|
1
|
DeSantis CE, Ma J, Gaudet MM, Newman LA,
Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer
statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Global Burden of Disease Cancer
Collaboration, . Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T,
Alizadeh-Navaei R, Allen C, Alsharif U, Alvis-Guzman N, Amini E, et
al: Global, regional, and national cancer incidence, mortality,
years of life lost, years lived with disability, and
disability-adjusted life-years for 29 cancer groups, 1990 to 2016:
A systematic analysis for the global burden of disease study. JAMA
Oncol. 4:1553–1568. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Elizabeth MS, Cristina SBJ and Christian
CG: Immunotherapy in combination with chemotherapy for
triple-negative breast cancer. Mini Rev Med Chem. 24:431–439. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Herschkowitz JI, Simin K, Weigman VJ,
Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S,
Chandrasekharan S, et al: Identification of conserved gene
expression features between murine mammary carcinoma models and
human breast tumors. Genome Biol. 8:R762007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pernas S and Tolaney SM: HER2-positive
breast cancer: New therapeutic frontiers and overcoming resistance.
Ther Adv Med Oncol. 11:1758835919833519. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ferrari P, Scatena C, Ghilli M, Bargagna
I, Lorenzini G and Nicolini A: Molecular mechanisms, biomarkers and
emerging therapies for chemotherapy resistant TNBC. Int J Mol Sci.
23:16652022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Guo XQ and Hua YM: Circular RNAs: novel
regulators of resistance to systemic treatments in breast cancer.
Neoplasma. 69:1019–1028. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Majidinia M and Yousefi B: DNA damage
response regulation by microRNAs as a therapeutic target in cancer.
DNA Repair (Amst). 47:1–11. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Abu-Alghayth MH, Khan FR, Belali TM,
Abalkhail A, Alshaghdali K, Nassar SA, Almoammar NE, Almasoudi HH,
Hessien KBG, Aldossari MS and Binshaya AS: The emerging role of
noncoding RNAs in the PI3K/AKT/mTOR signalling pathway in breast
cancer. Pathol Res Pract. 255:1551802024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Elfaki I, Mir R, Abu-Duhier FM, Khan R and
Sakran M: Phosphatidylinositol 3-kinase Glu545Lys and His1047Tyr
Mutations are not Associated with T2D. Curr Diabetes Rev.
16:881–888. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Poddar A, Ahmady F, Rao SR, Sharma R,
Kannourakis G, Prithviraj P and Jayachandran A: The role of
pregnancy associated plasma protein-A in triple negative breast
cancer: A promising target for achieving clinical benefits. J
Biomed Sci. 31:232024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Paszek S, Gabło N, Barnaś E, Szybka M,
Morawiec J, Kołacińska A and Zawlik I: Dysregulation of microRNAs
in triple-negative breast cancer. Ginekol Pol. 88:530–536. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Calin GA, Dumitru CD, Shimizu M, Bichi R,
Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al:
Frequent deletions and down-regulation of micro-RNA genes miR15 and
miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci
USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Abdelfattah AM, Park C and Choi MY: Update
on non-canonical microRNAs. Biomol Concepts. 5:275–287. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
O'Brien J, Hayder H, Zayed Y and Peng C:
Overview of MicroRNA biogenesis, mechanisms of actions, and
circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kawamata T and Tomari Y: Making RISC.
Trends Biochem Sci. 35:368–376. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J
and Jin Y: miR-24 regulates apoptosis by targeting the open reading
frame (ORF) region of FAF1 in cancer cells. PLoS One. 5:e94292010.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ørom UA, Nielsen FC and Lund AH:
MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and
enhances their translation. Mol Cell. 30:460–471. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Banerjee K and Resat H: Constitutive
activation of STAT3 in breast cancer cells: A review. Int J Cancer.
