|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Freimund AE, Beach JA, Christie EL and
Bowtell DDL: Mechanisms of drug resistance in high-grade serous
ovarian cancer. Hematol Oncol Clin North Am. 32:983–996. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Borch TH, Andersen R, Ellebaek E, Met Ö,
Donia M and Svane IM: Future role for adoptive T-cell therapy in
checkpoint inhibitor-resistant metastatic melanoma. J Immunother
Cancer. 8:e0006682020. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhang W, Shi F, Kong Y, Li Y, Sheng C,
Wang S and Wang Q: Association of PTPRT mutations with immune
checkpoint inhibitors response and outcome in melanoma and
non-small cell lung cancer. Cancer Med. 11:676–691. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wang M, Herbst RS and Boshoff C: Toward
personalized treatment approaches for non-small-cell lung cancer.
Nat Med. 27:1345–1356. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Soberanis Pina P and Lheureux S:
Overcoming PARP inhibitor resistance in ovarian cancer. Int J
Gynecol Cancer. 33:364–376. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Cheasley D, Nigam A, Zethoven M, Hunter S,
Etemadmoghadam D, Semple T, Allan P, Carey MS, Fernandez ML, Dawson
A, et al: Genomic analysis of low-grade serous ovarian carcinoma to
identify key drivers and therapeutic vulnerabilities. J Pathol.
253:41–54. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Flaum N, Crosbie EJ, Edmondson RJ, Smith
MJ and Evans DG: Epithelial ovarian cancer risk: A review of the
current genetic landscape. Clin Genet. 97:54–63. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Garziera M, Cecchin E, Canzonieri V, Sorio
R, Giorda G, Scalone S, De Mattia E, Roncato R, Gagno S, Poletto E,
et al: Identification of novel somatic TP53 mutations in patients
with high-grade serous ovarian cancer (HGSOC) using next-generation
sequencing (NGS). Int J Mol Sci. 19:15102018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bolton KL, Chen D, Corona de la Fuente R,
Fu Z, Murali R, Köbel M, Tazi Y, Cunningham JM, Chan ICC, Wiley BJ,
et al: Molecular subclasses of clear cell ovarian carcinoma and
their impact on disease behavior and outcomes. Clin Cancer Res.
28:4947–4956. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhang X, Wei X, Bai G, Huang X, Hu S, Mao
H and Liu P: Identification of three potential prognostic genes in
platinum-resistant ovarian cancer via integrated bioinformatics
analysis. Cancer Manag Res. 13:8629–8646. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Samborski A, Miller MC, Blackman A,
MacLaughlan-David S, Jackson A, Lambert-Messerlian G,
Rowswell-Turner R and Moore RG: HE4 and CA125 serum biomarker
monitoring in women with epithelial ovarian cancer. Tumour Biol.
44:205–213. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Turner MA, Lwin TM, Amirfakhri S, Nishino
H, Hoffman RM, Yazaki PJ and Bouvet M: The use of fluorescent
anti-CEA antibodies to label, resect and treat cancers: A review.
Biomolecules. 11:18192021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Anastasi E, Farina A, Granato T,
Colaiacovo F, Pucci B, Tartaglione S and Angeloni A: Recent insight
about HE4 role in ovarian cancer oncogenesis. Int J Mol Sci.
24:104792023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ali FT, Soliman RM, Hassan NS, Ibrahim AM,
El-Gizawy MM, Mandoh AAY and Ibrahim EA: Sensitivity and
specificity of microRNA-204, CA125, and CA19.9 as biomarkers for
diagnosis of ovarian cancer. PLoS One. 17:e02723082022. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lv J and Li P: Mesothelin as a biomarker
for targeted therapy. Biomark Res. 7:182019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Rath A, Mitra S, Adhya AK and Majumdar
SKD: Immature teratoma with very high AFP levels. Eur J Obstet
Gynecol Reprod Biol X. 16:1001702022.PubMed/NCBI
|
|
18
|
Wu Y, Xu S, Cheng S, Yang J and Wang Y:
Clinical application of PARP inhibitors in ovarian cancer: From
molecular mechanisms to the current status. J Ovarian Res.
