Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2024 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review)

  • Authors:
    • Zhaoxiong Zhang
    • Wenxin Zhang
    • Xin Liu
    • Yongjia Yan
    • Weihua Fu
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
  • Article Number: 537
    |
    Published online on: September 6, 2024
       https://doi.org/10.3892/ol.2024.14670
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gastric cancer (GC) remains a global healthcare challenge because of its high incidence and poor prognosis. The efficacy of current chemotherapy regimens for advanced GC is limited. T cells, which have been implicated in the progression of GC, have a significant impact in the tumor microenvironment. With a more detailed understanding of the mechanisms underlying the cancer immunoediting process, immunotherapy may become a promising treatment option for patients with GC. Several clinical trials are currently investigating different mechanisms targeting the tumor immune response. The present review summarized T cell‑involved immune responses and various immunotherapy strategies for GC.
View Figures
View References

1 

Hundahl SA, Phillips JL and Menck HR: The national cancer data base report on poor survival of U.S. gastric carcinoma patients treated with gastrectomy: Fifth edition American joint committee on cancer staging, proximal disease, and the ‘different disease’ hypothesis. Cancer. 88:921–932. 2000. View Article : Google Scholar : PubMed/NCBI

2 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, et al: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 355:11–20. 2006. View Article : Google Scholar : PubMed/NCBI

4 

Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN, Haller DG, Ajani JA, Gunderson LL, Jessup JM and Martenson JA: Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 345:725–730. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Karimi P, Islami F, Anandasabapathy S, Freedman ND and Kamangar F: Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 23:700–713. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Thrift AP and El-Serag HB: Burden of gastric cancer. Clin Gastroenterol Hepatol. 18:534–542. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Shrihari TG: Dual role of inflammatory mediators in cancer. Ecancermedicalscience. 11:7212017. View Article : Google Scholar : PubMed/NCBI

9 

Kershaw MH, Westwood JA and Darcy PK: Gene-engineered T cells for cancer therapy. Nat Rev Cancer. 13:525–541. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al: Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 373:23–34. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Chia NY and Tan P: Molecular classification of gastric cancer. Ann Oncol. 27:763–769. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Guan WL, He Y and Xu RH: Gastric cancer treatment: Recent progress and future perspectives. J Hematol Oncol. 16:572023. View Article : Google Scholar : PubMed/NCBI

14 

Shah MA, Bang YJ, Lordick F, Alsina M, Chen M, Hack SP, Bruey JM, Smith D, McCaffery I, Shames DS, et al: Effect of fluorouracil, leucovorin, and oxaliplatin with or without onartuzumab in HER2-Negative, MET-Positive gastroesophageal adenocarcinoma: The METGastric Randomized Clinical Trial. JAMA Oncol. 3:620–627. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Waddell T, Chau I, Cunningham D, Gonzalez D, Okines AF, Okines C, Wotherspoon A, Saffery C, Middleton G, Wadsley J, et al: Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): A randomised, open-label phase 3 trial. Lancet Oncol. 14:481–489. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, et al: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet. 376:687–697. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, Dos Santos LV, Aprile G, Ferry DR, et al: Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 383:31–39. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY, et al: Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 15:1224–1235. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Zhang Y and Zhang Z: The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 17:807–821. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 331:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al: Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 373:1803–1813. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Niccolai E, Taddei A, Prisco D and Amedei A: Gastric cancer and the epoch of immunotherapy approaches. World J Gastroenterol. 21:5778–5793. 2015. View Article : Google Scholar : PubMed/NCBI

23 

St Paul M and Ohashi PS: The roles of CD8+ T cell subsets in antitumor immunity. Trends Cell Biol. 30:695–704. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Ruterbusch M, Pruner KB, Shehata L and Pepper M: In Vivo CD4+ T cell differentiation and function: Revisiting the Th1/Th2 Paradigm. Annu Rev Immunol. 38:705–725. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Chen DS and Mellman I: Oncology meets immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Kim JM and Chen DS: Immune escape to PD-L1/PD-1 blockade: Seven steps to success (or failure). Ann Oncol. 27:1492–1504. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Jhunjhunwala S, Hammer C and Delamarre L: Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 21:298–312. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF and Sancho D: Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar : PubMed/NCBI