138:2570–2578. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chung SS, Giehl N, Wu Y and Vadgama JV:
STAT3 activation in HER2-overexpressing breast cancer promotes
epithelial-mesenchymal transition and cancer stem cell traits. Int
J Oncol. 44:403–411. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Küçük C, Jiang B, Hu X, Zhang W, Chan JK,
Xiao W, Lack N, Alkan C, Williams JC, Avery KN, et al: Activating
mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK
cells. Nat Commun. 6:60252015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Heppler LN and Frank DA: Rare mutations
provide unique insight into oncogenic potential of STAT
transcription factors. J Clin Invest. 128:113–115. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rajala HL, Eldfors S, Kuusanmäki H, van
Adrichem AJ, Olson T, Lagström S, Andersson EI, Jerez A, Clemente
MJ, Yan Y, et al: Discovery of somatic STAT5b mutations in large
granular lymphocytic leukemia. Blood. 121:4541–4550. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
de Araujo ED, Keserű GM, Gunning PT and
Moriggl R: Targeting STAT3 and STAT5 in Cancer. Cancers (Basel).
12:20022020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Owen KL, Brockwell NK and Parker BS:
JAK-STAT Signaling: A double-edged sword of immune regulation and
cancer progression. Cancers (Basel). 11:20022019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhao L, Pang A and Li Y: Function of GCN5
in the TGF-β1-induced epithelial-to-mesenchymal transition in
breast cancer. Oncol Lett. 16:3955–3963. 2018.PubMed/NCBI
|
|
29
|
López-Mejía JA, Mantilla-Ollarves JC and
Rocha-Zavaleta L: Modulation of JAK-STAT Signaling by LNK: A
forgotten oncogenic pathway in hormone receptor-positive breast
cancer. Int J Mol Sci. 24:147772023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Budi EH, Duan D and Derynck R:
Transforming Growth Factor-β Receptors and Smads: Regulatory
complexity and functional versatility. Trends Cell Biol.
27:658–672. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Said SS and Ibrahim WN: Breaking Barriers:
The promise and challenges of immune checkpoint inhibitors in
triple-negative breast cancer. Biomedicines. 12:3692024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Heldin CH and Moustakas A: Signaling
Receptors for TGF-β Family Members. Cold Spring Harb Perspect Biol.
8:a0220532016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wrana JL, Attisano L, Wieser R, Ventura F
and Massagué J: Mechanism of activation of the TGF-beta receptor.
Nature. 370:341–347. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Moustakas A, Souchelnytskyi S and Heldin
CH: Smad regulation in TGF-beta signal transduction. J Cell Sci.
114((Pt 24)): 4359–4369. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Christodoulou C, Oikonomopoulos G, Koliou
GA, Kostopoulos I, Kotoula V, Bobos M, Pentheroudakis G, Lazaridis
G, Skondra M, Chrisafi S, et al: Evaluation of the insulin-like
growth factor receptor pathway in patients with advanced breast
cancer treated with trastuzumab. Cancer Genomics Proteomics.
15:461–471. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lee JS, Tocheny CE and Shaw LM: The
insulin-like growth factor signaling pathway in breast cancer: An
elusive therapeutic target. Life (Basel). 12:19922022.PubMed/NCBI
|
|
37
|
Bilanges B, Posor Y and Vanhaesebroeck B:
PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev
Mol Cell Biol. 20:515–534. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Vanhaesebroeck B, Perry MWD, Brown JR,
André F and Okkenhaug K: PI3K inhibitors are finally coming of age.
Nat Rev Drug Discov. 20:741–769. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Engelman JA: Targeting PI3K signalling in
cancer: Opportunities, challenges and limitations. Nat Rev Cancer.
9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mayer IA and Arteaga CL: The PI3K/AKT
pathway as a target for cancer treatment. Annu Rev Med. 67:11–28.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tariq K and Luikart BW: Striking a
balance: PIP(2) and PIP(3) signaling in neuronal health and
disease. Explor Neuroprotective Ther. 1:86–100. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hu M, Zhu S, Xiong S, Xue X and Zhou X:
MicroRNAs and the PTEN/PI3K/Akt pathway in gastric cancer (Review).