16:62023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Dilawari A, Shah M, Ison G, Gittleman H,
Fiero MH, Shah A, Hamed SS, Qiu J, Yu J, Manheng W, et al: FDA
approval summary: Mirvetuximab soravtansine-gynx for FRα-positive,
platinum-resistant ovarian cancer. Clin Cancer Res. 29:3835–3840.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Borcoman E, Santana Dos Santos E, Genestie
C, Pautier P, Lacroix L, Caputo SM, Cabaret O, Guillaud-Bataille M,
Michels J, Auguste A, et al: Combined tumor-based BRCA1/2 and TP53
mutation testing in ovarian cancer. Int J Mol Sci. 24:115702023.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Magliacane G, Brunetto E, Calzavara S,
Bergamini A, Pipitone GB, Marra G, Redegalli M, Grassini G,
Rabaiotti E, Taccagni G, et al: Locally Performed HRD testing for
ovarian cancer? Yes, we can! Cancers (Basel). 15:422022.PubMed/NCBI
|
|
22
|
Grafodatskaya D, O'Rielly DD, Bedard K,
Butcher DT, Howlett CJ, Lytwyn A, McCready E, Parboosingh J,
Spriggs EL, Vaags AK and Stockley TL: Practice guidelines for
BRCA1/2 tumour testing in ovarian cancer. J Med Genet. 59:727–736.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Umemura S, Sowa Y, Iizumi Y, Kitawaki J
and Sakai T: Synergistic effect of the inhibitors of RAF/MEK and
AXL on KRAS-mutated ovarian cancer cells with high AXL expression.
Cancer Sci. 111:2052–2061. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Dochez V, Caillon H, Vaucel E, Dimet J,
Winer N and Ducarme G: Biomarkers and algorithms for diagnosis of
ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res.
12:282019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang M, Cheng S, Jin Y, Zhao Y and Wang
Y: Roles of CA125 in diagnosis, prediction, and oncogenesis of
ovarian cancer. Biochim Biophys Acta Rev Cancer. 1875:1885032021.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen F, Shen J, Wang J, Cai P and Huang Y:
Clinical analysis of four serum tumor markers in 458 patients with
ovarian tumors: Diagnostic value of the combined use of HE4, CA125,
CA19-9, and CEA in ovarian tumors. Cancer Manag Res. 10:1313–1318.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Barani M, Bilal M, Sabir F, Rahdar A and
Kyzas GZ: Nanotechnology in ovarian cancer: Diagnosis and
treatment. Life Sci. 266:1189142021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hurley LC, Levin NK, Chatterjee M, Coles
J, Muszkat S, Howarth Z, Dyson G and Tainsky MA: Evaluation of
paraneoplastic antigens reveals TRIM21 autoantibodies as biomarker
for early detection of ovarian cancer in combination with
autoantibodies to NY-ESO-1 and TP53. Cancer Biomark. 27:407–421.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lekka S, Psomiadou V, Panoskaltsis T,
Tsouma E, Novkovic N, Trihia H, Tzaida O, Korfias D, Giannakas P,
Iavazzo C, et al: CytoSaLPs score: A promising new tool for the
detection and screening of extrauterine high grade serous
carcinoma. BMC Cancer. 23:1572023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu S, Yuan L, Li J, Liu Y, Wang H and Ren
X: circDENND4C, a novel serum marker for epithelial ovarian cancer,
acts as a tumor suppressor by downregulating miR-200b/c. Ann Med.
55:908–919. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chae CS, Sandoval TA, Hwang SM, Park ES,
Giovanelli P, Awasthi D, Salvagno C, Emmanuelli A, Tan C, Chaudhary
V, et al: Tumor-derived lysophosphatidic acid blunts protective
type I interferon responses in ovarian cancer. Cancer Discov.
12:1904–1921. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Xu M, Zhang D, Xu X, Zhang J and Jiang G:
Application of blood extracellular vesicle miRNA in early diagnosis
of ovarian cancer. Chinese Patent Application Publication
CN117802228A. Filed. September 30–2022.
|
|
33
|
Bansal A, Srinivasan R, Rohilla M,
Sundaram A, Rai B, Rajwanshi A, Suri V, Saha SC, Gupta N, Gupta P
and Dey P: Morphologic and immunocytochemical features of
high-grade serous carcinoma of ovary in ascitic fluid effusion and
fine-needle aspiration cytology. Am J Clin Pathol. 154:103–114.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Asante DB, Calapre L, Ziman M, Meniawy TM
and Gray ES: Liquid biopsy in ovarian cancer using circulating
tumor DNA and cells: Ready for prime time? Cancer Lett. 468:59–71.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Campos-Carrillo A, Weitzel JN, Sahoo P,
Rockne R, Mokhnatkin JV, Murtaza M, Gray SW, Goetz L, Goel A,
Schork N and Slavin TP: Circulating tumor DNA as an early cancer
detection tool. Pharmacol Ther. 207:1074582020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kim YM, Lee SW, Lee YJ, Lee HY, Lee JE and
Choi EK: Prospective study of the efficacy and utility of TP53
mutations in circulating tumor DNA as a non-invasive biomarker of
treatment response monitoring in patients with high-grade serous
ovarian carcinoma. J Gynecol Oncol. 30:e322019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lu Y and Li L: The prognostic value of
circulating tumor DNA in ovarian cancer: A meta-analysis. Technol
Cancer Res Treat. 20:153303382110437842021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhu JW, Charkhchi P and Akbari MR:
Potential clinical utility of liquid biopsies in ovarian cancer.