29 

Ozga AJ, Chow MT and Luster AD: Chemokines and the immune response to cancer. Immunity. 54:859–874. 2021. View Article : Google Scholar : PubMed/NCBI

30 

Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z and Wu K: Exploiting innate immunity for cancer immunotherapy. Mol Cancer. 22:1872023. View Article : Google Scholar : PubMed/NCBI

31 

Gajewski TF, Schreiber H and Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 14:1014–1022. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Finn OJ: A Believer's overview of cancer immunosurveillance and immunotherapy. J Immunol. 200:385–391. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Poschke I, Faryna M, Bergmann F, Flossdorf M, Lauenstein C, Hermes J, Hinz U, Hank T, Ehrenberg R, Volkmar M, et al: Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology. 5:e12408592016. View Article : Google Scholar : PubMed/NCBI

34 

Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, Herbst B, Askan G, Bhanot U, Senbabaoglu Y, et al: Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 551:512–516. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Schumacher TN and Schreiber RD: Neoantigens in cancer immunotherapy. Science. 348:69–74. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Coulie PG, Van den Eynde BJ, van der Bruggen P and Boon T: Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 14:135–146. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Lee CH, Yelensky R, Jooss K and Chan TA: Update on tumor neoantigens and their utility: Why It is good to be different. Trends Immunol. 39:536–548. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Chen L and Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 13:227–242. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Flieswasser T, Van den Eynde A, Van Audenaerde J, De Waele J, Lardon F, Riether C, de Haard H, Smits E, Pauwels P and Jacobs J: The CD70-CD27 axis in oncology: the new kids on the block. J Exp Clin Cancer Res. 41:122022. View Article : Google Scholar : PubMed/NCBI

40 

Tang T, Cheng X, Truong B, Sun L, Yang X and Wang H: Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther. 219:1077092021. View Article : Google Scholar : PubMed/NCBI

41 

Schwartz RH: T cell anergy. Annu Rev Immunol. 21:305–334. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Hathcock KS, Laszlo G, Dickler HB, Bradshaw J, Linsley P and Hodes RJ: Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science. 262:905–907. 1993. View Article : Google Scholar : PubMed/NCBI

44 

Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Maeda TK, Sugiura D, Okazaki IM, Maruhashi T and Okazaki T: Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation. J Biol Chem. 294:6017–6026. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Patsoukis N, Wang Q, Strauss L and Boussiotis VA: Revisiting the PD-1 pathway. Sci Adv. 6:eabd27122020. View Article : Google Scholar : PubMed/NCBI

47 

Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, et al: PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2:261–268. 2001. View Article : Google Scholar : PubMed/NCBI

48 

Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB and Bluestone JA: CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1:405–413. 1994. View Article : Google Scholar : PubMed/NCBI

49 

Krummel MF and Allison JP: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 182:459–465. 1995. View Article : Google Scholar : PubMed/NCBI

50 

Moreno Ayala MA, Campbell TF, Zhang C, Dahan N, Bockman A, Prakash V, Feng L, Sher T and DuPage M: CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8+ T cell antitumor immunity. Immunity. 56:1613–1630.e5. 2023. View Article : Google Scholar : PubMed/NCBI

51 

Caridade M, Graca L and Ribeiro RM: Mechanisms Underlying CD4+ Treg immune regulation in the adult: From experiments to models. Front Immunol. 4:3782013. View Article : Google Scholar : PubMed/NCBI

52 

Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, Zhao L, Vatan L, Shao I, Szeliga W, et al: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol. 18:1332–1341. 2017. View Article : Google Scholar : PubMed/NCBI