Oncol Rep. 41:1439–1454. 2019.PubMed/NCBI
|
|
43
|
Li YJ, Li XF, Yang EH and Shi M: Reaserch
Advances on the Role of PI3K/AKT Signaling Pathway and MiRNA in
Acute T-Cell Lymphocytic Leukemia-Review. Zhongguo Shi Yan Xue Ye
Xue Za Zhi. 27:1344–1347. 2019.(In Chinese). PubMed/NCBI
|
|
44
|
Pereira B, Chin SF, Rueda OM, Vollan HK,
Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ,
et al: The somatic mutation profiles of 2,433 breast cancers
refines their genomic and transcriptomic landscapes. Nat Commun.
7:114792016. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Huang J, Wang X, Wen G and Ren Y:
miRNA-205-5p functions as a tumor suppressor by negatively
regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma
cells. Oncol Rep. 42:1677–1688. 2019.PubMed/NCBI
|
|
46
|
Hoxhaj G and Manning BD: The PI3K-AKT
network at the interface of oncogenic signalling and cancer
metabolism. Nat Rev Cancer. 20:74–88. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Walter BA, Gómez-Macias G, Valera VA,
Sobel M and Merino MJ: miR-21 expression in pregnancy-associated
breast cancer: A possible marker of poor prognosis. J Cancer.
2:67–75. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gimm O, Perren A, Weng LP, Marsh DJ, Yeh
JJ, Ziebold U, Gil E, Hinze R, Delbridge L, Lees JA, et al:
Differential nuclear and cytoplasmic expression of PTEN in normal
thyroid tissue, and benign and malignant epithelial thyroid tumors.
Am J Pathol. 156:1693–1700. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Li B, Lu Y, Wang H, Han X, Mao J, Li J, Yu
L, Wang B, Fan S, Yu X and Song B: RETRACTED: miR-221/222 enhance
the tumorigenicity of human breast cancer stem cells via modulation
of PTEN/Akt pathway. Biomed Pharmacother. 79:93–101. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li B, Lu Y, Wang H, Han X, Mao J, Li J, Yu
L, Wang B, Fan S, Yu X and Song B: miR-221/222 enhance the
tumorigenicity of human breast cancer stem cells via modulation of
PTEN/Akt pathway. Biomed Pharmacother. 79:93–101. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bahena-Ocampo I, Espinosa M,
Ceballos-Cancino G, Lizarraga F, Campos-Arroyo D, Schwarz A,
Maldonado V, Melendez-Zajgla J and Garcia-Lopez P: miR-10b
expression in breast cancer stem cells supports self-renewal
through negative PTEN regulation and sustained AKT activation. EMBO
Rep. 17:648–658. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Sarbassov DD, Guertin DA, Ali SM and
Sabatini DM: Phosphorylation and regulation of Akt/PKB by the
rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yang Z, Han Y, Cheng K, Zhang G and Wang
X: miR-99a directly targets the mTOR signalling pathway in breast
cancer side population cells. Cell Prolif. 47:587–595. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Imam JS, Plyler JR, Bansal H, Prajapati S,
Bansal S, Rebeles J, Chen HI, Chang YF, Panneerdoss S, Zoghi B, et
al: Genomic loss of tumor suppressor miRNA-204 promotes cancer cell
migration and invasion by activating AKT/mTOR/Rac1 signaling and
actin reorganization. PLoS One. 7:e523972012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang B, Zhao R, He Y, Fu X, Fu L, Zhu Z,
Fu L and Dong JT: MicroRNA 100 sensitizes luminal A breast cancer
cells to paclitaxel treatment in part by targeting mTOR.
Oncotarget. 7:5702–5714. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Pakravan K, Babashah S, Sadeghizadeh M,
Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N and Javan M:
MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes
suppresses in vitro angiogenesis through modulating the
mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol
(Dordr). 40:457–470. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Janaki Ramaiah M, Lavanya A, Honarpisheh
M, Zarea M, Bhadra U and Bhadra MP: MiR-15/16 complex targets p70S6
kinase 1 and controls cell proliferation in MDA-MB-231 breast
cancer cells. Gene. 552:255–264. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Hu Y, Zhu Q and Tang L: MiR-99a antitumor
activity in human breast cancer cells through targeting of mTOR
expression. PLoS One. 9:e920992014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang ZW, Guo RW, Lv JL, Wang XM, Ye JS,
Lu NH, Liang X and Yang LX: MicroRNA-99a inhibits insulin-induced
proliferation, migration, dedifferentiation, and rapamycin
resistance of vascular smooth muscle cells by inhibiting
insulin-like growth factor-1 receptor and mammalian target of
rapamycin. Biochem Biophys Res Commun. 486:414–422. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Banerjee S, Biehl A, Gadina M, Hasni S and
Schwartz DM: JAK-STAT signaling as a target for inflammatory and
autoimmune diseases: Current and Future Prospects. Drugs.