Mol Cancer. 21:1142022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Buza N: Immunohistochemistry in
gynecologic carcinomas: Practical update with diagnostic and
clinical considerations based on the 2020 WHO classification of
tumors. Semin Diagn Pathol. 39:58–77. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hosseini MS, Amiri F, Rezapour M, Ashraf
Ganjoie T, Farzaneh F, Arab M, Talayeh M, Beheshti Rooy R and Hadi
F: Evaluation of the cutoff point and diagnostic value of the
neutrophil-to-lymphocyte ratio in predicting ovarian cancer
compared to pathological findings. Asian Pac J Cancer Prev.
25:971–976. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang L: Prognostic effect of programmed
death-ligand 1 (PD-L1) in ovarian cancer: A systematic review,
meta-analysis and bioinformatics study. J Ovarian Res. 12:372019.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Olbrecht S, Busschaert P, Qian J,
Vanderstichele A, Loverix L, Van Gorp T, Van Nieuwenhuysen E, Han
S, Van den Broeck A, Coosemans A, et al: High-grade serous
tubo-ovarian cancer refined with single-cell RNA sequencing:
Specific cell subtypes influence survival and determine molecular
subtype classification. Genome Med. 13:1112021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu C, Zhang Y, Li X and Wang D: Ovarian
cancer-specific dysregulated genes with prognostic significance:
scRNA-Seq with bulk RNA-Seq data and experimental validation. Ann N
Y Acad Sci. 1512:154–173. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nagasawa S, Ikeda K, Horie-Inoue K, Sato
S, Takeda S, Hasegawa K and Inoue S: Identification of novel
mutations of ovarian cancer-related genes from RNA-sequencing data
for Japanese epithelial ovarian cancer patients. Endocr J.
67:219–229. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shih AJ, Menzin A, Whyte J, Lovecchio J,
Liew A, Khalili H, Bhuiya T, Gregersen PK and Lee AT:
Identification of grade and origin specific cell populations in
serous epithelial ovarian cancer by single cell RNA-seq. PLoS One.
13:e02067852018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang J, Dean DC, Hornicek FJ, Shi H and
Duan Z: RNA sequencing (RNA-Seq) and its application in ovarian
cancer. Gynecol Oncol. 152:194–201. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Huang D, Chowdhury S, Wang H, Savage SR,
Ivey RG, Kennedy JJ, Whiteaker JR, Lin C, Hou X, Oberg AL, et al:
Multiomic analysis identifies CPT1A as a potential therapeutic
target in platinum-refractory, high-grade serous ovarian cancer.
Cell Rep Med. 2:1004712021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mosele F, Remon J, Mateo J, Westphalen CB,
Barlesi F, Lolkema MP, Normanno N, Scarpa A, Robson M,
Meric-Bernstam F, et al: Recommendations for the use of
next-generation sequencing (NGS) for patients with metastatic
cancers: A report from the ESMO precision medicine working group.
Ann Oncol. 31:1491–1505. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Huhtaniemi I, Hovatta O, La Marca A,
Livera G, Monniaux D, Persani L, Heddar A, Jarzabek K, Laisk-Podar
T, Salumets A, et al: Advances in the molecular pathophysiology,
genetics, and treatment of primary ovarian insufficiency. Trends
Endocrinol Metab. 29:400–419. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dou Z, Qiu C, Zhang X, Yao S, Zhao C, Wang
Z, Chu R, Chen J, Chen Z, Li R, et al: HJURP promotes malignant
progression and mediates sensitivity to cisplatin and
WEE1-inhibitor in serous ovarian cancer. Int J Biol Sci.
18:1188–1210. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhu Z, Chen Z, Wang M, Zhang M, Chen Y,
Yang X, Zhou C, Liu Y, Hong L and Zhang L: Detection of plasma
exosomal miRNA-205 as a biomarker for early diagnosis and an
adjuvant indicator of ovarian cancer staging. J Ovarian Res.