53 

Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al: IFN-ү-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 127:2930–2940. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Gajewski TF: The next hurdle in cancer immunotherapy: Overcoming the Non-T-Cell-inflamed tumor microenvironment. Semin Oncol. 42:663–671. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Kang BW, Seo AN, Yoon S, Bae HI, Jeon SW, Kwon OK, Chung HY, Yu W, Kang H and Kim JG: Prognostic value of tumor-infiltrating lymphocytes in Epstein-Barr virus-associated gastric cancer. Ann Oncol. 27:494–501. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Kim Y, Rhee YY, Wen X, Cho NY, Bae JM, Kim WH and Kang GH: Combination of L1 methylation and tumor-infiltrating lymphocytes as prognostic marker in advanced gastric cancer. Gastric Cancer. 23:464–472. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Pötzsch M, Berg E, Hummel M, Stein U, von Winterfeld M, Jöhrens K, Rau B, Daum S and Treese C: Better prognosis of gastric cancer patients with high levels of tumor infiltrating lymphocytes is counteracted by PD-1 expression. Oncoimmunology. 9:18246322020. View Article : Google Scholar : PubMed/NCBI

59 

Huang H, Huang Z, Ge J, Yang J, Chen J, Xu B, Wu S, Zheng X, Chen L, Zhang X and Jiang J: CD226 identifies functional CD8+T cells in the tumor microenvironment and predicts a better outcome for human gastric cancer. Front Immunol. 14:11508032023. View Article : Google Scholar : PubMed/NCBI

60 

Wang J, Li R, Cao Y, Gu Y, Fang H, Fei Y, Lv K, He X, Lin C, Liu H, et al: Intratumoral CXCR5+CD8+T associates with favorable clinical outcomes and immunogenic contexture in gastric cancer. Nat Commun. 12:30802021. View Article : Google Scholar : PubMed/NCBI

61 

Jiang W, Liu K, Guo Q, Cheng J, Shen L, Cao Y, Wu J, Shi J, Cao H, Liu B, et al: Tumor-infiltrating immune cells and prognosis in gastric cancer: A systematic review and meta-analysis. Oncotarget. 8:62312–62329. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Zheng X, Song X, Shao Y, Xu B, Chen L, Zhou Q, Hu W, Zhang D, Wu C, Tao M, et al: Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: A meta-analysis. Oncotarget. 8:57386–57398. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Corthay A, Skovseth DK, Lundin KU, Røsjø E, Omholt H, Hofgaard PO, Haraldsen G and Bogen B: Primary antitumor immune response mediated by CD4+ T cells. Immunity. 22:371–383. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Kang BW, Kim JG, Lee IH, Bae HI and Seo AN: Clinical significance of tumor-infiltrating lymphocytes for gastric cancer in the era of immunology. World J Gastrointest Oncol. 9:293–299. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Vesely MD, Kershaw MH, Schreiber RD and Smyth MJ: Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 29:235–271. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Willimsky G and Blankenstein T: Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature. 437:141–146. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Kim JK, Klinger M, Benjamin J, Xiao Y, Erle DJ, Littman DR and Killeen N: Impact of the TCR signal on regulatory T cell homeostasis, function, and trafficking. PLoS One. 4:e65802009. View Article : Google Scholar : PubMed/NCBI

68 

From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR) et al., . Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 13:612–632. 2018.PubMed/NCBI

69 

Chen T, Jin R, Huang Z, Hong W, Chen Z and Wang J: The variation of expression of CD4+ CD25+ Foxp3+ regulatory T cells in patients with Helicobacter pylori infection and eradication. Hepatogastroenterology. 61:507–511. 2014.PubMed/NCBI

70 

Wu YY, Chen JH, Kao JT, Liu KC, Lai CH, Wang YM, Hsieh CT, Tzen JT and Hsu PN: Expression of CD25(high) regulatory T cells and PD-1 in gastric infiltrating CD4(+) T lymphocytes in patients with Helicobacter pylori infection. Clin Vaccine Immunol. 18:1198–1201. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Lundgren A, Stromberg E, Sjoling A, Lindholm C, Enarsson K, Edebo A, Johnsson E, Suri-Payer E, Larsson P, Rudin A, et al: Mucosal FOXP3-expressing CD4+ CD25high regulatory T cells in Helicobacter pylori-infected patients. Infect Immun. 73:523–531. 2005. View Article : Google Scholar : PubMed/NCBI

72 

Zhang NN, Chen JN, Xiao L, Tang F, Zhang ZG, Zhang YW, Feng ZY, Jiang Y and Shao CK: Accumulation Mechanisms of CD4(+)CD25(+)FOXP3(+) Regulatory T Cells in EBV-associated gastric carcinoma. Sci Rep. 5:180572015. View Article : Google Scholar : PubMed/NCBI

