|
1
|
Singh D, Vignat J, Lorenzoni V, Eslahi M,
Ginsburg O, Lauby-Secretan B, Arbyn M, Basu P, Bray F and
Vaccarella S: Global estimates of incidence and mortality of
cervical cancer in 2020: A baseline analysis of the WHO global
cervical cancer elimination initiative. Lancet Glob Health.
11:e197–e206. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Morales-Figueroa GG, Bravo-Parra M,
Olivas-Matas KM, Esparza-Romero J, Valenzuela-Zamorano M,
Olivas-López OM and Quihui-Cota L: Associated factors with human
papillomavirus infection in adult women from northwest Mexico.
Biotecnia. 25:133–139. 2022. View Article : Google Scholar
|
|
3
|
Ostroverkhova D, Przytycka TM and
Panchenko AR: Cancer driver mutations: Predictions and reality.
Trends Mol Med. 29:554–566. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Martínez-Jiménez F, Muiños F, Sentís I,
Deu-Pons J, Reyes-Salazar I, Arnedo-Pac C, Mularoni L, Pich O,
Bonet J, Kranas H, et al: A compendium of mutational cancer driver
genes. Nat Rev Cancer. 20:555–572. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Uruno A and Yamamoto M: The KEAP1-NRF2
system and neurodegenerative diseases. Antioxid Redox Signal.
38:974–988. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fox DB, Garcia NMG, McKinney BJ, Lupo R,
Noteware LC, Newcomb R, Liu J, Locasale JW, Hirschey MD and Alvarez
JV: NRF2 activation promotes the recurrence of dormant tumour cells
through regulation of redox and nucleotide metabolism. Nat Metab.
2:318–334. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Guenter R, Patel Z and Chen H: Notch
signaling in thyroid cancer. Notch Signaling in Embryology and
Cancer. Vol. 1287. Reichrath J and Reichrath S: Springer
International Publishing; Cham: pp. 155–168. 2021, View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Llombart V and Mansour MR: Therapeutic
targeting of ‘undruggable’ MYC. EBioMedicine. 75:1037562022.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fu M, Hu Y, Lan T, Guan KL, Luo T and Luo
M: The Hippo signalling pathway and its implications in human
health and diseases. Signal Transduct Target Ther. 7:3762022.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mendoza-Almanza G, Ortíz-Sánchez E,
Rocha-Zavaleta L, Rivas-Santiago C, Esparza-Ibarra E and Olmos J:
Cervical cancer stem cells and other leading factors associated
with cervical cancer development. Oncol Lett. 18:3423–3432.
2019.PubMed/NCBI
|
|
11
|
Sanchez-Vega F, Mina M, Armenia J, Chatila
WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia
S, et al: Oncogenic signaling pathways in the cancer genome atlas.
Cell. 173:321–337.e10. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Belder N, Coskun Ö, Doganay Erdogan B, Ilk
O, Savas B, Ensari A and Özdağ H: From RNA isolation to microarray
analysis: Comparison of methods in FFPE tissues. Pathol Res Pract.
212:678–685. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Farragher SM, Tanney A, Kennedy RD and
Paul Harkin D: RNA expression analysis from formalin fixed paraffin
embedded tissues. Histochem Cell Biol. 130:435–445. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Győrffy B: Discovery and ranking of the
most robust prognostic biomarkers in serous ovarian cancer.
Geroscience. 45:1889–1898. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Szklarczyk D, Franceschini A, Wyder S,
Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos
A, Tsafou KP, et al: STRING v10: Protein-protein interaction
networks, integrated over the tree of life. Nucleic Acids Res.
43((Database Issue)): D447–D452. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Blokzijl A, Dahlqvist C, Reissmann E, Falk
A, Moliner A, Lendahl U and Ibáñez CF: Cross-talk between the Notch
and TGF-beta signaling pathways mediated by interaction of the
Notch intracellular domain with Smad3. J Cell Biol. 163:723–728.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Papatheodorou I, Moreno P, Manning J,
Muñoz-Pomer Fuentes A, George N, Fexova S, Fonseca NA, Füllgrabe A,
Green M, Huang N, et al: Expression Atlas update: from tissues to
single cells. Nucleic Acids Res. 48:D77–D83. 2020.PubMed/NCBI
|
|
19
|
Kma L and Baruah TJ: The interplay of ROS
and the PI3K/Akt pathway in autophagy regulation. Biotechnol Appl
Biochem. 69:248–264. 2022. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi
M, Satari K, Baluch N, Bosykh DA, Szewczuk MR and Chakraborty S:
The Hippo pathway effectors YAP/TAZ-TEAD oncoproteins as emerging
therapeutic targets in the tumor microenvironment. Cancers (Basel).