15:272022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gong G, Lin T and Yuan Y: Integrated
analysis of gene expression and DNA methylation profiles in ovarian
cancer. J Ovarian Res. 13:302020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Chen D, Wu Y, Tilley RD and Gooding JJ:
Rapid and ultrasensitive electrochemical detection of DNA
methylation for ovarian cancer diagnosis. Biosens Bioelectron.
206:1141262022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hooda J, Novak M, Salomon MP, Matsuba C,
Ramos RI, MacDuffie E, Song M, Hirsch MS, Lester J, Parkash V, et
al: Early loss of histone H2B monoubiquitylation alters chromatin
accessibility and activates key immune pathways that facilitate
progression of ovarian cancer. Cancer Res. 79:760–772. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Peng B, Li J, Yan Y, Liu Y, Liang Q, Liu
W, Thakur A, Zhang K, Xu Z, Wang J and Zhang F: Non-coding RNAs:
The recently accentuated molecules in the regulation of cell
autophagy for ovarian cancer pathogenesis and therapeutic response.
Front Pharmacol. 14:11620452023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Singh A, Gupta S, Badarukhiya JA and
Sachan M: Detection of aberrant methylation of HOXA9 and HIC1
through multiplex MethyLight assay in serum DNA for the early
detection of epithelial ovarian cancer. Int J Cancer.
147:1740–1752. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Washington CR, Richardson DL and Moore KN:
Olaparib in the treatment of ovarian cancer. Future Oncol.
15:3435–3449. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shirley M: Rucaparib: A review in ovarian
cancer. Target Oncol. 14:237–246. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Essel KG and Moore KN: Niraparib for the
treatment of ovarian cancer. Expert Rev Anticancer Ther.
18:727–733. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lee A: Fuzuloparib: First approval. Drugs.
81:1221–1226. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Luo L and Keyomarsi K: PARP inhibitors as
single agents and in combination therapy: The most promising
treatment strategies in clinical trials for BRCA-mutant ovarian and
triple-negative breast cancers. Expert Opin Investig Drugs.
31:607–631. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Guan LY and Lu Y: New developments in
molecular targeted therapy of ovarian cancer. Discov Med.
26:219–229. 2018.PubMed/NCBI
|
|
63
|
Matulonis UA, Lorusso D, Oaknin A, Pignata
S, Dean A, Denys H, Colombo N, Van Gorp T, Konner JA, Marin MR, et
al: Efficacy and safety of mirvetuximab soravtansine in patients
with platinum-resistant ovarian cancer with high folate receptor
alpha expression: Results from the SORAYA study. J Clin Oncol.
41:2436–2445. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Smith M and Pothuri B: Appropriate
selection of PARP inhibitors in ovarian cancer. Curr Treat Options
Oncol. 23:887–903. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lee CK, Friedlander ML, Tjokrowidjaja A,
Ledermann JA, Coleman RL, Mirza MR, Matulonis UA, Pujade-Lauraine
E, Bloomfield R, Goble S, et al: Molecular and clinical predictors
of improvement in progression-free survival with maintenance PARP
inhibitor therapy in women with platinum-sensitive, recurrent
ovarian cancer: A meta-analysis. Cancer. 127:2432–2441. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mirza MR, Coleman RL, González-Martín A,
Moore KN, Colombo N, Ray-Coquard I and Pignata S: The forefront of
ovarian cancer therapy: update on PARP inhibitors. Ann Oncol.
31:1148–1159. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lheureux S, Braunstein M and Oza AM:
Epithelial ovarian cancer: Evolution of management in the era of
precision medicine. CA Cancer J Clin. 69:280–304. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Poveda A, Floquet A, Ledermann JA, Asher
R, Penson RT, Oza AM, Korach J, Huzarski T, Pignata S, Friedlander
M, et al: Olaparib tablets as maintenance therapy in patients with
platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation
(SOLO2/ENGOT-Ov21): A final analysis of a double-blind, randomised,
placebo-controlled, phase 3 trial. Lancet Oncol. 22:620–631. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Nakazawa H, Nagao S, Narita M, Shibutani
T, Jimi T, Yano H, Kitai M, Shiozaki T and Yamaguchi S: Effect of
prior olaparib maintenance therapy for platinum sensitive recurrent
ovarian cancer on response to subsequent platinum-based
chemotherapy. J Obstet Gynaecol Res. 48:1248–1254. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Moore DC, Ringley JT and Patel J:
Rucaparib: A Poly(ADP-Ribose) polymerase inhibitor for BRCA-mutated
relapsed ovarian cancer. J Pharm Pract. 32:219–224. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ledermann JA, Oza AM, Lorusso D,
Aghajanian C, Oaknin A, Dean A, Colombo N, Weberpals JI, Clamp AR,
Scambia G, et al: Rucaparib for patients with platinum-sensitive,
recurrent ovarian carcinoma (ARIEL3): Post-progression outcomes and
updated safety results from a randomised, placebo-controlled, phase
3 trial. Lancet Oncol. 21:710–722. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Del Campo JM, Matulonis UA, Malander S,
Provencher D, Mahner S, Follana P, Waters J, Berek JS, Woie K, Oza
AM, et al: Niraparib maintenance therapy in patients with recurrent
ovarian cancer after a partial response to the last platinum-based
chemotherapy in the ENGOT-OV16/NOVA trial. J Clin Oncol.
