|
1
|
Ruan Y, Chen L, Xie D, Luo T, Xu Y, Ye T,
Chen X, Feng X and Wu X: Mechanisms of cell adhesion molecules in
endocrine-related cancers: A concise outlook. Front Endocrinol
(Lausanne). 13:8654362022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Makrilia N, Kollias A, Manolopoulos L and
Syrigos K: Cell adhesion molecules: Role and clinical significance
in cancer. Cancer Invest. 27:1023–1037. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kim HN, Ruan Y, Ogana H and Kim YM:
Cadherins, selectins, and integrins in CAM-DR in leukemia. Front
Oncol. 10:5927332020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Windisch R, Pirschtat N, Kellner C,
Chen-Wichmann L, Lausen J, Humpe A, Krause DS and Wichmann C:
Oncogenic deregulation of cell adhesion molecules in leukemia.
Cancers (Basel). 11:3112019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hassn Mesrati M, Syafruddin SE, Mohtar MA
and Syahir A: CD44: A multifunctional mediator of cancer
progression. Biomolecules. 11:18502021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kuja-Panula J, Kiiltomäki M, Yamashiro T,
Rouhiainen A and Rauvala H: AMIGO, a transmembrane protein
implicated in axon tract development, defines a novel protein
family with leucine-rich repeats. J Cell Biol. 160:963–973. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Soto F, Shen N and Kerschensteiner D:
AMIGO1 promotes axon growth and territory matching in the retina. J
Neurosci. 42:2678–2689. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ahmed Z, Douglas MR, John G, Berry M and
Logan A: AMIGO3 is an NgR1/p75 co-receptor signalling axon growth
inhibition in the acute phase of adult central nervous system
injury. PLoS One. 8:e618782013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ono T, Sekino-Suzuki N, Kikkawa Y,
Yonekawa H and Kawashima S: Alivin 1, a novel neuronal
activity-dependent gene, inhibits apoptosis and promotes survival
of cerebellar granule neurons. J Neurosci. 23:5887–5896. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Soto F, Tien NW, Goel A, Zhao L, Ruzycki
PA and Kerschensteiner D: AMIGO2 scales dendrite arbors in the
retina. Cell Rep. 29:1568–1578.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lund RJ, Löytömäki M, Naumanen T, Dixon C,
Chen Z, Ahlfors H, Tuomela S, Tahvanainen J, Scheinin J, Henttinen
T, et al: Genome-wide identification of novel genes involved in
early Th1 and Th2 cell differentiation. J Immunol. 178:3648–3660.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li Z, Khan MM, Kuja-Panula J, Wang H, Chen
Y, Guo D, Chen ZJ, Lahesmaa R, Rauvala H and Tian L: AMIGO2
modulates T cell functions and its deficiency in mice ameliorates
experimental autoimmune encephalomyelitis. Brain Behav Immun.
62:110–123. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Benedetti G, Bonaventura P, Lavocat F and
Miossec P: IL-17A and TNF-α increase the expression of the
antiapoptotic adhesion molecule Amigo-2 in arthritis synoviocytes.
Front Immunol. 7:2542016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Park H, Lee S, Shrestha P, Kim J, Park JA,
Ko Y, Ban YH, Park DY, Ha SJ, Koh GY, et al: AMIGO2, a novel
membrane anchor of PDK1, controls cell survival and angiogenesis
via Akt activation. J Cell Biol. 211:619–637. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yu X, Wu T, Liao B, Du Z and Zhu P:
Anticancer potential of corilagin on T24 and TSGH 8301 bladder
cancer cells via the activation of apoptosis by the suppression of
NF-κB-induced P13K/Akt signaling pathway. Environ Toxicol.
37:1152–1159. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Saahene RO, Agbo E, Barnes P, Yahaya ES,
Amoani B, Nuvor SV and Okyere P: A review: Mechanism of phyllanthus
urinaria in Cancers-NF-κB, P13K/AKT, and MAPKs signaling
activation. Evid Based Complement Alternat Med. 2021:45143422021.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zheng H and Liu JF: Studies on the
relationship between P13K/AKT signal pathway-mediated MMP-9 gene
and lung cancer. Eur Rev Med Pharmacol Sci. 21:753–759.
2017.PubMed/NCBI
|
|
18
|
Chen ZF, Wang J, Yu Y and Wei W:
MicroRNA-936 promotes proliferation and invasion of gastric cancer
cells by down-regulating FGF2 expression and activating P13K/Akt
signaling pathway. Eur Rev Med Pharmacol Sci. 24:6707–6715.
