|
1
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn
U, et al: Radiotherapy plus concomitant and adjuvant temozolomide
for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Weller M, van den Bent M, Preusser M, Le
Rhun E, Tonn JC, Minniti G, Bendszus M, Balana C, Chinot O, Dirven
L, et al: EANO guidelines on the diagnosis and treatment of diffuse
gliomas of adulthood. Nat Rev Clin Oncol. 18:170–186. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ius T, Sabatino G, Panciani PP, Fontanella
MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R,
Catapano G, et al: Surgical management of Glioma Grade 4: technical
update from the neuro-oncology section of the Italian Society of
Neurosurgery (SINch®): A systematic review. J
Neurooncol. 162:267–293. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhu P, Du XL, Lu G and Zhu JJ: Survival
benefit of glioblastoma patients after FDA approval of temozolomide
concomitant with radiation and bevacizumab: A population-based
study. Oncotarget. 8:44015–44031. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Pombo Antunes AR, Scheyltjens I, Duerinck
J, Neyns B, Movahedi K and Van Ginderachter JA: Understanding the
glioblastoma immune microenvironment as basis for the development
of new immunotherapeutic strategies. Elife. 9:e521762020.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Menna G, Manini I, Cesselli D, Skrap M,
Olivi A, Ius T and Della Pepa GM: Immunoregulatory effects of
glioma-associated stem cells on the glioblastoma peritumoral
microenvironment: A differential PD-L1 expression from core to
periphery? Neurosurg Focus. 52:E42022. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Agosti E, Panciani PP, Zeppieri M, De
Maria L, Pasqualetti F, Tel A, Zanin L, Fontanella MM and Ius T:
Tumor microenvironment and glioblastoma cell interplay as promoters
of therapeutic resistance. Biology (Basel). 12:7362023.PubMed/NCBI
|
|
8
|
Brandes AA, Tosoni A, Franceschi E, Sotti
G, Frezza G, Amistà P, Morandi L, Spagnolli F and Ermani M:
Recurrence pattern after temozolomide concomitant with and adjuvant
to radiotherapy in newly diagnosed patients with glioblastoma:
Correlation With MGMT promoter methylation status. J Clin Oncol.
27:1275–1279. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
van Solinge TS, Nieland L, Chiocca EA and
Broekman MLD: Advances in local therapy for glioblastoma-taking the
fight to the tumour. Nat Rev Neurol. 18:221–236. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Young JS, Morshed RA, Hervey-Jumper SL and
Berger MS: The surgical management of diffuse gliomas: Current
state of neurosurgical management and future directions. Neuro
Oncol. 25:2117–2133. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Reulen HJ, Suero Molina E, Zeidler R,
Gildehaus FJ, Böning G, Gosewisch A and Stummer W: Intracavitary
radioimmunotherapy of high-grade gliomas: Present status and future
developments. Acta Neurochir (Wien). 161:1109–1124. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Louis DN, Perry A, Wesseling P, Brat DJ,
Cree IA, Figarella-Branger D, Hawkins C, Ng HK, Pfister SM,
Reifenberger G, et al: The 2021 WHO Classification of Tumors of the
Central Nervous System: A summary. Neuro Oncol. 23:1231–1251. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron
I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan
SE, et al: The PRISMA 2020 statement: An updated guideline for
reporting systematic reviews. BMJ. 372:n712021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Stang A: Critical evaluation of the
Newcastle-Ottawa scale for the assessment of the quality of
nonrandomized studies in meta-analyses. Eur J Epidemiol.
25:603–605. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Mohammadi AM, Hawasli AH, Rodriguez A,
Schroeder JL, Laxton AW, Elson P, Tatter SB, Barnett GH and
Leuthardt EC: The role of laser interstitial thermal therapy in
enhancing progression-free survival of difficult-to-access
high-grade gliomas: A multicenter study. Cancer Med. 3:971–979.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Thomas JG, Rao G, Kew Y and Prabhu SS:
Laser interstitial thermal therapy for newly diagnosed and
recurrent glioblastoma. Neurosurg Focus. 41:E122016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Beaumont TL, Mohammadi AM, Kim AH, Barnett
GH and Leuthardt EC: magnetic resonance imaging-guided laser
interstitial thermal therapy for glioblastoma of the corpus
callosum. Neurosurgery. 83:556–565. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kamath AA, Friedman DD, Akbari SHA, Kim
AH, Tao Y, Luo J and Leuthardt EC: Glioblastoma treated with
magnetic resonance imaging-guided laser interstitial thermal
therapy: Safety, efficacy, and outcomes. Neurosurgery. 84:836–843.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
O'Connor KP, Palejwala AH, Milton CK, Lu
VM, Glenn CA, Sughrue ME and Conner AK: Laser interstitial thermal
therapy case series: Choosing the correct number of fibers
depending on lesion size. Oper Neurosurg (Hagerstown). 20:18–23.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Traylor JI, Patel R, Muir M, de Almeida
Bastos DC, Ravikumar V, Kamiya-Matsuoka C, Rao G, Thomas JG, Kew Y
and Prabhu SS: Laser interstitial thermal therapy for glioblastoma:
A single-center experience. World Neurosurg. 149:e244–e252. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
de Groot JF, Kim AH, Prabhu S, Rao G,
Laxton AW, Fecci PE, O'Brien BJ, Sloan A, Chiang V, Tatter SB, et
al: Efficacy of laser interstitial thermal therapy (LITT) for newly
diagnosed and recurrent IDH wild-type glioblastoma. Neurooncol Adv.