73 

Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H and Fujii H: CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer. 122:2286–2293. 2008. View Article : Google Scholar : PubMed/NCBI

74 

Wang WW, Yuan XL, Chen H, Xie GH, Ma YH, Zheng YX, Zhou YL and Shen LS: CD19+CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer. Oncotarget. 6:33486–33499. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Hu JL, Yang Z, Tang JR, Fu XQ and Yao LJ: Effects of gastric cancer cells on the differentiation of Treg cells. Asian Pac J Cancer Prev. 14:4607–4610. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Lu X, Liu J, Li H, Li W, Wang X, Ma J, Tong Q, Wu K and Wang G: Conversion of intratumoral regulatory T cells by human gastric cancer cells is dependent on transforming growth factor-β1. J Surg Oncol. 104:571–577. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Yuan XL, Chen L, Zhang TT, Ma YH, Zhou YL, Zhao Y, Wang WW, Dong P, Yu L, Zhang YY and Shen LS: Gastric cancer cells induce human CD4+Foxp3+ regulatory T cells through the production of TGF-β1. World J Gastroenterol. 17:2019–2027. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Nishi M, Yoshikawa K, Higashijima J, Tokunaga T, Kashihara H, Takasu C, Ishikawa D, Wada Y and Shimada M: The Impact of Indoleamine 2,3-dioxygenase (IDO) expression on stage III gastric cancer. Anticancer Res. 38:3387–3392. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Turnis ME, Sawant DV, Szymczak-Workman AL, Andrews LP, Delgoffe GM, Yano H, Beres AJ, Vogel P, Workman CJ and Vignali DA: Interleukin-35 limits anti-tumor immunity. Immunity. 44:316–329. 2016. View Article : Google Scholar : PubMed/NCBI

80 

Wang K, Liu J and Li J: IL-35-producing B cells in gastric cancer patients. Medicine (Baltimore). 97:e07102018. View Article : Google Scholar : PubMed/NCBI

81 

Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM and Paulos CM: When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 15:458–469. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL and Kuchroo VK: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 441:235–238. 2006. View Article : Google Scholar : PubMed/NCBI

83 

Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM and Stockinger B: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24:179–189. 2006. View Article : Google Scholar : PubMed/NCBI

84 

Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F and Galon J: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71:1263–1271. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Horlock C, Stott B, Dyson PJ, Morishita M, Coombes RC, Savage P and Stebbing J: The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br J Cancer. 100:1061–1067. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Wang B, Zhang Z, Liu W and Tan B: Targeting regulatory T cells in gastric cancer: Pathogenesis, immunotherapy, and prognosis. Biomed Pharmacother. 158:1141802023. View Article : Google Scholar : PubMed/NCBI

87 

Wang M, Chen B, Sun XX, Zhao XD, Zhao YY, Sun L, Xu CG, Shen B, Su ZL, Xu WR and Zhu W: Gastric cancer tissue-derived mesenchymal stem cells impact peripheral blood mononuclear cells via disruption of Treg/Th17 balance to promote gastric cancer progression. Exp Cell Res. 361:19–29. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Maruyama T, Kono K, Mizukami Y, Kawaguchi Y, Mimura K, Watanabe M, Izawa S and Fujii H: Distribution of Th17 cells and FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, tumor-draining lymph nodes and peripheral blood lymphocytes in patients with gastric cancer. Cancer Sci. 101:1947–1954. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Cao W, Cao K, Cao J, Wang Y and Shi Y: Mesenchymal stem cells and adaptive immune responses. Immunol Lett. 168:147–153. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C and Yssel H: Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 185:302–312. 2010. View Article : Google Scholar : PubMed/NCBI

91 

Liu X, Ren S, Qu X, Ge C, Cheng K and Zhao RC: Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-ү-mediated SOCS3 activation. Immunol Res. 61:219–229. 2015. View Article : Google Scholar : PubMed/NCBI