37:2968–2973. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Lee A: Niraparib: A review in first-line
maintenance therapy in advanced ovarian cancer. Target Oncol.
16:839–845. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
No authors listed. Niraparib for ovarian
cancer. Aust Prescr. 44:208–209. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gupta S, Nag S, Aggarwal S, Rauthan A and
Warrier N: Maintenance therapy for recurrent epithelial ovarian
cancer: Current therapies and future perspectives-a review. J
Ovarian Res. 12:1032019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ray-Coquard I, Pautier P, Pignata S, Pérol
D, González-Martín A, Berger R, Fujiwara K, Vergote I, Colombo N,
Mäenpää J, et al: Olaparib plus bevacizumab as first-line
maintenance in ovarian cancer. N Engl J Med. 381:2416–2428. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Boussios S, Karathanasi A, Cooke D, Neille
C, Sadauskaite A, Moschetta M, Zakynthinakis-Kyriakou N and
Pavlidis N: PARP inhibitors in ovarian cancer: The route to
‘Ithaca’. Diagnostics (Basel). 9:552019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hill SJ, Decker B, Roberts EA, Horowitz
NS, Muto MG, Worley MJ Jr, Feltmate CM, Nucci MR, Swisher EM,
Nguyen H, et al: Prediction of DNA repair inhibitor response in
short-term patient-derived ovarian cancer organoids. Cancer Discov.
8:1404–1421. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kopper O, de Witte CJ, Lõhmussaar K,
Valle-Inclan JE, Hami N, Kester L, Balgobind AV, Korving J, Proost
N, Begthel H, et al: An organoid platform for ovarian cancer
captures intra- and interpatient heterogeneity. Nat Med.
25:838–849. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Garcia J, Hurwitz HI, Sandler AB, Miles D,
Coleman RL, Deurloo R and Chinot OL: Bevacizumab
(Avastin®) in cancer treatment: A review of 15 years of
clinical experience and future outlook. Cancer Treat Rev.
86:1020172020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Nakai H and Matsumura N: The roles and
limitations of bevacizumab in the treatment of ovarian cancer. Int
J Clin Oncol. 27:1120–1126. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
O'Malley DM: New Therapies for ovarian
cancer. J Natl Compr Canc Netw. 17:619–621. 2019.
|
|
83
|
Tewari KS, Burger RA, Enserro D, Norquist
BM, Swisher EM, Brady MF, Bookman MA, Fleming GF, Huang H, Homesley
HD, et al: Final overall survival of a randomized trial of
bevacizumab for primary treatment of ovarian cancer. J Clin Oncol.