4:vdac0402022.PubMed/NCBI
|
|
22
|
Johnson GW, Han RH, Smyth MD, Leuthardt EC
and Kim AH: Laser interstitial thermal therapy in grade 2/3 IDH1/2
Mutant Gliomas: A preliminary report and literature review. Curr
Oncol. 29:2550–2563. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Muir M, Patel R, Traylor JI, de Almeida
Bastos DC, Kamiya C, Li J, Rao G and Prabhu SS: Laser interstitial
thermal therapy for newly diagnosed glioblastoma. Lasers Med Sci.
37:1811–1820. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kaisman-Elbaz T, Xiao T, Grabowski MM,
Barnett GH and Mohammadi AM: The impact of extent of ablation on
survival of patients with newly diagnosed glioblastoma treated with
laser interstitial thermal therapy: A large single-institutional
cohort. Neurosurgery. 93:427–435. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jubran JH, Scherschinski L, Dholaria N,
Shaftel KA, Farhadi DS, Oladokun FC, Hendricks BK and Smith KA:
Magnetic resonance-guided laser interstitial thermal therapy for
recurrent glioblastoma and radiation necrosis: A single-surgeon
case series. World Neurosurg. 182:e453–e462. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Guthkelch AN, Carter LP, Cassady JR,
Hynynen KH, Iacono RP, Johnson PC, Obbens EA, Roemer RB, Seeger JF,
Shimm DS, et al: Treatment of malignant brain tumors with focused
ultrasound hyperthermia and radiation: Results of a phase I trial.
J Neurooncol. 10:271–284. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Carpentier A, Canney M, Vignot A, Reina V,
Beccaria K, Horodyckid C, Karachi C, Leclercq D, Lafon C, Chapelon
JY, et al: Clinical trial of blood-brain barrier disruption by
pulsed ultrasound. Sci Transl Med. 8:343re22016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Stea B, Rossman K, Kittelson J, Shetter A,
Hamilton A and Cassady JR: Interstitial irradiation versus
interstitial thermos radiotherapy for supratentorial malignant
gliomas: A comparative survival analysis. Int J Radiat Oncol Biol
Phys. 30:591–600. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Maier-Hauff K, Ulrich F, Nestler D,
Niehoff H, Wust P, Thiesen B, Orawa H, Budach V and Jordan A:
Efficacy and safety of intratumoral thermotherapy using magnetic
iron-oxide nanoparticles combined with external beam radiotherapy
on patients with recurrent glioblastoma multiforme. J Neurooncol.
103:317–324. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Stupp R, Wong ET, Kanner AA, Steinberg D,
Engelhard H, Heidecke V, Kirson ED, Taillibert S, Liebermann F,
Dbalý V, et al: NovoTTF-100A versus physician's choice chemotherapy
in recurrent glioblastoma: A randomised phase III trial of a novel
treatment modality. Eur J Cancer. 48:2192–2202. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Stupp R, Taillibert S, Kanner AA, Kesari
S, Steinberg DM, Toms SA, Taylor LP, Lieberman F, Silvani A, Fink
KL, et al: Maintenance therapy with tumor-treating fields plus
temozolomide vs temozolomide alone for glioblastoma: A Randomized
clinical trial. JAMA. 314:2535–2543. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Vinjamuri M, Adumala RR, Altaha R, Hobbs
GR and Crowell EB Jr: Comparative analysis of temozolomide (TMZ)
versus 1,3-bis (2-chloroethyl)-1 nitrosourea (BCNU) in newly
diagnosed glioblastoma multiforme (GBM) patients. J Neurooncol.
