remodeling. Front Cell Dev Biol. 9:6455182021. View Article : Google Scholar : PubMed/NCBI

55 

Sargolzaei J, Rabbani-Chadegani A, Mollaei H and Deezagi A: Spectroscopic analysis of the interaction of valproic acid with histone H1 in solution and in chromatin structure. Int J Biol Macromol. 99:427–432. 2017. View Article : Google Scholar : PubMed/NCBI

56 

de Campos Vidal B and Mello MLS: Sodium valproate (VPA) interactions with DNA and histones. Int J Biol Macromol. 163:219–231. 2020. View Article : Google Scholar : PubMed/NCBI

57 

Baumann C, Zhang X, Zhu L, Fan Y and De La Fuente R: Changes in chromatin accessibility landscape and histone H3 core acetylation during valproic acid-induced differentiation of embryonic stem cells. Epigenetics Chromatin. 14:582021. View Article : Google Scholar : PubMed/NCBI

58 

Vidal BC and Mello MLS: Data on FTIR spectra of mixtures of sodium valproate (VPA) and histones H1 and H3. Latin Amer Data Sci. 1:102–109. 2022. View Article : Google Scholar

59 

Gurvich N, Tsygankova OM, Meinkoth JL and Klein PS: Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res. 64:1079–1086. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Dejligbjerg M, Grauslund M, Litman T, Collins L, Qian X, Jeffers M, Lichenstein H, Jensen PB and Sehested M: Differential effects of class I isoform histone deacetylase depletion and enzymatic inhibition by belinostat or valproic acid in HeLa cells. Mol Cancer. 7:702008. View Article : Google Scholar : PubMed/NCBI

61 

Felisbino MB, Tamashiro WMSC and Mello MLS: Chromatin remodeling, cell proliferation and cell death in valproic acid-treated HeLa cells. PLoS One. 6:e291442011. View Article : Google Scholar : PubMed/NCBI

62 

Veronezi GMB, Felisbino MB, Gatti MSV, Mello MLS and Vidal BC: DNA methylation changes in valproic acid-treated HeLa cells as assessed by image analysis, immunofluorescence and vibrational microspectroscopy. PLoS One. 12:e01707402017. View Article : Google Scholar : PubMed/NCBI

63 

Rocha MA, Veronezi GMB, Felisbino MB, Gatti MSV, Tamashiro WMSC and Mello MLS: Sodium valproate and 5-aza-2′-deoxycytidine differentially modulate DNA demethylation in G1 phase-arrested and proliferative HeLa cells. Sci Rep. 9:182362019. View Article : Google Scholar : PubMed/NCBI

64 

Rocha MA, Vidal BC and Mello MLS: Sodium valproate modulates the methylation status of lysine residues 4, 9 and 27 in histone H3 of HeLa cells. Curr Mol Pharmacol. 16:197–210. 2023. View Article : Google Scholar : PubMed/NCBI

65 

Tringler B, Gup CJ, Singh M, Groshong S, Shroyer AL, Heinz DE and Shroyer KR: Evaluation of p16INK4a and pRb expression in cervical squamous and glandular neoplasia. Hum Pathol. 35:689–696. 2004. View Article : Google Scholar : PubMed/NCBI

66 

Rocha MA, Oliveira CBM and Mello MLS: Sodium valproate cytotoxicity effects as assessed by the MTT assay. Repositório de Dados de Pesquisa da Unicamp; version 2, . 2021

67 

Han BR, You BR and Park WH: Valproic acid inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis. Oncol Rep. 30:2999–3005. 2013. View Article : Google Scholar : PubMed/NCBI

68 

Hashemi N, Zoshk MY, Rahidian A, Laripour R, Fasihi H, Hami Z and Chamanara M: Anti-proliferative and apoptotic effects of valproic acid on HeLa cells. Int J Cancer Manag. 15:e1202242022. View Article : Google Scholar

69 

Kondo Y, Shen L and Issa JPJ: Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol. 23:206–215. 2003. View Article : Google Scholar : PubMed/NCBI

70 

Sanmukh SG, Dos Santos NJ, Barquilha CN, Cucielo MS, de Carvalho M, Dos Reis PP, Delella FK, Carvalho HF and Felisbino SL: Bacteriophages M13 and T4 increase the expression of anchorage-dependent survival pathway genes and down regulate androgen receptor expression in LNCaP prostate cell line. Viruses. 13:17542021. View Article : Google Scholar : PubMed/NCBI

71 

Muller PY, Janovjak H, Miserez AR and Dobbie Z: Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques. 32:1372–1374. 13761378–1379. 2002.PubMed/NCBI

72 

Simon P: Q-Gene: Processing quantitative real-time RT-PCR data. Bioinformatics. 19:1439–1440. 2003. View Article : Google Scholar : PubMed/NCBI

73 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Matheu A, Klatt P and Serrano M: Regulation of the INK4a/ARF locus by histone deacetylase inhibitors. J Biol Chem. 280:42433–42441. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Yewdell JW: Not such a dismal science: The economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol. 11:294–297. 2001. View Article : Google Scholar : PubMed/NCBI