37:2317–2328. 2019. View Article : Google Scholar
|
|
84
|
Cui Q, Hu Y, Ma D and Liu H: A
retrospective observational study of anlotinib in patients with
platinum-resistant or platinum-refractory epithelial ovarian
cancer. Drug Des Devel Ther. 15:339–347. 2021. View Article : Google Scholar
|
|
85
|
Wei Y, Erfani S, Schweer D, de Gouvea R,
Qadir J, Shi J, Cheng K, Wu D, Craven R, Wu Y, et al: Targeting
receptor tyrosine kinases in ovarian cancer: Genomic dysregulation,
clinical evaluation of inhibitors, and potential for combinatorial
therapies. Mol Ther Oncolytics. 28:293–306. 2023. View Article : Google Scholar
|
|
86
|
Ray-Coquard I, Cibula D, Mirza MR, Reuss
A, Ricci C, Colombo N, Koch H, Goffin F, González-Martin A,
Ottevanger PB, et al: Final results from GCIG/ENGOT/AGO-OVAR 12, a
randomised placebo-controlled phase III trial of nintedanib
combined with chemotherapy for newly diagnosed advanced ovarian
cancer. Int J Cancer. 146:439–448. 2020. View Article : Google Scholar
|
|
87
|
Ledermann JA, Embleton-Thirsk AC, Perren
TJ, Jayson GC, Rustin GJS, Kaye SB, Hirte H, Oza A, Vaughan M,
Friedlander M, et al: Cediranib in addition to chemotherapy for
women with relapsed platinum-sensitive ovarian cancer (ICON6):
Overall survival results of a phase III randomised trial. ESMO
Open. 6:1000432021. View Article : Google Scholar
|
|
88
|
Vergote I, du Bois A, Floquet A, Rau J,
Kim JW, Del Campo JM, Friedlander M, Pignata S, Fujiwara K, Colombo
N, et al: Overall survival results of AGO-OVAR16: A phase 3 study
of maintenance pazopanib versus placebo in women who have not
progressed after first-line chemotherapy for advanced ovarian
cancer. Gynecol Oncol. 155:186–191. 2019. View Article : Google Scholar
|
|
89
|
Kuroki L and Guntupalli SR: Treatment of
epithelial ovarian cancer. BMJ. 371:m37732020. View Article : Google Scholar
|
|
90
|
Zhou AP, Bai Y, Song Y, Luo H, Ren XB,
Wang X, Shi B, Fu C, Cheng Y, Liu J, et al: Anlotinib versus
sunitinib as first-line treatment for metastatic renal cell
carcinoma: A randomized phase II clinical trial. Oncologist.
24:e702–e708. 2019. View Article : Google Scholar
|
|
91
|
Morrison J, Thoma C, Goodall RJ, Lyons TJ,
Gaitskell K, Wiggans AJ and Bryant A: Epidermal growth factor
receptor blockers for the treatment of ovarian cancer. Cochrane
Database Syst Rev. 10:CD0079272018.
|
|
92
|
Chilimoniuk Z, Rocka A, Stefaniak M,
Tomczyk Ż, Jasielska F, Madras D and Filip A: Molecular methods for
increasing the effectiveness of ovarian cancer treatment: A
systematic review. Future Oncol. 18:1627–1650. 2022. View Article : Google Scholar
|
|
93
|
Voigtlaender M, Schneider-Merck T and
Trepel M: Lapatinib. Recent Results Cancer Res. 211:19–44. 2018.
View Article : Google Scholar
|
|
94
|
Ediriweera MK, Tennekoon KH and Samarakoon
SR: Role of the PI3K/AKT/mTOR signaling pathway in ovarian cancer:
Biological and therapeutic significance. Semin Cancer Biol.
59:147–160. 2019. View Article : Google Scholar
|
|
95
|
Ren M, Zhao H, Gao Y, Chen Q, Zhao X and
Yue W: NUF2 promotes tumorigenesis by interacting with HNRNPA2B1
via PI3K/AKT/mTOR pathway in ovarian cancer. J Ovarian Res.
16:172023. View Article : Google Scholar
|
|
96
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.
View Article : Google Scholar
|
|
97
|
Hu X, Xia M, Wang J, Yu H, Chai J, Zhang
Z, Sun Y, Su J and Sun L: Dual PI3K/mTOR inhibitor PKI-402
suppresses the growth of ovarian cancer cells by degradation of
Mcl-1 through autophagy. Biomed Pharmacother. 129:1103972020.
View Article : Google Scholar
|
|
98
|
Hendrikse CSE, Theelen PMM, van der Ploeg
P, Westgeest HM, Boere IA, Thijs AMJ, Ottevanger PB, van de Stolpe
A, Lambrechts S, Bekkers RLM and Piek JMJ: The potential of
RAS/RAF/MEK/ERK (MAPK) signaling pathway inhibitors in ovarian
cancer: A systematic review and meta-analysis. Gynecol Oncol.
171:83–94. 2023. View Article : Google Scholar
|
|
99
|
Degirmenci U, Wang M and Hu J: Targeting
aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells.