91:221–225. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
De Bonis P, Anile C, Pompucci A,
Fiorentino A, Balducci M, Chiesa S, Maira G and Mangiola A: Safety
and efficacy of Gliadel wafers for newly diagnosed and recurrent
glioblastoma. Acta Neurochir (Wien). 154:1371–1378. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Catalán-Uribarrena G, Bilbao-Barandica G,
Pomposo-Gaztelu I, Undabeitia-Huertas J, Ruiz de Gopegui-Ruiz E,
Galbarriatu-Gutiérrez L, Canales-Llantada M, Aurrecoechea-Obieta J,
Igartua-Azkune A and Carbayo-Lozano G: Prognostic factors and
survival in a prospective cohort of patients with high-grade glioma
treated with carmustine wafers or temozolomide on an
intention-to-treat basis. Acta Neurochir (Wien). 154:211–222;
discussion 222. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Noël G, Schott R, Froelich S, Gaub MP,
Boyer P, Fischer-Lokou D, Dufour P, Kehrli P and Maitrot D:
Retrospective comparison of chemoradiotherapy followed by adjuvant
chemotherapy, with or without prior gliadel implantation
(carmustine) after initial surgery in patients with newly diagnosed
high-grade gliomas. Int J Radiat Oncol Biol Phys. 82:749–755. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pallud J, Audureau E, Noel G, Corns R,
Lechapt-Zalcman E, Duntze J, Pavlov V, Guyotat J, Hieu PD, Le Reste
PJ, et al: Long-term results of carmustine wafer implantation for
newly diagnosed glioblastomas: A controlled propensity-matched
analysis of a French multicenter cohort. Neuro Oncol. 17:1609–1619.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Roux A, Peeters S, Zanello M, Bou Nassif
R, Abi Lahoud G, Dezamis E, Parraga E, Lechapt-Zalcmann E, Dhermain
F, Dumont S, et al: Extent of resection and Carmustine wafer
implantation safely improve survival in patients with a newly
diagnosed glioblastoma: A single center experience of the current
practice. J Neurooncol. 135:83–92. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Akiyama Y, Kimura Y, Enatsu R, Mikami T,
Wanibuchi M and Mikuni N: Advantages and disadvantages of combined
chemotherapy with carmustine wafer and bevacizumab in patients with
newly diagnosed glioblastoma: A single-institutional experience.
World Neurosurg. 113:e508–e514. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Bos EM, Binda E, Verploegh ISC, Wembacher
E, Hoefnagel D, Balvers RK, Korporaal AL, Conidi A, Warnert EAH,
Trivieri N, et al: Local delivery of hrBMP4 as an anticancer
therapy in patients with recurrent glioblastoma: A first-in-human
phase 1 dose escalation trial. Mol Cancer. 22:1292023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Chan TA, Weingart JD, Parisi M, Hughes MA,
Olivi A, Borzillary S, Alahakone D, Detorie NA, Wharam MD and
Kleinberg L: Treatment of recurrent glioblastoma multiforme with
GliaSite brachytherapy. Int J Radiat Oncol Biol Phys. 62:1133–1139.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Schueller P, Micke O, Palkovic S,
Schroeder J, Moustakis C, Bruns F, Schuck A, Wassmann H and Willich
N: 12 years' experience with intraoperative radiotherapy (IORT) of
malignant gliomas. Strahlenther Onkol. 181:500–506. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gabayan AJ, Green SB, Sanan A, Jenrette J,
Schultz C, Papagikos M, Tatter SP, Patel A, Amin P, Lustig R, et
al: GliaSite brachytherapy for treatment of recurrent malignant
gliomas: A retrospective multi-institutional analysis.
Neurosurgery. 58:701–9; discussion 701–709. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen AM, Chang S, Pouliot J, Sneed PK,
Prados MD, Lamborn KR, Malec MK, McDermott MW, Berger MS and Larson
DA: Phase I trial of gross total resection, permanent iodine-125
brachytherapy, and hyperfractionated radiotherapy for newly
diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys.
69:825–830. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Welsh J, Sanan A, Gabayan AJ, Green SB,
Lustig R, Burri S, Kwong E and Stea B: GliaSite brachytherapy boost
as part of initial treatment of glioblastoma multiforme: A
retrospective multi-institutional pilot study. Int J Radiat Oncol
Biol Phys. 68:159–165. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chino K, Silvain D, Grace A, Stubbs J and
Stea B: Feasibility and safety of outpatient brachytherapy in 37
patients with brain tumors using the GliaSite Radiation Therapy
System. Med Phys. 35:3383–3388. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Fabrini MG, Perrone F, De Franco L,
Pasqualetti F, Grespi S, Vannozzi R and Cionini L: Perioperative
high-dose-rate brachytherapy in the treatment of recurrent
malignant gliomas. Strahlenther Onkol. 185:524–529. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Usychkin S, Calvo F, dos Santos MA,
Samblás J, de Urbina DO, Bustos JC, Diaz JA, Sallabanda K, Sanz A,
Yélamos C, et al: Intra-operative electron beam radiotherapy for
newly diagnosed and recurrent malignant gliomas: Feasibility and
long-term outcomes. Clin Transl Oncol. 15:33–38. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Schwartz C, Romagna A, Thon N, Niyazi M,
Watson J, Belka C, Tonn JC, Kreth FW and Nachbichler SB: Outcome
and toxicity profile of salvage low-dose-rate iodine-125
stereotactic brachytherapy in recurrent high-grade gliomas. Acta
Neurochir (Wien). 157:1757–1764; discussion 1764. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Sarria GR, Sperk E, Han X, Sarria GJ, Wenz
F, Brehmer S, Fu B, Min S, Zhang H, Qin S, et al: Intraoperative
radiotherapy for glioblastoma: An international pooled analysis.