76 

Sun Y, Chen J, Huang SYN, Su YP, Wang W, Agama K, Saha S, Jenkins LM, Pascal JM and Pommier Y: PARylation prevents the proteasomal degradation of topoisomerase I DNA-protein crosslinks and induces their deubiquitylation. Nat Commun. 12:50102021. View Article : Google Scholar : PubMed/NCBI

77 

Block MF, Delley CL, Keller LML, Stuehlinger TT and Weber-Ban E: Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA. Nat Commun. 14:52662023. View Article : Google Scholar : PubMed/NCBI

78 

Kinger S, Jagtap YA, Dubey AR, Kumar P, Choudhary A, Karmakar S, Lal G, Prajapti VK, Jha HC, Gutti RK and Mishra A: Valproate mediated proteasome dysfunctions induce apoptosis. Adv Therap. 23004212024. View Article : Google Scholar

79 

Zupkovitz G, Grausenburger R, Brunmeir R, Senese S, Tischler J, Jurkin J, Rembold M, Meunier D, Egger G, Lagger S, et al: The cyclin-dependent kinase inhibitor p21 is a crucial target for histone deacetylase 1 as a regulator of cellular proliferation. Mol Cell Biol. 30:1171–1181. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Fan J, Lou B, Chen W, Zhang J, Lin S, Lv FF and Chen Y: Down-regulation of HDAC5 inhibits growth of human hepatocellular carcinoma by induction of apoptosis and cell cycle arrest. Tumor Biol. 35:11523–11532. 2014. View Article : Google Scholar

81 

Chun SM, Lee JY, Choi J, Lee JH, Hwang JJ, Kim CS, Suh YA and Jang SJ: Epigenetic modulation with HDAC inhibitor CG200745 induces anti-proliferation in non-small cell lung cancer cells. PLoS One. 10:e01193792015. View Article : Google Scholar : PubMed/NCBI

82 

Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, Kwon HK, Hong S, Lee HY, Lee YW and Lee HW: Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 60:6068–6074. 2000.PubMed/NCBI

83 

Kim YB, Ki SW, Yoshida M and Horinouchi S: Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells. J Antibiot (Tokyo). 53:1191–1200. 2000. View Article : Google Scholar : PubMed/NCBI

84 

Psilopatis I, Garmpis N, Garmpi A, Vrettou K, Sarantis P, Koustas E, Antoniou EA, Dimitroulis D, Kourakis G, Karamouzis MV, et al: The emerging role of histone deacetylases inhibitors in cervical cancer therapy. Cancers (Basel). 15:22222023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Rocha MA, Cardoso AL, Martins C and Mello MS: Sodium valproate affects the expression of p16<sup>INK4a</sup> and p21<sup>WAFI/Cip1</sup> cyclin‑dependent kinase inhibitors in HeLa cells. Oncol Lett 28: 432, 2024.
APA
Rocha, M.A., Cardoso, A.L., Martins, C., & Mello, M.S. (2024). Sodium valproate affects the expression of p16<sup>INK4a</sup> and p21<sup>WAFI/Cip1</sup> cyclin‑dependent kinase inhibitors in HeLa cells. Oncology Letters, 28, 432. https://doi.org/10.3892/ol.2024.14563
MLA
Rocha, M. A., Cardoso, A. L., Martins, C., Mello, M. S."Sodium valproate affects the expression of p16<sup>INK4a</sup> and p21<sup>WAFI/Cip1</sup> cyclin‑dependent kinase inhibitors in HeLa cells". Oncology Letters 28.3 (2024): 432.
Chicago
Rocha, M. A., Cardoso, A. L., Martins, C., Mello, M. S."Sodium valproate affects the expression of p16<sup>INK4a</sup> and p21<sup>WAFI/Cip1</sup> cyclin‑dependent kinase inhibitors in HeLa cells". Oncology Letters 28, no. 3 (2024): 432. https://doi.org/10.3892/ol.2024.14563
Copy and paste a formatted citation
x
Spandidos Publications style
Rocha MA, Cardoso AL, Martins C and Mello MS: Sodium valproate affects the expression of p16<sup>INK4a</sup> and p21<sup>WAFI/Cip1</sup> cyclin‑dependent kinase inhibitors in HeLa cells. Oncol Lett 28: 432, 2024.
APA
Rocha, M.A., Cardoso, A.L., Martins, C., & Mello, M.S. (2024). Sodium valproate affects the expression of p16<sup>INK4a</sup> and p21<sup>WAFI/Cip1</sup> cyclin‑dependent kinase inhibitors in HeLa cells. Oncology Letters, 28, 432. https://doi.org/10.3892/ol.2024.14563
MLA
Rocha, M. A., Cardoso, A. L., Martins, C., Mello, M. S."Sodium valproate affects the expression of p16<sup>INK4a</sup> and p21<sup>WAFI/Cip1</sup> cyclin‑dependent kinase inhibitors in HeLa cells". Oncology Letters 28.3 (2024): 432.
Chicago
Rocha, M. A., Cardoso, A. L., Martins, C., Mello, M. S."Sodium valproate affects the expression of p16<sup>INK4a</sup> and p21<sup>WAFI/Cip1</sup> cyclin‑dependent kinase inhibitors in HeLa cells". Oncology Letters 28, no. 3 (2024): 432. https://doi.org/10.3892/ol.2024.14563
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team