77:521–546. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liang YK, Lin HY, Dou XW, Chen M, Wei XL,
Zhang YQ, Wu Y, Chen CF, Bai JW, Xiao YS, et al: MiR-221/222
promote epithelial-mesenchymal transition by targeting Notch3 in
breast cancer cell lines. NPJ Breast Cancer. 4:202018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Han M, Wang Y, Guo G, Li L, Dou D, Ge X,
Lv P, Wang F and Gu Y: microRNA-30d mediated breast cancer
invasion, migration, and EMT by targeting KLF11 and activating
STAT3 pathway. J Cell Biochem. 119:8138–8145. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mayoral-Varo V, Calcabrini A,
Sánchez-Bailón MP and Martín-Pérez J: miR205 inhibits stem cell
renewal in SUM159PT breast cancer cells. PLoS One. 12:e01886372017.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lv C, Li F, Li X, Tian Y, Zhang Y, Sheng
X, Song Y, Meng Q, Yuan S, Luan L, et al: MiR-31 promotes mammary
stem cell expansion and breast tumorigenesis by suppressing Wnt
signaling antagonists. Nat Commun. 8:10362017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Shi P, Chen C, Li X, Wei Z, Liu Z and Liu
Y: MicroRNA-124 suppresses cell proliferation and invasion of
triple negative breast cancer cells by targeting STAT3. Mol Med
Rep. 19:3667–3675. 2019.PubMed/NCBI
|
|
66
|
Qin Z, He W, Tang J, Ye Q, Dang W, Lu Y,
Wang J, Li G, Yan Q and Ma J: MicroRNAs Provide Feedback Regulation
of Epithelial-Mesenchymal Transition Induced by Growth Factors. J
Cell Physiol. 231:120–129. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tang Y, Wu B, Huang S, Peng X, Li X, Huang
X, Zhou W, Xie P and He P: Downregulation of miR-505-3p predicts
poor bone metastasis-free survival in prostate cancer. Oncol Rep.
41:57–66. 2019.PubMed/NCBI
|
|
68
|
Wang S, Huang M, Wang Z, Wang W, Zhang Z,
Qu S and Liu C: MicroRNA-133b targets TGFβ receptor I to inhibit
TGF-β-induced epithelial-to-mesenchymal transition and metastasis
by suppressing the TGF-β/SMAD pathway in breast cancer. Int J
Oncol. 55:1097–1109. 2019.PubMed/NCBI
|
|
69
|
Wang J, Liang S and Duan X: Molecular
mechanism of miR-153 inhibiting migration, invasion and
epithelial-mesenchymal transition of breast cancer by regulating
transforming growth factor beta (TGF-β) signaling pathway. J Cell
Biochem. 120:9539–9546. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Dai X, Fang M, Li S, Yan Y, Zhong Y and Du
B: miR-21 is involved in transforming growth factor β1-induced
chemoresistance and invasion by targeting PTEN in breast cancer.