15:34682023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li X, Yan X, Wang Y, Kaur B, Han H and Yu
J: The Notch signaling pathway: A potential target for cancer
immunotherapy. J Hematol Oncol. 16:452023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kar R, Jha SK, Ojha S, Sharma A, Dholpuria
S, Raju VSR, Prasher P, Chellappan DK, Gupta G, Singh SK, et al:
The FBXW7-NOTCH interactome: A ubiquitin proteasomal system-induced
crosstalk modulating oncogenic transformation in human tissues.
Cancer Rep (Hoboken). 4:e13692021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Panda H, Wen H, Suzuki M and Yamamoto M:
Multifaceted roles of the KEAP1-NRF2 system in cancer and
inflammatory disease milieu. Antioxidants (Basel). 11:5382022.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Huang Y, Yang W, Yang L, Wang T, Li C, Yu
J, Zhang P, Yin Y, Li R and Tao K: Nrf2 inhibition increases
sensitivity to chemotherapy of colorectal cancer by promoting
ferroptosis and pyroptosis. Sci Rep. 13:143592023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Aranda-Rivera AK, Cruz-Gregorio A,
Arancibia-Hernández YL, Hernández-Cruz EY and Pedraza-Chaverri J:
RONS and oxidative stress: An overview of basic concepts. Oxygen.
2:437–478. 2022. View Article : Google Scholar
|
|
26
|
Hanahan D: Hallmarks of cancer: New
dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang
Q, Du J, Liu L, Li Y and Bai Y: Stromal cells in the tumor
microenvironment: Accomplices of tumor progression? Cell Death Dis.
14:5872023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Medda A, Compagnoni M, Spini G, Citro S,
Croci O, Campaner S, Tagliabue M, Ansarin M and Chiocca S:
c-MYC-dependent transcriptional inhibition of autophagy is
implicated in cisplatin sensitivity in HPV-positive head and neck
cancer. Cell Death Dis. 14:7192023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Haręża DA, Wilczyński JR and Paradowska E:
Human papillomaviruses as infectious agents in gynecological
cancers. Oncogenic properties of viral proteins. Int J Mol Sci.
23:18182022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Peck B, Bland P, Mavrommati I, Muirhead G,
Cottom H, Wai PT, Maguire SL, Barker HE, Morrison E, Kriplani D, et
al: 3D functional genomics screens identify CREBBP as a targetable
driver in aggressive triple-negative breast cancer. Cancer Res.
81:847–859. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jiang Y, Guo X, Liu L, Rode S, Wang R, Liu
H and Yang ZQ: Metagenomic characterization of lysine
acetyltransferases in human cancer and their association with
clinicopathologic features. Cancer Sci. 111:1829–1839. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhu Y, Wang Z, Li Y, Peng H, Liu J, Zhang
J and Xiao X: The role of CREBBP/EP300 and its therapeutic
implications in hematological malignancies. Cancers (Basel).
15:12192023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Vannam R, Sayilgan J, Ojeda S,
Karakyriakou B, Hu E, Kreuzer J, Morris R, Herrera Lopez XI, Rai S,
Haas W, et al: Targeted degradation of the enhancer lysine
acetyltransferases CBP and p300. Cell Chem Biol. 28:503–514.e12.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hua H, Zhang H, Chen J, Wang J, Liu J and
Jiang Y: Targeting Akt in cancer for precision therapy. J Hematol
Oncol. 14:1282021. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wang HM, Lu YJ, He L, Gu NJ, Wang SY, Qiu
XS, Wang EH and Wu GP: HPV16 E6/E7 promote the translocation and
glucose uptake of GLUT1 by PI3K/AKT pathway via relieving miR-451
inhibitory effect on CAB39 in lung cancer cells. Ther Adv Chronic
Dis. 11:20406223209571432020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tewari D, Patni P and Bishayee A, Sah AN
and Bishayee A: Natural products targeting the PI3K-Akt-mTOR
signaling pathway in cancer: A novel therapeutic strategy. Semin
Cancer Biol. 80:1–17. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Voutsadakis IA: 3q26 amplifications in
cervical squamous carcinomas. Curr Oncol. 28:2868–2880. 2021.
View Article : Google Scholar : PubMed/NCBI
|