Radiother Oncol. 142:162–167. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Keu KV, Witney TH, Yaghoubi S, Rosenberg
J, Kurien A, Magnusson R, Williams J, Habte F, Wagner JR, Forman S,
et al: Reporter gene imaging of targeted T cell immunotherapy in
recurrent glioma. Sci Transl Med. 9:eaag21962017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Brown CE, Alizadeh D, Starr R, Weng L,
Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J,
Simpson J, et al: Regression of glioblastoma after chimeric antigen
receptor T-cell therapy. N Engl J Med. 375:2561–2569. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nassiri F, Patil V, Yefet LS, Singh O, Liu
J, Dang RMA, Yamaguchi TN, Daras M, Cloughesy TF, Colman H, et al:
Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent
glioblastoma: A phase 1/2 trial. Nat Med. 29:1370–1378. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cloughesy TF, Brenner A, de Groot JF,
Butowski NA, Zach L, Campian JL, Ellingson BM, Freedman LS, Cohen
YC, Lowenton-Spier N, et al: A randomized controlled phase III
study of VB-111 combined with bevacizumab vs bevacizumab
monotherapy in patients with recurrent glioblastoma [GLOBE]. Neuro
Oncol. 22:705–717. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Westphal M, Ylä-Herttuala S, Martin J,
Warnke P, Menei P, Eckland D, Kinley J, Kay R and Ram Z; ASPECT
Study Group, : Adenovirus-mediated gene therapy with sitimagene
ceradenovec followed by intravenous ganciclovir for patients with
operable high-grade glioma [ASPECT]: A randomised, open-label,
phase 3 trial. Lancet Oncol. 14:823–833. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Desjardins A, Gromeier M, Herndon JE II,
Beaubier N, Bolognesi DP, Friedman AH, Friedman HS, McSherry F,
Muscat AM, Nair S, et al: Recurrent glioblastoma treated with
recombinant poliovirus. N Engl J Med. 379:150–161. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Caffo M, Caruso G, Curcio A, Laera R,
Crisafulli C, Passalacqua M and Germanò A: The Role of
Nanotechnology in Brain Tumors. Human Brain and Spinal Cord Tumors:
From Bench to Bedside. Vol 1. Springer International Publishing;
pp. 193–207. 2022
|
|
57
|
Langen UH, Ayloo S and Gu C: Development
and cell biology of the blood-brain barrier. Annu Rev Cell Dev
Biol. 35:591–613. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Patel B, Yang PH and Kim AH: The effect of
thermal therapy on the blood-brain barrier and blood-tumor barrier.
Int J Hyperthermia. 37:35–43. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Holste KG and Orringer DA: Laser
interstitial thermal therapy. Neurooncol Adv.
2:vdz0352019.PubMed/NCBI
|
|
60
|
Mohammadi AM, Sharma M, Beaumont TL,
Juarez KO, Kemeny H, Dechant C, Seas A, Sarmey N, Lee BS, Jia X, et
al: Upfront magnetic resonance imaging-guided stereotactic
laser-ablation in newly diagnosed glioblastoma: A multicenter
review of survival outcomes compared to a matched cohort of
biopsy-only patients. Neurosurgery. 85:762–772. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Fadel HA, Haider S, Pawloski JA, Zakaria
HM, Macki M, Bartlett S, Schultz L, Robin AM, Kalkanis SN and Lee
IY: Laser Interstitial thermal therapy for first-line treatment of
surgically accessible recurrent glioblastoma: Outcomes compared
with a surgical cohort. Neurosurgery. 91:701–709. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Quadri SA, Waqas M, Khan I, Khan MA,
Suriya SS, Farooqui M and Fiani B: High-intensity focused
ultrasound: past, present, and future in neurosurgery. Neurosurg
Focus. 44:E162018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mauri G, Nicosia L, Xu Z, Di Pietro S,
Monfardini L, Bonomo G, Varano GM, Prada F, Della Vigna P and Orsi
F: Focused ultrasound: Tumour ablation and its potential to enhance
immunological therapy to cancer. Br J Radiol. 91:201706412018.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hu S, Zhang X, Unger M, Patties I, Melzer
A and Landgraf L: Focused ultrasound-induced cavitation sensitizes
cancer cells to radiation therapy and hyperthermia. Cells.
9:25952020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hersh AM, Bhimreddy M, Weber-Levine C,
Jiang K, Alomari S, Theodore N, Manbachi A and Tyler BM:
Applications of focused ultrasound for the treatment of
glioblastoma: A new frontier. Cancers (Basel). 14:49202022.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Elhelf IAS, Albahar H, Shah U, Oto A,
Cressman E and Almekkawy M: High intensity focused ultrasound: The
fundamentals, clinical applications and research trends. Diagn
Interv Imaging. 99:349–359. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fomenko A and Lozano AM: Neuromodulation
and ablation with focused ultrasound-toward the future of
noninvasive brain therapy. Neural Regen Res. 14:1509–1510. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cohen-Inbar O, Xu Z and Sheehan JP:
Focused ultrasound-aided immunomodulation in glioblastoma
multiforme: A therapeutic concept. J Ther Ultrasound. 4:22016.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cazares-Cortes E, Cabana S, Boitard C,
Nehlig E, Griffete N, Fresnais J, Wilhelm C, Abou-Hassan A and
Ménager C: Recent insights in magnetic hyperthermia: From the
‘hot-spot’ effect for local delivery to combined
magneto-photo-thermia using magneto-plasmonic hybrids. Adv Drug
Deliv Rev. 138:233–246. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Grauer O, Jaber M, Hess K, Weckesser M,
Schwindt W, Maring S, Wölfer J and Stummer W: Combined
intracavitary thermotherapy with iron oxide nanoparticles and
radiotherapy as local treatment modality in recurrent glioblastoma
patients. J Neurooncol. 141:83–94. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Toraya-Brown S, Sheen MR, Zhang P, Chen L,
Baird JR, Demidenko E, Turk MJ, Hoopes PJ, Conejo-Garcia JR and
Fiering S: Local hyperthermia treatment of tumors induces CD8(+) T
cell-mediated resistance against distal and secondary tumors.