Oncol Lett. 14:6929–6936. 2017.PubMed/NCBI
|
|
71
|
Chen Y, Huang S, Wu B, Fang J, Zhu M, Sun
L, Zhang L, Zhang Y, Sun M, Guo L and Wang S: Transforming growth
factor-β1 promotes breast cancer metastasis by downregulating
miR-196a-3p expression. Oncotarget. 8:49110–49122. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang Y, Hong M, Lian WW and Chen Z: Review
of the pharmacological effects of astragaloside IV and its
autophagic mechanism in association with inflammation. World J Clin
Cases. 10:10004–10016. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhang GN, Zhang YK, Wang YJ, Gupta P,
Ashby CR Jr, Alqahtani S, Deng T, Bates SE, Kaddoumi A, Wurpel JND,
et al: Epidermal growth factor receptor (EGFR) inhibitor PD153035
reverses ABCG2-mediated multidrug resistance in non-small cell lung
cancer: In vitro and in vivo. Cancer Lett. 424:19–29. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Farabaugh SM, Boone DN and Lee AV: Role of
IGF1R in breast cancer subtypes, stemness, and lineage
differentiation. Front Endocrinol (Lausanne). 6:592015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ,
Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, et al: Wnt/β-Catenin
Small-Molecule Inhibitor CWP232228 preferentially inhibits the
growth of breast cancer stem-like cells. Cancer Res. 75:1691–1702.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Clemmons DR: Modifying IGF1 activity: An
approach to treat endocrine disorders, atherosclerosis and cancer.
Nat Rev Drug Discov. 6:821–833. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cao J and Yee D: Disrupting Insulin and
IGF receptor function in cancer. Int J Mol Sci. 22:5552021.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bowers LW, Cavazos DA, Maximo IX, Brenner
AJ, Hursting SD and deGraffenried LA: Obesity enhances nongenomic
estrogen receptor crosstalk with the PI3K/Akt and MAPK pathways to
promote in vitro measures of breast cancer progression. Breast
Cancer Res. 15:R592013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Xu Y, Chao L, Wang J and Sun Y: miRNA-148a
regulates the expression of the estrogen receptor through
DNMT1-mediated DNA methylation in breast cancer cells. Oncol Lett.
14:4736–4740. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Melnik BC: Milk disrupts p53 and DNMT1,
the guardians of the genome: Implications for acne vulgaris and
prostate cancer. Nutr Metab (Lond). 14:552017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Li X, Tang X, Li K and Lu L: Evaluation of
Serum MicroRNAs (miR-9-5p, miR-17-5p, and miR-148a-3p) as potential
biomarkers of breast cancer. Biomed Res Int.
2022:99614122022.PubMed/NCBI
|
|
82
|
Chawra HS, Agarwal M, Mishra A, Chandel
SS, Singh RP, Dubey G, Kukreti N and Singh M: MicroRNA-21′s role in
PTEN suppression and PI3K/AKT activation: Implications for cancer
biology. Pathol Res Pract. 254:1550912024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ruskovska T, Budić-Leto I, Corral-Jara KF,
Ajdžanović V, Arola-Arnal A, Bravo FI, Deligiannidou GE, Havlik J,
Janeva M, Kistanova E, et al: Systematic analysis of nutrigenomic
effects of polyphenols related to cardiometabolic health in
humans-Evidence from untargeted mRNA and miRNA studies. Ageing Res
Rev. 79:1016492022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Curtale G, Rubino M and Locati M:
MicroRNAs as molecular switches in macrophage activation. Front
Immunol. 10:7992019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sánchez-González I, Bobien A, Molnar C,
Schmid S, Strotbek M, Boerries M, Busch H and Olayioye MA: miR-149
suppresses breast cancer metastasis by blocking paracrine
interactions with macrophages. Cancer Res. 80:1330–1341. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zou X, Xia T, Li M, Wang T, Liu P, Zhou X,
Huang Z and Zhu W: MicroRNA profiling in serum: Potential
signatures for breast cancer diagnosis. Cancer Biomark. 30:41–53.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Warth SC, Hoefig KP, Hiekel A,
Schallenberg S, Jovanovic K, Klein L, Kretschmer K, Ansel KM and
Heissmeyer V: Induced miR-99a expression represses Mtor
cooperatively with miR-150 to promote regulatory T-cell
differentiation. EMBO J. 34:1195–1213. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Singh Y, Garden OA, Lang F and Cobb BS:
MicroRNA-15b/16 enhances the induction of regulatory T cells by
regulating the expression of rictor and mTOR. J Immunol.
195:5667–5677. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Simanovich E, Brod V, Rahat MM and Rahat
MA: Function of miR-146a-5p in tumor cells as a regulatory switch
between cell death and angiogenesis: Macrophage therapy revisited.