9:1982020. View Article : Google Scholar
|
|
100
|
Vena F, Jia R, Esfandiari A, Garcia-Gomez
JJ, Rodriguez-Justo M, Ma J, Syed S, Crowley L, Elenbaas B,
Goodstal S, et al: MEK inhibition leads to BRCA2 downregulation and
sensitization to DNA damaging agents in pancreas and ovarian cancer
models. Oncotarget. 9:11592–11603. 2018. View Article : Google Scholar
|
|
101
|
Scaranti M, Cojocaru E, Banerjee S and
Banerji U: Exploiting the folate receptor α in oncology. Nat Rev
Clin Oncol. 17:349–359. 2020. View Article : Google Scholar
|
|
102
|
Heo YA: Mirvetuximab soravtansine: First
approval. Drugs. 83:265–273. 2023. View Article : Google Scholar
|
|
103
|
Rodriguez GM, Yakubovich E and Vanderhyden
BC: Unveiling the immunogenicity of ovarian tumors as the crucial
catalyst for therapeutic success. Cancers (Basel). 15:56942023.
View Article : Google Scholar
|
|
104
|
Guo Q, Yang Q, Li J, Liu G, Nikoulin I and
Jia S: Advanced clinical trials of dendritic cell vaccines in
ovarian cancer. J Investig Med. 68:1223–1227. 2020. View Article : Google Scholar
|
|
105
|
Calmeiro J, Carrascal MA, Tavares AR,
Ferreira DA, Gomes C, Falcão A, Cruz MT and Neves BM: Dendritic
cell vaccines for cancer immunotherapy: The role of human
conventional type 1 dendritic cells. Pharmaceutics. 12:1582020.
View Article : Google Scholar
|
|
106
|
Dafni U, Martín-Lluesma S, Balint K,
Tsourti Z, Vervita K, Chenal J, Coukos G, Zaman K, Sarivalasis A
and Kandalaft LE: Efficacy of cancer vaccines in selected
gynaecological breast and ovarian cancers: A 20-year systematic
review and meta-analysis. Eur J Cancer. 142:63–82. 2021. View Article : Google Scholar
|
|
107
|
Manning-Geist BL, Gnjatic S, Aghajanian C,
Konner J, Kim SH, Sarasohn D, Soldan K, Tew WP, Sarlis NJ, Zamarin
D, et al: Phase I study of a multivalent WT1 peptide vaccine
(galinpepimut-S) in combination with nivolumab in patients with
WT1-expressing ovarian cancer in second or third remission. Cancers
(Basel). 15:14582023. View Article : Google Scholar
|
|
108
|
Zhao Z, Ortega-Rivera OA, Chung YH, Simms
A and Steinmetz NF: A co-formulated vaccine of irradiated cancer
cells and cowpea mosaic virus improves ovarian cancer rejection. J
Mater Chem B. 11:5429–5441. 2023. View Article : Google Scholar
|
|
109
|
Xu H, Zhao F, Wu D, Zhang Y, Bao X, Shi F,
Cai Y and Dou J: Eliciting effective tumor immunity against ovarian
cancer by cancer stem cell vaccination. Biomed Pharmacother.
161:1145472023. View Article : Google Scholar
|
|
110
|
Liu X, Shi Y, Zhang D, Zhou Q, Liu J, Chen
M, Xu Y, Zhao J, Zhong W and Wang M: Risk factors for
immune-related adverse events: What have we learned and what lies
ahead? Biomark Res. 9:792021. View Article : Google Scholar
|
|
111
|
Zamarin D, Burger RA, Sill MW, Powell DJ
Jr, Lankes HA, Feldman MD, Zivanovic O, Gunderson C, Ko E, Mathews
C, et al: Randomized phase II trial of nivolumab versus nivolumab
and ipilimumab for recurrent or persistent ovarian cancer: An NRG
oncology study. J Clin Oncol. 38:1814–1823. 2020. View Article : Google Scholar
|
|
112
|
Peyraud F and Italiano A: Combined PARP
inhibition and immune checkpoint therapy in solid tumors. Cancers
(Basel). 12:15022020. View Article : Google Scholar
|
|
113
|
Disis ML, Taylor MH, Kelly K, Beck JT,
Gordon M, Moore KM, Patel MR, Chaves J, Park H, Mita AC, et al:
Efficacy and safety of avelumab for patients with recurrent or
refractory ovarian cancer: Phase 1b results from the JAVELIN solid
tumor trial. JAMA Oncol. 5:393–401. 2019. View Article : Google Scholar
|
|
114
|
Xin Yu J, Hodge JP, Oliva C, Neftelinov
ST, Hubbard-Lucey VM and Tang J: Trends in clinical development for
PD-1/PD-L1 inhibitors. Nat Rev Drug Discov. 19:163–164. 2020.