2020.PubMed/NCBI
|
|
19
|
Zhao YX, Zhao HP, Zhao MY, Yu Y, Qi X,
Wang JH and Lv J: Latest insights into the global epidemiological
features, screening, early diagnosis and prognosis prediction of
esophageal squamous cell carcinoma. World J Gastroenterol.
30:2638–2656. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen X, Huang L, Yang T, Xu J, Zhang C,
Deng Z, Yang X, Liu N, Chen S, Lin S, et al: METTL3 Promotes
esophageal squamous cell carcinoma metastasis through enhancing
GLS2 expression. Front Oncol. 11:6674512021. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li J, Li Z, Xu Y, Huang C and Shan B:
METTL3 facilitates tumor progression by COL12A1/MAPK signaling
pathway in esophageal squamous cell carcinoma. J Cancer.
13:1972–1984. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Qiu Y, Tian Z, Miao TY, Shen L, Chen J, Li
PF, Zhu ZX, Zhu ZF, Wu WJ, Xu X and Shen WG: The
METTL3-m6A-YTHDC1-AMIGO2 axis contributes to cell
proliferation and migration in esophageal squamous cell carcinoma.
Gene. 908:1482812024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jiang X, Liu B, Nie Z, Duan L, Xiong Q,
Jin Z, Yang C and Chen Y: The role of m6A modification in the
biological functions and diseases. Signal Transduct Target Ther.
6:742021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xiao W, Adhikari S, Dahal U, Chen YS, Hao
YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, et al: Nuclear m(6)A
Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. 61:507–519. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Roundtree IA, Luo GZ, Zhang Z, Wang X,
Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1
mediates nuclear export of N6-methyladenosine methylated
mRNAs. Elife. 6:e313112017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Nakamura S, Kanda M, Shimizu D, Tanaka C,
Inokawa Y, Hattori N, Hayashi M, Yamada S, Nakayama G, Omae K, et
al: AMIGO2 Expression as a potential prognostic biomarker for
gastric cancer. Anticancer Res. 40:6713–6721. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Goto K, Morimoto M, Osaki M, Tanio A,
Izutsu R, Fujiwara Y and Okada F: The impact of AMIGO2 on prognosis
and hepatic metastasis in gastric cancer patients. BMC Cancer.
22:2802022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Rabenau KE, O'Toole JM, Bassi R, Kotanides
H, Witte L, Ludwig DL and Pereira DS: DEGA/AMIGO-2, a leucine-rich
repeat family member, differentially expressed in human gastric
adenocarcinoma: Effects on ploidy, chromosomal stability, cell
adhesion/migration and tumorigenicity. Oncogene. 23:5056–5067.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Goto K, Osaki M, Izutsu R, Tanaka H,
Sasaki R, Tanio A, Satofuka H, Kazuki Y, Yamamoto M, Kugoh H, et
al: Establishment of an antibody specific for AMIGO2 improves
immunohistochemical evaluation of liver metastases and clinical
outcomes in patients with colorectal cancer. Diagn Pathol.
17:162022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tanio A, Saito H, Amisaki M, Hara K,
Sugezawa K, Uejima C, Tada Y, Kihara K, Yamamoto M, Nosaka K, et
al: AMIGO2 as a novel indicator of liver metastasis in patients
with colorectal cancer. Oncol Lett. 21:2782021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Thomas D, Rathinavel AK and Radhakrishnan
P: Altered glycosylation in cancer: A promising target for
biomarkers and therapeutics. Biochim Biophys Acta Rev Cancer.
1875:1884642021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Royal RE, Levy C, Turner K, Mathur A,
Hughes M, Kammula US, Sherry RM, Topalian SL, Yang JC, Lowy I and
Rosenberg SA: Phase 2 trial of single agent Ipilimumab
(anti-CTLA-4) for locally advanced or metastatic pancreatic
adenocarcinoma. J Immunother. 33:828–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ,
Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al:
Safety and activity of anti-PD-L1 antibody in patients with
advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chen S, Du W, Feng K, Liu K, Li C, Li S
and Yin H: AMIGO2 is a pivotal therapeutic target related to M2
polarization of macrophages in pancreatic ductal adenocarcinoma.