Nanomedicine. 10:1273–1285. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ito A, Tanaka K, Kondo K, Shinkai M, Honda
H, Matsumoto K, Saida T and Kobayashi T: Tumor regression by
combined immunotherapy and hyperthermia using magnetic
nanoparticles in an experimental subcutaneous murine melanoma.
Cancer Sci. 94:308–313. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gilchrist RK, Medal R, Shorey WD,
Hanselman RC, Parrott JC and Taylor CB: Selective inductive heating
of lymph nodes. Ann Surg. 146:596–606. 1957. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Stea B, Cetas TC, Cassady JR, Guthkelch
AN, Iacono R, Lulu B, Lutz W, Obbens E, Rossman K, Seeger J, et al:
Interstitial thermoradiotherapy of brain tumors: Preliminary
results of a phase I clinical trial. Int J Radiat Oncol Biol Phys.
19:1463–1471. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Fabian D, Guillermo Prieto Eibl MDP,
Alnahhas I, Sebastian N, Giglio P, Puduvalli V, Gonzalez J and
Palmer JD: Treatment of Glioblastoma (GBM) with the Addition of
Tumor-Treating Fields (TTF): A Review. Cancers (Basel). 11:1742019.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Shah PP, White T, Khalafallah AM, Romo CG,
Price C and Mukherjee D: A systematic review of tumor treating
fields therapy for high-grade gliomas. J Neurooncol. 148:433–443.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ballo MT, Conlon P, Lavy-Shahaf G, Kinzel
A, Vymazal J and Rulseh AM: Association of Tumor Treating Fields
(TTFields) therapy with survival in newly diagnosed glioblastoma: A
systematic review and meta-analysis. J Neurooncol. 164:1–9. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Joo H, Lee Y, Kim J, Yoo JS, Yoo S, Kim S,
Arya AK, Kim S, Choi SH, Lu N, et al: Soft implantable drug
delivery device integrated wirelessly with wearable devices to
treat fatal seizures. Sci Adv. 7:eabd46392021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bobo RH, Laske DW, Akbasak A, Morrison PF,
Dedrick RL and Oldfield EH: Convection-enhanced delivery of
macromolecules in the brain. Proc Natl Acad Sci USA. 91:2076–2080.
1994. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cha GD, Kang T, Baik S, Kim D, Choi SH,
Hyeon T and Kim DH: Advances in drug delivery technology for the
treatment of glioblastoma multiforme. J Control Release.
328:350–367. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Haar PJ, Chen ZJ, Fatouros PP, Gillies GT,
Corwin FD and Broaddus WC: Modelling convection-enhanced delivery
in normal and oedematous brain. J Med Eng Technol. 38:76–84. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
White E, Bienemann A, Malone J, Megraw L,
Bunnun C, Wyatt M and Gill S: An evaluation of the relationships
between catheter design and tissue mechanics in achieving high-flow
convection-enhanced delivery. J Neurosci Methods. 199:87–97. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chew SA and Danti S: Biomaterial-Based
implantable devices for cancer therapy. Adv Healthc Mater.
6:16007662017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Bow H, Hwang LS, Schildhaus N, Xing J,
Murray L, Salditch Q, Ye X, Zhang Y, Weingart J, Brem H and Tyler
B: Local delivery of angiogenesis-inhibitor minocycline combined
with radiotherapy and oral temozolomide chemotherapy in 9L glioma.
J Neurosurg. 120:662–669. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bersini S, Jeon JS, Dubini G, Arrigoni C,
Chung S, Charest JL, Moretti M and Kamm RD: A microfluidic 3D in
vitro model for specificity of breast cancer metastasis to bone.