92 

Lin R, Ma H, Ding Z, Shi W, Qian W, Song J and Hou X: Bone marrow-derived mesenchymal stem cells favor the immunosuppressive T cells skewing in a Helicobacter pylori model of gastric cancer. Stem Cells Dev. 22:2836–2848. 2013. View Article : Google Scholar : PubMed/NCBI

93 

Okita Y, Ohira M, Tanaka H, Tokumoto M, Go Y, Sakurai K, Toyokawa T, Kubo N, Muguruma K, Sawada T, et al: Alteration of CD4 T cell subsets in metastatic lymph nodes of human gastric cancer. Oncol Rep. 34:639–647. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Chen YP, Zhang Y, Lv JW, Li YQ, Wang YQ, He QM, Yang XJ, Sun Y, Mao YP, Yun JP, et al: Genomic analysis of tumor microenvironment immune types across 14 solid cancer types: Immunotherapeutic implications. Theranostics. 7:3585–3594. 2017. View Article : Google Scholar : PubMed/NCBI

95 

Saito H, Kuroda H, Matsunaga T, Osaki T and Ikeguchi M: Increased PD-1 expression on CD4+ and CD8+ T cells is involved in immune evasion in gastric cancer. J Surg Oncol. 107:517–522. 2013. View Article : Google Scholar : PubMed/NCBI

96 

Wu C, Zhu Y, Jiang J, Zhao J, Zhang XG and Xu N: Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 108:19–24. 2006. View Article : Google Scholar : PubMed/NCBI

97 

Schlosser HA, Drebber U, Kloth M, Thelen M, Rothschild SI, Haase S, Garcia-Marquez M, Wennhold K, Berlth F, Urbanski A, et al: Immune checkpoints programmed death 1 ligand 1 and cytotoxic T lymphocyte associated molecule 4 in gastric adenocarcinoma. Oncoimmunology. 5:e11007892015. View Article : Google Scholar : PubMed/NCBI

98 

Marcus L, Lemery SJ, Keegan P and Pazdur R: FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 25:3753–3758. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, Chung HC, Chen JS, Muro K, Kang WK, et al: Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 390:2461–2471. 2017. View Article : Google Scholar : PubMed/NCBI

100 

Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P, Ott PA, Peltola K, Jaeger D, Evans J, et al: CheckMate-032 Study: Efficacy and Safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J Clin Oncol. 36:2836–2844. 2018. View Article : Google Scholar : PubMed/NCBI

101 

Powles T, Park SH, Voog E, Caserta C, Valderrama BP, Gurney H, Kalofonos H, Radulović S, Demey W, Ullén A, et al: Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med. 383:1218–1230. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, Eder JP, Golan T, Le DT, Burtness B, et al: Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 17:717–726. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, Sun W, Jalal SI, Shah MA, Metges JP, et al: Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 4:e1800132018. View Article : Google Scholar : PubMed/NCBI

104 

Shitara K, Ozguroglu M, Bang YJ, Di Bartolomeo M, Mandalà M, Ryu MH, Fornaro L, Olesiński T, Caglevic C, Chung HC, et al: Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet. 392:123–133. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Shitara K, Van Cutsem E, Bang YJ, Fuchs C, Wyrwicz L, Lee KW, Kudaba I, Garrido M, Chung HC, Lee J, et al: Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: The KEYNOTE-062 Phase 3 Randomized clinical trial. JAMA Oncol. 6:1571–1580. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Janjigian YY, Kawazoe A, Yañez P, Li N, Lonardi S, Kolesnik O, Barajas O, Bai Y, Shen L, Tang Y, et al: The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature. 600:727–730. 2021. View Article : Google Scholar : PubMed/NCBI

107 

Shitara K, Rha SY, Wyrwicz LS, Oshima T, Karaseva N, Osipov M, Yasui H, Yabusaki H, Afanasyev S, Park YK, et al: Neoadjuvant and adjuvant pembrolizumab plus chemotherapy in locally advanced gastric or gastro-oesophageal cancer (KEYNOTE-585): An interim analysis of the multicentre, double-blind, randomised phase 3 study. Lancet Oncol. 25:212–224. 2024. View Article : Google Scholar : PubMed/NCBI