Aging (Albany NY). 16:1111–1127. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kishton RJ, Sukumar M and Restifo NP:
Metabolic regulation of T cell longevity and function in tumor
immunotherapy. Cell Metab. 26:94–109. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
MacNabb BW, Tumuluru S, Chen X, Godfrey J,
Kasal DN, Yu J, Jongsma MLM, Spaapen RM, Kline DE and Kline J:
Dendritic cells can prime anti-tumor CD8(+) T cell responses
through major histocompatibility complex cross-dressing. Immunity.
55:982–997.e8. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hess KR, Varadhachary GR, Taylor SH, Wei
W, Raber MN, Lenzi R and Abbruzzese JL: Metastatic patterns in
adenocarcinoma. Cancer. 106:1624–1633. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hanley WD, Burdick MM, Konstantopoulos K
and Sackstein R: CD44 on LS174T colon carcinoma cells possesses
E-selectin ligand activity. Cancer Res. 65:5812–5817. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Izutsu R, Osaki M, Jehung JP, Seong HK and
Okada F: Liver metastasis formation is defined by AMIGO2 expression
via adhesion to hepatic endothelial cells in human gastric and
colorectal cancer cells. Pathol Res Pract. 237:1540152022.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Izutsu R, Osaki M, Nemoto H, Jingu M,
Sasaki R, Yoshioka Y, Ochiya T and Okada F: AMIGO2 contained in
cancer cell-derived extracellular vesicles enhances the adhesion of
liver endothelial cells to cancer cells. Sci Rep. 12:7922022.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kanda Y, Osaki M, Onuma K, Sonoda A,
Kobayashi M, Hamada J, Nicolson GL, Ochiya T and Okada F:
Amigo2-upregulation in tumour cells facilitates their attachment to
liver endothelial cells resulting in liver metastases. Sci Rep.
7:435672017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Han Z, Feng Y, Deng Y, Tang Z, Cai S, Zhuo
Y, Liang Y, Ye J, Cai Z, Yang S, et al: Integrated analysis reveals
prognostic value and progression-related role of AMIGO2 in prostate
cancer. Transl Androl Urol. 11:914–928. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lengyel E: Ovarian cancer development and
metastasis. Am J Pathol. 177:1053–1064. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Liu Y, Yang J, Shi Z, Tan X, Jin N,
O'Brien C, Ott C, Grisoli A, Lee E, Volk K, et al: In vivo
selection of highly metastatic human ovarian cancer sublines
reveals role for AMIGO2 in intra-peritoneal metastatic regulation.
Cancer Lett. 503:163–173. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Burleson KM, Casey RC, Skubitz KM,
Pambuccian SE, Oegema TR Jr and Skubitz AP: Ovarian carcinoma
ascites spheroids adhere to extracellular matrix components and
mesothelial cell monolayers. Gynecol Oncol. 93:170–181. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
L'Espérance S, Bachvarova M, Tetu B,
Mes-Masson AM and Bachvarov D: Global gene expression analysis of
early response to chemotherapy treatment in ovarian cancer
spheroids. BMC Genomics. 9:992008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shield K, Ackland ML, Ahmed N and Rice GE:
Multicellular spheroids in ovarian cancer metastases: Biology and
pathology. Gynecol Oncol. 113:143–148. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Koskas M, Amant F, Mirza MR and Creutzberg
CL: Cancer of the corpus uteri: 2021 update. Int J Gynaecol Obstet.
155 (Suppl 1):S45–S60. 2021. View Article : Google Scholar
|
|
49
|
Simmen FA, Su Y, Xiao R, Zeng Z and Simmen
RC: The Krüppel-like factor 9 (KLF9) network in HEC-1-A endometrial
carcinoma cells suggests the carcinogenic potential of
dys-regulated KLF9 expression. Reprod Biol Endocrinol. 6:412008.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Iida Y, Osaki M, Sato S, Izutsu R, Seong
H, Okawa M, Osaku D, Komatsu H, Taniguchi F, Okada F, et al: AMIGO2
expression as a predictor of recurrence in cervical cancer with
intermediate risk. Mol Clin Oncol. 19:562023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhang Y, Chen Y, Lu LL, Xie XL, Huan R, Wu
LF, Tan LN, Xu T and Jin Y: The role and therapeutic potential of
Non-coding RNAs in resistance to EGFR-TKIs targeted therapy for
Non-small cell lung cancer. Curr Med Chem. Feb 16–2024.doi:
10.2174/0109298673275752231219080500 (Epub ahead of print).
|
|
52
|
Duma N, Santana-Davila R and Molina JR:
Non-Small cell lung cancer: Epidemiology, screening, diagnosis, and
treatment. Mayo Clin Proc. 94:1623–1640. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen LK, Lin SP, Xie YH, Tan XP, Xiong BH,
Zeng XF, Zhu CR, Cao SY, Ye XY, Liu HJ and Wu XP: AMIGO2 attenuates
innate cisplatin sensitivity by suppression of GSDME-conferred
pyroptosis in non-small cell lung cancer. J Cell Mol Med.