Biomaterials. 35:2454–2461. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liao J, Guo X, Grande-Allen KJ, Kasper FK
and Mikos AG: Bioactive polymer/extracellular matrix scaffolds
fabricated with a flow perfusion bioreactor for cartilage tissue
engineering. Biomaterials. 31:8911–8920. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yang Y, Hu X, Liu Y, Ouyang B, Zhang J,
Jin H, Yu Z, Liu R, Li Z, Jiang L, et al: An implantable
ultrasound-powered device for the treatment of brain cancer using
electromagnetic fields. Sci Adv. 8:eabm50232022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Xie J and Wang CH: Electrospun micro- and
nanofibers for sustained delivery of paclitaxel to treat C6 glioma
in vitro. Pharm Res. 23:1817–1826. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Benoit MA, Ribet C, Distexhe J, Hermand D,
Letesson JJ, Vandenhaute J and Gillard J: Studies on the potential
of microparticles entrapping pDNA-poly(aminoacids) complexes as
vaccine delivery systems. J Drug Target. 9:253–266. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ius T, Cesselli D, Isola M, Toniato G,
Pauletto G, Sciacca G, Fabbro S, Pegolo E, Rizzato S, Beltrami AP,
et al: Combining clinical and molecular data to predict the
benefits of carmustine wafers in newly diagnosed high-grade
gliomas. Curr Treat Options Neurol. 20:32018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ricciardi L, Manini I, Cesselli D, Trungu
S, Piazza A, Mangraviti A, Miscusi M, Raco A and Ius T: Carmustine
wafers implantation in patients with newly diagnosed high grade
glioma: Is It still an option? Front Neurol. 13:8841582022.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wen PY, Weller M, Lee EQ, Alexander BM,
Barnholtz-Sloan JS, Barthel FP, Batchelor TT, Bindra RS, Chang SM,
Chiocca EA, et al: Glioblastoma in adults: A Society for
Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO)
consensus review on current management and future directions. Neuro
Oncol. 22:1073–1113. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Iuchi T, Inoue A, Hirose Y, Morioka M,
Horiguchi K, Natsume A, Arakawa Y, Iwasaki K, Fujiki M, Kumabe T
and Sakata Y: Long-term effectiveness of Gliadel implant for
malignant glioma and prognostic factors for survival: 3-year
results of a postmarketing surveillance in Japan. Neurooncol Adv.
4:vdab1892022.PubMed/NCBI
|
|
94
|
Champeaux C and Weller J: Implantation of
carmustine wafers (Gliadel®) for high-grade glioma
treatment. A 9-year nationwide retrospective study. J Neurooncol.
147:159–169. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wu Q and Yao J: BMP4, a new prognostic
factor for glioma. World J Surg Oncol. 11:2642013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yang DY, Bu XY, Zhou ZL, Yan ZY, Ma CX, Qu
MQ, Zhao YW, Kong LF, Wang YW and Luo JC: Enhanced antitumor
effects of radiotherapy combined local nimustine delivery
rendezvousing with oral temozolomide chemotherapy in glioblastoma
patients. J Cancer Res Ther. 14:78–83. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Niyazi M, Andratschke N, Bendszus M,
Chalmers AJ, Erridge SC, Galldiks N, Lagerwaard FJ, Navarria P,
Munck Af Rosenschöld P, Ricardi U, et al: ESTRO-EANO guideline on
target delineation and radiotherapy details for glioblastoma.
Radiother Oncol. 184:1096632023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Tu Z, Xiong H, Qiu Y, Li G, Wang L and
Peng S: Limited recurrence distance of glioblastoma under modern
radiotherapy era. BMC Cancer. 21:7202021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Singh R, Lehrer EJ, Wang M, Perlow HK,
Zaorsky NG, Trifiletti DM, Bovi J, Navarria P, Scoccianti S, Gondi
V, et al: Dose Escalated Radiation Therapy for Glioblastoma
Multiforme: An International Systematic Review and Meta-Analysis of
22 Prospective Trials. Int J Radiat Oncol Biol Phys. 111:371–384.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Barbarite E, Sick JT, Berchmans E, Bregy
A, Shah AH, Elsayyad N and Komotar RJ: The role of brachytherapy in
the treatment of glioblastoma multiforme. Neurosurg Rev.
40:195–211. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kickingereder P, Hamisch C, Suchorska B,
Galldiks N, Visser-Vandewalle V, Goldbrunner R, Kocher M, Treuer H,
Voges J and Ruge MI: Low-dose rate stereotactic iodine-125
brachytherapy for the treatment of inoperable primary and recurrent
glioblastoma: Single-center experience with 201 cases. J
Neurooncol. 120:615–623. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Pasqualetti F, Barberis A, Zanotti S,
Montemurro N, De Salvo GL, Soffietti R, Mazzanti CM, Ius T, Caffo
M, Paiar F, et al: The impact of survivorship bias in glioblastoma
research. Crit Rev Oncol Hematol. 188:1040652023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Pasqualetti F, Montemurro N, Desideri I,
Loi M, Giannini N, Gadducci G, Malfatti G, Cantarella M, Gonnelli
A, Montrone S, et al: Impact of recurrence pattern in patients
undergoing a second surgery for recurrent glioblastoma. Acta Neurol
Belg. 122:441–446. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Laperriere NJ, Leung PM, McKenzie S,
Milosevic M, Wong S, Glen J, Pintilie M and Bernstein M: Randomized
study of brachytherapy in the initial management of patients with
malignant astrocytoma. Int J Radiat Oncol Biol Phys. 41:1005–1011.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Odia Y, Gutierrez AN and Kotecha R:
Surgically targeted radiation therapy (STaRT) trials for brain
neoplasms: A comprehensive review. Neuro Oncol. 24 (Suppl
6):S16–S24. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Gessler DJ, Neil EC, Shah R, Levine J,
Shanks J, Wilke C, Reynolds M, Zhang S, Özütemiz C, Gencturk M, et
al: GammaTile® brachytherapy in the treatment of
recurrent glioblastomas. Neurooncol Adv. 4:vdab1852021.PubMed/NCBI
|
|
107
|
Cristescu R, Mogg R, Ayers M, Albright A,
Murphy E, Yearley J, Sher X, Liu XQ, Lu H, Nebozhyn M, et al:
Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based
immunotherapy. Science. 362:eaar35932018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Thorsson V, Gibbs DL, Brown SD, Wolf D,
Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy
JA, et al: The Immune Landscape of Cancer. Immunity.