108 

An M, Mehta A, Min BH, Heo YJ, Wright SJ, Parikh M, Bi L, Lee H, Kim TJ, Lee SY, et al: Early immune remodeling steers clinical response to first-line chemoimmunotherapy in advanced gastric cancer. Cancer Discov. 14:766–785. 2024. View Article : Google Scholar : PubMed/NCBI

109 

Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczylas T, Campos Bragagnoli A, et al: First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet. 398:27–40. 2021. View Article : Google Scholar : PubMed/NCBI

110 

Shitara K, Ajani JA, Moehler M, Garrido M, Gallardo C, Shen L, Yamaguchi K, Wyrwicz L, Skoczylas T, Bragagnoli AC, et al: Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature. 603:942–948. 2022. View Article : Google Scholar : PubMed/NCBI

111 

Kang YK, Chen LT, Ryu MH, Oh DY, Oh SC, Chung HC, Lee KW, Omori T, Shitara K, Sakuramoto S, et al: Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): A randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 23:234–247. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Xu J, Jiang H, Pan Y, Gu K, Cang S, Han L, Shu Y, Li J, Zhao J, Pan H, et al: Sintilimab plus chemotherapy for unresectable gastric or gastroesophageal junction cancer: The ORIENT-16 Randomized clinical trial. JAMA. 330:2064–2074. 2023. View Article : Google Scholar : PubMed/NCBI

113 

Mimura K, Ogata T, Nguyen PHD, Roy S, Kared H, Yuan YC, Fehlings M, Yoshimoto Y, Yoshida D, Nakajima S, et al: Combination of oligo-fractionated irradiation with nivolumab can induce immune modulation in gastric cancer. J Immunother Cancer. 12:e0083852024. View Article : Google Scholar : PubMed/NCBI

114 

Moehler M, Dvorkin M, Boku N, Özgüroğlu M, Ryu MH, Muntean AS, Lonardi S, Nechaeva M, Bragagnoli AC, Coşkun HS, et al: Phase III trial of avelumab maintenance after first-line induction chemotherapy versus continuation of chemotherapy in patients with gastric cancers: Results From JAVELIN Gastric 100. J Clin Oncol. 39:966–977. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Bang YJ, Ruiz EY, Van Cutsem E, Lee KW, Wyrwicz L, Schenker M, Alsina M, Ryu MH, Chung HC, Evesque L, et al: Phase III, randomised trial of avelumab versus physician's choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol. 29:2052–2060. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Kelly RJ, Lee J, Bang YJ, Almhanna K, Blum-Murphy M, Catenacci DVT, Chung HC, Wainberg ZA, Gibson MK, Lee KW, et al: Safety and efficacy of durvalumab and tremelimumab alone or in combination in patients with advanced gastric and gastroesophageal junction adenocarcinoma. Clin Cancer Res. 26:846–854. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Kwon M, Kim G, Kim R, Kim KT, Kim ST, Smith S, Mortimer PGS, Hong JY, Loembé AB, Irurzun-Arana I, et al: Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. J Immunother Cancer. 10:e0050412022. View Article : Google Scholar : PubMed/NCBI

118 

Ali S, Kjeken R, Niederlaender C, Markey G, Saunders TS, Opsata M, Moltu K, Bremnes B, Grønevik E, Muusse M, et al: The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse Large B-Cell Lymphoma. Oncologist. 25:e321–e327. 2020. View Article : Google Scholar : PubMed/NCBI

119 

Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Cao Y, et al: Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial interim results. Nat Med. 28:1189–1198. 2022. View Article : Google Scholar : PubMed/NCBI

120 

Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, Zhang H, Shi B, Jia J, Li Q, et al: Claudin18.2-Specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J Natl Cancer Inst. 111:409–418. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Botta GP, Chao J, Ma H, Hahn M, Sierra G, Jia J, Hendrix AY, Nolte Fong JV, Ween A, Vu P, et al: Metastatic gastric cancer target lesion complete response with Claudin18.2-CAR T cells. J Immunother Cancer. 12:e0079272024. View Article : Google Scholar : PubMed/NCBI