27:2412–2423. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Arciero CA, Guo Y, Jiang R, Behera M,
O'Regan R, Peng L and Li X: ER+/HER2+ breast cancer has different
metastatic patterns and better survival than ER-/HER2+ breast
cancer. Clin Breast Cancer. 19:236–245. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
van de Ven S, Smit VT, Dekker TJ, Nortier
JW and Kroep JR: Discordances in ER, PR and HER2 receptors after
neoadjuvant chemotherapy in breast cancer. Cancer Treat Rev.
37:422–430. 2011.PubMed/NCBI
|
|
56
|
Najjar S and Allison KH: Updates on breast
biomarkers. Virchows Arch. 480:163–176. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shuai C, Yuan F, Liu Y, Wang C, Wang J and
He H: Estrogen receptor-positive breast cancer survival prediction
and analysis of resistance-related genes introduction. PeerJ.
9:e122022021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sonzogni O, Haynes J, Seifried LA, Kamel
YM, Huang K, BeGora MD, Yeung FA, Robert-Tissot C, Heng YJ, Yuan X,
et al: Reporters to mark and eliminate basal or luminal epithelial
cells in culture and in vivo. PLoS Biol. 16:e20040492018.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fontanals-Cirera B, Hasson D, Vardabasso
C, Di Micco R, Agrawal P, Chowdhury A, Gantz M, de
Pablos-Aragoneses A, Morgenstern A, Wu P, et al: Harnessing BET
inhibitor sensitivity reveals AMIGO2 as a melanoma survival gene.
Mol Cell. 68:731–744.e9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gallagher SJ, Mijatov B, Gunatilake D,
Tiffen JC, Gowrishankar K, Jin L, Pupo GM, Cullinane C, Prinjha RK,
Smithers N, et al: The epigenetic regulator I-BET151 induces
BIM-dependent apoptosis and cell cycle arrest of human melanoma
cells. J Invest Dermatol. 134:2795–2805. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Vardabasso C, Gaspar-Maia A, Hasson D,
Pünzeler S, Valle-Garcia D, Straub T, Keilhauer EC, Strub T, Dong
J, Panda T, et al: Histone variant H2A.Z.2 mediates proliferation
and drug sensitivity of malignant melanoma. Mol Cell. 59:75–88.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Segura MF, Fontanals-Cirera B,
Gaziel-Sovran A, Guijarro MV, Hanniford D, Zhang G, González-Gomez
P, Morante M, Jubierre L, Zhang W, et al: BRD4 sustains melanoma
proliferation and represents a new target for epigenetic therapy.
Cancer Res. 73:6264–6276. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Na HW, Shin WS, Ludwig A and Lee ST: The
cytosolic domain of protein-tyrosine kinase 7 (PTK7), generated
from sequential cleavage by a disintegrin and metalloprotease 17
(ADAM17) and γ-secretase, enhances cell proliferation and migration
in colon cancer cells. J Biol Chem. 287:25001–25009. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cui Y, Li C, Jiang Z, Zhang S, Li Q, Liu
X, Zhou Y, Li R, Wei L, Li L, et al: Single-cell transcriptome and
genome analyses of pituitary neuroendocrine tumors. Neuro Oncol.
23:1859–1871. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Dongre A and Weinberg RA: New insights
into the mechanisms of epithelial-mesenchymal transition and
implications for cancer. Nat Rev Mol Cell Biol. 20:69–84. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Porter AC and Vaillancourt RR: Tyrosine
kinase receptor-activated signal transduction pathways which lead
to oncogenesis. Oncogene. 17:1343–1352. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Tamgüney T, Zhang C, Fiedler D, Shokat K
and Stokoe D: Analysis of 3-phosphoinositide-dependent kinase-1
signaling and function in ES cells. Exp Cell Res. 314:2299–2312.
2008. View Article : Google Scholar : PubMed/NCBI
|