48:812–830.e14. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Alayo QA, Ito H, Passaro C, Zdioruk M,
Mahmoud AB, Grauwet K, Zhang X, Lawler SE, Reardon DA, Goins WF, et
al: Glioblastoma infiltration of both tumor- and virus-antigen
specific cytotoxic T cells correlates with experimental virotherapy
responses. Sci Rep. 10:50952020. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Brenner AJ, Peters KB, Vredenburgh J,
Bokstein F, Blumenthal DT, Yust-Katz S, Peretz I, Oberman B,
Freedman LS, Ellingson BM, et al: Safety and efficacy of VB-111, an
anticancer gene therapy, in patients with recurrent glioblastoma
Results of a phase I/II study. Neuro Oncol. 22:694–704. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Agosti E, Zeppieri M, De Maria L, Tedeschi
C, Fontanella MM, Panciani PP and Ius T: Glioblastoma
Immunotherapy: A Systematic Review of the Present Strategies and
Prospects for Advancements. Int J Mol Sci. 24:150372023. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Luksik AS, Yazigi E, Shah P and Jackson
CM: CAR T Cell Therapy in Glioblastoma: Overcoming Challenges
Related to Antigen Expression. Cancers (Basel). 15:14142023.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Vitanza NA, Wilson AL, Huang W, Seidel K,
Brown C, Gustafson JA, Yokoyama JK, Johnson AJ, Baxter BA, Koning
RW, et al: Intraventricular B7-H3 CAR T Cells for Diffuse Intrinsic
Pontine Glioma: Preliminary First-in-Human Bioactivity and Safety.
Cancer Discov. 13:114–131. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Omuro A, Brandes AA, Carpentier AF, Idbaih
A, Reardon DA, Cloughesy T, Sumrall A, Baehring J, van den Bent M,
Bähr O, et al: Radiotherapy combined with nivolumab or temozolomide
for newly diagnosed Glioblastoma with unmethylated MGMT promoter:
An international randomized phase III trial. Neuro Oncol.
25:123–134. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Reardon DA, Brandes AA, Omuro A,
Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr
O, et al: Effect of nivolumab vs bevacizumab in patients with
recurrent glioblastoma: The checkmate 143 phase 3 Randomized
clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Schalper KA, Rodriguez-Ruiz ME, Diez-Valle
R, López-Janeiro A, Porciuncula A, Idoate MA, Inogés S, de Andrea
C, López-Diaz de Cerio A, Tejada S, et al: Neoadjuvant nivolumab
modifies the tumor immune microenvironment in resectable
glioblastoma. Nat Med. 25:470–476. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Liu X, Chen X, Shi L, Shan Q, Cao Q, Yue
C, Li H, Li S, Wang J, Gao S, et al: The third-generation EGFR
inhibitor AZD9291 overcomes primary resistance by continuously
blocking ERK signaling in glioblastoma. J Exp Clin Cancer Res.
38:2192019. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Rong L, Li N and Zhang Z: Emerging
therapies for glioblastoma: Current state and future directions. J
Exp Clin Cancer Res. 41:1422022. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Marei HE, Althani A, Caceci T, Arriga R,
Sconocchia T, Ottaviani A, Lanzilli G, Roselli M, Caratelli S,
Cenciarelli C and Sconocchia G: Recent perspective on CAR and
Fcγ-CR T cell immunotherapy for cancers: Preclinical evidence
versus clinical outcomes. Biochem Pharmacol. 166:335–346. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Karachi A, Dastmalchi F, Nazarian S, Huang
J, Sayour EJ, Jin L, Yang C, Mitchell DA and Rahman M: Optimizing T
cell-based therapy for glioblastoma. Front Immunol. 12:7055802021.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
O'Rourke DM, Nasrallah MP, Desai A,
Melenhorst JJ, Mansfield K, Morrissette JJD, Martinez-Lage M, Brem
S, Maloney E, Shen A, et al: A single dose of peripherally infused
EGFRvIII-directed CAR T cells mediates antigen loss and induces
adaptive resistance in patients with recurrent glioblastoma. Sci
Transl Med. 9:eaaa09842017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ahmed N, Brawley V, Hegde M, Bielamowicz
K, Kalra M, Landi D, Robertson C, Gray TL, Diouf O, Wakefield A, et
al: HER2-Specific chimeric antigen receptor-modified virus-specific
T cells for progressive glioblastoma: A phase 1 dose-escalation
trial. JAMA Oncol. 3:1094–1101. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Marei HE, Althani A, Afifi N, Hasan A,
Caceci T, Pozzoli G and Cenciarelli C: Current progress in chimeric
antigen receptor T cell therapy for glioblastoma multiforme. Cancer