Front Immunol. 8:19312018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zarogoulidis P, Petanidis S, Domvri K,
Kioseoglou E, Anestakis D, Freitag L, Zarogoulidis K,
Hohenforst-Schmidt W and Eberhardt W: Autophagy inhibition
upregulates CD4(+) tumor infiltrating lymphocyte expression via
miR-155 regulation and TRAIL activation. Mol Oncol. 10:1516–1531.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Giger ML: Update on the potential of
computer-aided diagnosis for breast cancer. Future Oncol. 6:1–4.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Bilska-Wolak AO, Floyd CE Jr, Lo JY and
Baker JA: Computer aid for decision to biopsy breast masses on
mammography: Validation on new cases. Acad Radiol. 12:671–680.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Nassif AB, Talib MA, Nasir Q, Afadar Y and
Elgendy O: Breast cancer detection using artificial intelligence
techniques: A systematic literature review. Artif Intell Med.
127:1022762022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yanagawa M, Niioka H, Hata A, Kikuchi N,
Honda O, Kurakami H, Morii E, Noguchi M, Watanabe Y, Miyake J and
Tomiyama N: Application of deep learning (3-dimensional
convolutional neural network) for the prediction of pathological
invasiveness in lung adenocarcinoma: A preliminary study. Medicine
(Baltimore). 98:e161192019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Tran WT, Sadeghi-Naini A, Lu FI, Gandhi S,
Meti N, Brackstone M, Rakovitch E and Curpen B: Computational
radiology in breast cancer screening and diagnosis using artificial
intelligence. Can Assoc Radiol J. 72:98–108. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Welch HG, Prorok PC, O'Malley AJ and
Kramer BS: Breast-Cancer tumor size, overdiagnosis, and mammography
screening effectiveness. N Engl J Med. 375:1438–1447. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
S P, N KV and S S: Breast cancer detection
using crow search optimization based intuitionistic fuzzy
clustering with neighborhood attraction. Asian Pac J Cancer Prev.
20:157–165. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cruz-Bernal A, Flores-Barranco MM,
Almanza-Ojeda DL, Ledesma S and Ibarra-Manzano MA: Analysis of the
Cluster Prominence Feature for Detecting Calcifications in
Mammograms. J Healthc Eng. 2018:28495672018. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hmida M, Hamrouni K, Solaiman B and
Boussetta S: Mammographic mass segmentation using fuzzy contours.
Comput Methods Programs Biomed. 164:131–142. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lei YM, Yin M, Yu MH, Yu J, Zeng SE, Lv
WZ, Li J, Ye HR, Cui XW and Dietrich CF: Artificial intelligence in
medical imaging of the breast. Front Oncol. 11:6005572021.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Herranz H and Cohen SM: MicroRNAs and gene
regulatory networks: Managing the impact of noise in biological
systems. Genes Dev. 24:1339–1344. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Nassar FJ, Nasr R and Talhouk R: MicroRNAs
as biomarkers for early breast cancer diagnosis, prognosis and
therapy prediction. Pharmacol Ther. 172:34–49. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Itani MM, Nassar FJ, Tfayli AH, Talhouk
RS, Chamandi GK, Itani ARS, Makoukji J, Boustany RN, Hou L, Zgheib
NK and Nasr RR: A signature of four circulating microRNAs as
potential biomarkers for diagnosing early-stage breast cancer. Int
J Mol Sci. 22:61212021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C,
Wang X, Luo Z, Wang J, Liu S, et al: microRNA-21 promotes breast
cancer proliferation and metastasis by targeting LZTFL1. BMC
Cancer. 19:7382019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Najjary S, Mohammadzadeh R, Mokhtarzadeh
A, Mohammadi A, Kojabad AB and Baradaran B: Role of miR-21 as an
authentic oncogene in mediating drug resistance in breast cancer.
Gene. 738:1444532020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Shi Y, Ye P and Long X: Differential
expression profiles of the transcriptome in breast cancer cell
lines revealed by next generation sequencing. Cell Physiol Biochem.