122 

Vitanza NA, Johnson AJ, Wilson AL, Brown C, Yokoyama JK, Künkele A, Chang CA, Rawlings-Rhea S, Huang W, Seidel K, et al: Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: An interim analysis. Nat Med. 27:1544–1552. 2021. View Article : Google Scholar : PubMed/NCBI

123 

Song Y, Tong C, Wang Y, Gao Y, Dai H, Guo Y, Zhao X, Wang Y, Wang Z, Han W and Chen L: Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell. 9:867–878. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Feng Z, He X, Zhang X, Wu Y, Xing B, Knowles A, Shan Q, Miller S, Hojnacki T, Ma J, et al: Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues. Nat Cancer. 3:581–594. 2022. View Article : Google Scholar : PubMed/NCBI

125 

Wu D, Lv J, Zhao R, Wu Z, Zheng D, Shi J, Lin S, Wang S, Wu Q, Long Y, et al: PSCA is a target of chimeric antigen receptor T cells in gastric cancer. Biomark Res. 8:32020. View Article : Google Scholar : PubMed/NCBI

126 

Qin L, Zhao R, Chen D, Wei X, Wu Q, Long Y, Jiang Z, Li Y, Wu H, Zhang X, et al: Chimeric antigen receptor T cells targeting PD-L1 suppress tumor growth. Biomark Res. 8:192020. View Article : Google Scholar : PubMed/NCBI

127 

Lv J, Zhao R, Wu D, Zheng D, Wu Z, Shi J, Wei X, Wu Q, Long Y, Lin S, et al: Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. J Hematol Oncol. 12:182019. View Article : Google Scholar : PubMed/NCBI

128 

Chan JD, Lai J, Slaney CY, Kallies A, Beavis PA and Darcy PK: Cellular networks controlling T cell persistence in adoptive cell therapy. Nat Rev Immunol. 21:769–784. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Li GX, Zhao SS, Zhang XG, Wang WH, Liu J, Xue KW, Li XY, Guo YX and Wang LH: Comparison of the proliferation, cytotoxic activity and cytokine secretion function of cascade primed immune cells and cytokine-induced killer cells in vitro. Mol Med Rep. 12:2629–2635. 2015. View Article : Google Scholar : PubMed/NCBI

130 

Sun S, Li XM, Li XD and Yang WS: Studies on inducing apoptosis effects and mechanism of CIK cells for MGC-803 gastric cancer cell lines. Cancer Biother Radiopharm. 20:173–180. 2005.PubMed/NCBI

131 

Chen Y, Guo ZQ, Shi CM, Zhou ZF, Ye YB and Chen Q: Efficacy of adjuvant chemotherapy combined with immunotherapy with cytokine-induced killer cells for gastric cancer after d2 gastrectomy. Int J Clin Exp Med. 8:7728–7736. 2015.PubMed/NCBI

132 

Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH and White DE: Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 86:1159–1166. 1994. View Article : Google Scholar : PubMed/NCBI

133 

van den Berg JH, Heemskerk B, van Rooij N, Gomez-Eerland R, Michels S, van Zon M, de Boer R, Bakker NAM, Jorritsma-Smit A, van Buuren MM, et al: Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: Boosting of neoantigen-specific T cell reactivity and long-term follow-up. J Immunother Cancer. 8:e0008482020. View Article : Google Scholar : PubMed/NCBI

134 

Barras D, Ghisoni E, Chiffelle J, Orcurto A, Dagher J, Fahr N, Benedetti F, Crespo I, Grimm AJ, Morotti M, et al: Response to tumor-infiltrating lymphocyte adoptive therapy is associated with preexisting CD8+ T-myeloid cell networks in melanoma. Sci Immunol. 9:eadg79952024. View Article : Google Scholar : PubMed/NCBI

135 

Kono K, Takahashi A, Ichihara F, Amemiya H, Iizuka H, Fujii H, Sekikawa T and Matsumoto Y: Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: A randomized trial. Clin Cancer Res. 8:1767–1771. 2002.PubMed/NCBI

136 

Amedei A, Munari F, Bella CD, Niccolai E, Benagiano M, Bencini L, Cianchi F, Farsi M, Emmi G, Zanotti G, et al: Helicobacter pylori secreted peptidyl prolyl cis, trans-isomerase drives Th17 inflammation in gastric adenocarcinoma. Intern Emerg Med. 9:303–309. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI

138 

Matsueda S and Graham DY: Immunotherapy in gastric cancer. World J Gastroenterol. 20:1657–1666. 2014. View Article : Google Scholar : PubMed/NCBI

139 

Masuzawa T, Fujiwara Y, Okada K, Nakamura A, Takiguchi S, Nakajima K, Miyata H, Yamasaki M, Kurokawa Y, Osawa R, et al: Phase I/II study of S-1 plus cisplatin combined with peptide vaccines for human vascular endothelial growth factor receptor 1 and 2 in patients with advanced gastric cancer. Int J Oncol. 41:1297–1304. 2012. View Article : Google Scholar : PubMed/NCBI

140 

Talebi Bezmin Abadi A: Vaccine against Helicobacter pylori: Inevitable approach. World J Gastroenterol. 22:3150–3157. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, et al: Adaptive plasticity of IL-10(+) and IL-35(+) Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 20:724–735. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, Kamada T, Irie T, Okumura G, Kono H, et al: Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 40:201–218.e9. 2022. View Article : Google Scholar : PubMed/NCBI

143 

Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L and Chauffert B: Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 56:641–648. 2007. View Article : Google Scholar : PubMed/NCBI

144 

Solomon I, Amann M, Goubier A, Arce Vargas F, Zervas D, Qing C, Henry JY, Ghorani E, Akarca AU, Marafioti T, et al: CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat Cancer. 1:1153–1166. 2020. View Article : Google Scholar : PubMed/NCBI

145 

Sato Y, Casson CN, Matsuda A, Kim JI, Shi JQ, Iwasaki S, Chen S, Modrell B, Chan C, Tavares D, et al: Fc-independent functions of anti-CTLA-4 antibodies contribute to anti-tumor efficacy. Cancer Immunol Immunother. 71:2421–2431. 2022. View Article : Google Scholar : PubMed/NCBI

146 

Campbell JR, McDonald BR, Mesko PB, Siemers NO, Singh PB, Selby M, Sproul TW, Korman AJ, Vlach LM, Houser J, et al: Fc-Optimized Anti-CCR8 Antibody Depletes Regulatory T cells in human tumor models. Cancer Res. 81:2983–2994. 2021. View Article : Google Scholar : PubMed/NCBI

147 

Jacobs JF, Punt CJ, Lesterhuis WJ, Sutmuller RP, Brouwer HM, Scharenborg NM, Klasen IS, Hilbrands LB, Figdor CG, de Vries IJ and Adema GJ: Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: A phase I/II study in metastatic melanoma patients. Clin Cancer Res. 16:5067–5078. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Z, Zhang W, Liu X, Yan Y and Fu W: T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review). Oncol Lett 28: 537, 2024.
APA
Zhang, Z., Zhang, W., Liu, X., Yan, Y., & Fu, W. (2024). T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review). Oncology Letters, 28, 537. https://doi.org/10.3892/ol.2024.14670
MLA
Zhang, Z., Zhang, W., Liu, X., Yan, Y., Fu, W."T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review)". Oncology Letters 28.5 (2024): 537.
Chicago
Zhang, Z., Zhang, W., Liu, X., Yan, Y., Fu, W."T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review)". Oncology Letters 28, no. 5 (2024): 537. https://doi.org/10.3892/ol.2024.14670
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Z, Zhang W, Liu X, Yan Y and Fu W: T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review). Oncol Lett 28: 537, 2024.
APA
Zhang, Z., Zhang, W., Liu, X., Yan, Y., & Fu, W. (2024). T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review). Oncology Letters, 28, 537. https://doi.org/10.3892/ol.2024.14670
MLA
Zhang, Z., Zhang, W., Liu, X., Yan, Y., Fu, W."T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review)". Oncology Letters 28.5 (2024): 537.
Chicago
Zhang, Z., Zhang, W., Liu, X., Yan, Y., Fu, W."T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review)". Oncology Letters 28, no. 5 (2024): 537. https://doi.org/10.3892/ol.2024.14670
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team