Med. 10:5019–5030. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Suryadevara CM, Desai R, Abel ML, Riccione
KA, Batich KA, Shen SH, Chongsathidkiet P, Gedeon PC, Elsamadicy
AA, Snyder DJ, et al: Temozolomide lymphodepletion enhances CAR
abundance and correlates with antitumor efficacy against
established glioblastoma. Oncoimmunology. 7:e14344642018.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Choi BD, Yu X, Castano AP, Bouffard AA,
Schmidts A, Larson RC, Bailey SR, Boroughs AC, Frigault MJ, Leick
MB, et al: CAR-T cells secreting BiTEs circumvent antigen escape
without detectable toxicity. Nat Biotechnol. 37:1049–1058. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Muhammad N, Wang R, Li W, Zhang Z, Chang
Y, Hu Y, Zhao J, Zheng X, Mao Q and Xia H: A novel TanCAR targeting
IL13Rα2 and EphA2 for enhanced glioblastoma therapy. Mol Ther
Oncolytics. 24:729–741. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Hegde M, Mukherjee M, Grada Z, Pignata A,
Landi D, Navai SA, Wakefield A, Fousek K, Bielamowicz K, Chow KK,
et al: Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate
tumor antigen escape. J Clin Invest. 131:e1524772021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Schmidts A, Srivastava AA, Ramapriyan R,
Bailey SR, Bouffard AA, Cahill DP, Carter BS, Curry WT, Dunn GP,
Frigault MJ, et al: Tandem chimeric antigen receptor (CAR) T cells
targeting EGFRvIII and IL-13Rα2 are effective against heterogeneous
glioblastoma. Neurooncol Adv. 5:vdac1852022.PubMed/NCBI
|
|
129
|
Bielamowicz K, Fousek K, Byrd TT, Samaha
H, Mukherjee M, Aware N, Wu MF, Orange JS, Sumazin P, Man TK, et
al: Trivalent CAR T cells overcome interpatient antigenic
variability in glioblastoma. Neuro Oncol. 20:506–518. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Iurlaro R, Waldhauer I, Planas-Rigol E,
Bonfill-Teixidor E, Arias A, Nicolini V, Freimoser-Grundschober A,
Cuartas I, Martínez-Moreno A, Martínez-Ricarte F, et al: A Novel
EGFRvIII T-Cell bispecific antibody for the treatment of
glioblastoma. Mol Cancer Ther. 21:1499–1509. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Marei HE, Hasan A, Pozzoli G and
Cenciarelli C: Cancer immunotherapy with immune checkpoint
inhibitors (ICIs): Potential, mechanisms of resistance, and
strategies for reinvigorating T cell responsiveness when resistance
is acquired. Cancer Cell Int. 23:642023. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Ye L, Park JJ, Dong MB, Yang Q, Chow RD,
Peng L, Du Y, Guo J, Dai X, Wang G, et al: In vivo CRISPR screening
in CD8 T cells with AAV-Sleeping Beauty hybrid vectors identifies
membrane targets for improving immunotherapy for glioblastoma. Nat
Biotechnol. 37:1302–1313. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Sconocchia G, Zlobec I, Lugli A, Calabrese
D, Iezzi G, Karamitopoulou E, Patsouris ES, Peros G, Horcic M,
Tornillo L, et al: Tumor infiltration by FcγRIII (CD16)+ myeloid
cells is associated with improved survival in patients with
colorectal carcinoma. Int J Cancer. 128:2663–2672. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Sconocchia G, Eppenberger-Castori S,
Zlobec I, Karamitopoulou E, Arriga R, Coppola A, Caratelli S,
Spagnoli GC, Lauro D, Lugli A, et al: HLA class II antigen
expression in colorectal carcinoma tumors as a favorable prognostic
marker. Neoplasia. 16:31–42. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Sconocchia G, Spagnoli GC, Del Principe D,
Ferrone S, Anselmi M, Wongsena W, Cervelli V, Schultz-Thater E,
Wyler S, Carafa V, et al: Defective infiltration of natural killer
cells in MICA/B-positive renal cell carcinoma involves
beta(2)-integrin-mediated interaction. Neoplasia. 11:662–671. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Gangoso E, Southgate B, Bradley L, Rus S,
Galvez-Cancino F, McGivern N, Güç E, Kapourani CA, Byron A,
Ferguson KM, et al: Glioblastomas acquire myeloid-affiliated
transcriptional programs via epigenetic immunoediting to elicit
immune evasion. Cell. 184:2454–2470.e26. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Ravi VM, Neidert N, Will P, Joseph K,
Maier JP, Kückelhaus J, Vollmer L, Goeldner JM, Behringer SP,
Scherer F, et al: T-cell dysfunction in the glioblastoma
microenvironment is mediated by myeloid cells releasing
interleukin-10. Nat Commun. 13:9252022. View Article : Google Scholar : PubMed/NCBI
|