View Article : Google Scholar
|
|
115
|
Komura N, Mabuchi S, Shimura K, Yokoi E,
Kozasa K, Kuroda H, Takahashi R, Sasano T, Kawano M, Matsumoto Y,
et al: The role of myeloid-derived suppressor cells in increasing
cancer stem-like cells and promoting PD-L1 expression in epithelial
ovarian cancer. Cancer Immunol Immunother. 69:2477–2499. 2020.
View Article : Google Scholar
|
|
116
|
Lee JY, Kim JW, Lim MC, Kim S, Kim HS,
Choi CH, Yi JY, Park SY and Kim BG; KGOG investigators, : A phase
II study of neoadjuvant chemotherapy plus durvalumab and
tremelimumab in advanced-stage ovarian cancer: A Korean gynecologic
oncology group study (KGOG 3046), TRU-D. J Gynecol Oncol.
30:e1122019. View Article : Google Scholar
|
|
117
|
Shen J, Zhao W, Ju Z, Wang L, Peng Y,
Labrie M, Yap TA, Mills GB and Peng G: PARPi triggers the
STING-dependent immune response and enhances the therapeutic
efficacy of immune checkpoint blockade independent of BRCAness.
Cancer Res. 79:311–319. 2019. View Article : Google Scholar
|
|
118
|
Brewer M, Angioli R, Scambia G, Lorusso D,
Terranova C, Panici PB, Raspagliesi F, Scollo P, Plotti F,
Ferrandina G, et al: Front-line chemo-immunotherapy with
carboplatin-paclitaxel using oregovomab indirect immunization in
advanced ovarian cancer: A randomized phase II study. Gynecol
Oncol. 156:523–529. 2020. View Article : Google Scholar
|
|
119
|
Liu J, Gaillard S, Hendrickson AW, Moroney
J, Yeku O, Diver E, Gunderson C, Arend R, Ratner E, Samnotra V, et
al: An open-label phase II study of dostarlimab (TSR-042),
bevacizumab (bev), and niraparib combination in patients (pts) with
platinum-resistant ovarian cancer (PROC): Cohort A of the OPAL
trial. Gynecol Oncol. 162 (Suppl 1):S17–S18. 2021. View Article : Google Scholar
|
|
120
|
Marin-Acevedo JA, Kimbrough EO and Lou Y:
Next generation of immune checkpoint inhibitors and beyond. J
Hematol Oncol. 14:452021. View Article : Google Scholar
|
|
121
|
Ochoa de Olza M, Navarro Rodrigo B,
Zimmermann S and Coukos G: Turning up the heat on
non-immunoreactive tumours: Opportunities for clinical development.
Lancet Oncol. 21:e419–e430. 2020. View Article : Google Scholar
|
|
122
|
Kim E, Ahn H and Park H: A review on the
role of gut microbiota in immune checkpoint blockade therapy for
cancer. Mamm Genome. 32:223–231. 2021. View Article : Google Scholar
|
|
123
|
Dafni U, Michielin O, Lluesma SM, Tsourti
Z, Polydoropoulou V, Karlis D, Besser MJ, Haanen J, Svane IM,
Ohashi PS, et al: Efficacy of adoptive therapy with
tumor-infiltrating lymphocytes and recombinant interleukin-2 in
advanced cutaneous melanoma: A systematic review and meta-analysis.
Ann Oncol. 30:1902–1913. 2019. View Article : Google Scholar
|
|
124
|
Yan W, Hu H and Tang B: Advances Of
chimeric antigen receptor T cell therapy in ovarian cancer. Onco
Targets Ther. 12:8015–8022. 2019. View Article : Google Scholar
|
|
125
|
Fucà G, Reppel L, Landoni E, Savoldo B and
Dotti G: Enhancing chimeric antigen receptor T-cell efficacy in
solid tumors. Clin Cancer Res. 26:2444–2451. 2020. View Article : Google Scholar
|
|
126
|
Zhang XW, Wu YS, Xu TM and Cui MH: CAR-T
cells in the treatment of ovarian cancer: A promising cell therapy.
Biomolecules. 13:4652023. View Article : Google Scholar
|
|
127
|
Wu JWY, Dand S, Doig L, Papenfuss AT,
Scott CL, Ho G and Ooi JD: T-cell receptor therapy in the treatment
of ovarian cancer: A mini review. Front Immunol. 12:6725022021.
View Article : Google Scholar
|
|
128
|
Le Saux O, Ray-Coquard I and Labidi-Galy
SI: Challenges for immunotherapy for the treatment of platinum
resistant ovarian cancer. Semin Cancer Biol. 77:127–143. 2021.
View Article : Google Scholar
|