44:804–816. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Dinami R, Ercolani C, Petti E, Piazza S,
Ciani Y, Sestito R, Sacconi A, Biagioni F, le Sage C, Agami R, et
al: miR-155 drives telomere fragility in human breast cancer by
targeting TRF1. Cancer Res. 74:4145–4156. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W,
Yu M, Lin J and Cui Q: MicroRNAs involved in carcinogenesis,
prognosis, therapeutic resistance and applications in human
triple-negative breast cancer. Cells. 8:14922019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Rajabi H, Jin C, Ahmad R, McClary C, Joshi
MD and Kufe D: MUCIN 1 ONCOPROTEIN EXPRESSION IS SUPPRESSED BY THE
miR-125b ONCOMIR. Genes Cancer. 1:62–68. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Tang F, Zhang R, He Y, Zou M, Guo L and Xi
T: MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7
and MDA-MB-231 breast cancer cells. PLoS One. 7:e354352012.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wang S, Oh DY, Leventaki V, Drakos E,
Zhang R, Sahin AA, Resetkova E, Edgerton ME, Wu W and Claret FX:
MicroRNA-17 acts as a tumor chemosensitizer by targeting JAB1/CSN5
in triple-negative breast cancer. Cancer Lett. 465:12–23. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Teichgraeber DC, Guirguis MS and Whitman
GJ: Breast cancer staging: Updates in the AJCC cancer staging
manual, 8th edition, and current challenges for radiologists, from
the AJR special series on cancer staging. AJR Am J Roentgenol.
217:278–290. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wang ZX, Lu BB, Wang H, Cheng ZX and Yin
YM: MicroRNA-21 modulates chemosensitivity of breast cancer cells
to doxorubicin by targeting PTEN. Arch Med Res. 42:281–290. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Filková M, Jüngel A, Gay RE and Gay S:
MicroRNAs in rheumatoid arthritis: Potential role in diagnosis and
therapy. BioDrugs. 26:131–141. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhou Q, Haupt S, Kreuzer JT, Hammitzsch A,
Proft F, Neumann C, Leipe J, Witt M, Schulze-Koops H and Skapenko
A: Decreased expression of miR-146a and miR-155 contributes to an
abnormal Treg phenotype in patients with rheumatoid arthritis. Ann
Rheum Dis. 74:1265–1274. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Sun SS, Zhou X, Huang YY, Kong LP, Mei M,
Guo WY, Zhao MH, Ren Y, Shen Q and Zhang L: Targeting STAT3/miR-21
axis inhibits epithelial-mesenchymal transition via regulating CDK5
in head and neck squamous cell carcinoma. Mol Cancer. 14:2132015.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Carbognin L, Miglietta F, Paris I and
Dieci MV: Prognostic and predictive implications of PTEN in breast
cancer: Unfulfilled promises but intriguing perspectives. Cancers
(Basel). 11:14012019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Yu X, Li R, Shi W, Jiang T, Wang Y, Li C
and Qu X: Silencing of MicroRNA-21 confers the sensitivity to
tamoxifen and fulvestrant by enhancing autophagic cell death
through inhibition of the PI3K-AKT-mTOR pathway in breast cancer
cells. Biomed Pharmacother. 77:37–44. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ,
Hou JH, Fu J, Zeng MS, Yun JP, Wu QL, et al: Knockdown of miR-21 in
human breast cancer cell lines inhibits proliferation, in vitro
migration and in vivo tumor growth. Breast Cancer Res. 13:R22011.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wu X: Expressions of miR-21 and miR-210 in
breast cancer and their predictive values for prognosis. Iran J
Public Health. 49:21–29. 2020.PubMed/NCBI
|
|
121
|
Nivetha R, Arvindh S, Baba AB, Gade DR,
Gopal G, K C, Reddy KP, Reddy GB and Nagini S: Nimbolide, a neem
limonoid, inhibits angiogenesis in breast cancer by abrogating
aldose reductase mediated IGF-1/PI3K/Akt signalling. Anticancer
Agents Med Chem. 22:2619–2636. 2022. View Article : Google Scholar : PubMed/NCBI
|