Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2024 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Clinical evaluation of the convolutional neural network‑based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy

  • Authors:
    • Yangyang Huang
    • Rui Song
    • Tingting Qin
    • Menglin Yang
    • Zongwen Liu
  • View Affiliations / Copyright

    Affiliations: Department of Radiation Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 539
    |
    Published online on: September 6, 2024
       https://doi.org/10.3892/ol.2024.14672
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Delineating the clinical target volume (CTV) and organs at risk (OARs) is crucial in rectal cancer radiotherapy. However, the accuracy of manual delineation (MD) is variable and the process is time consuming. Automatic delineation (AD) may be a solution to produce quicker and more accurate contours. In the present study, a convolutional neural network (CNN)‑based AD tool was clinically evaluated to analyze its accuracy and efficiency in rectal cancer. CT images were collected from 148 supine patients in whom tumor stage and type of surgery were not differentiated. The rectal cancer contours consisted of CTV and OARs, where the OARs included the bladder, left and right femoral head, left and right kidney, spinal cord and bowel bag. The MD contours reviewed and modified together by a senior radiation oncologist committee were set as the reference values. The Dice similarity coefficient (DSC), Jaccard coefficient (JAC) and Hausdorff distance (HD) were used to evaluate the AD accuracy. The correlation between CT slice number and AD accuracy was analyzed, and the AD accuracy for different contour numbers was compared. The time recorded in the present study included the MD time, AD time for different CT slice and contour numbers and the editing time for AD contours. The Pearson correlation coefficient, paired‑sample t‑test and unpaired‑sample t‑test were used for statistical analyses. The results of the present study indicated that the DSC, JAC and HD for CTV using AD were 0.80±0.06, 0.67±0.08 and 6.96±2.45 mm, respectively. Among the OARs, the highest DSC and JAC using AD were found for the right and left kidney, with 0.91±0.06 and 0.93±0.04, and 0.84±0.09 and 0.88±0.07, respectively, and HD was lowest for the spinal cord with 2.26±0.82 mm. The lowest accuracy was found for the bowel bag. The more CT slice numbers, the higher the accuracy of the spinal cord analysis. However, the contour number had no effect on AD accuracy. To obtain qualified contours, the AD time plus editing time was 662.97±195.57 sec, while the MD time was 3294.29±824.70 sec. In conclusion, the results of the present study indicate that AD can significantly improve efficiency and a higher number of CT slices and contours can reduce AD efficiency. The AD tool provides acceptable CTV and OARs for rectal cancer and improves efficiency for delineation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI

2 

Cao W, Chen HD, Yu YW, Li N and Chen WQ: Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 134:783–791. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Hanna CR, Slevin F, Appelt A, Beavon M, Adams R, Arthur C, Beasley M, Duffton A, Gilbert A, Gollins S, et al: Intensity-modulated radiotherapy for rectal cancer in the UK in 2020. Clin Oncol (R Coll Radiol). 33:214–223. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Chen AM, Chin R, Beron P, Yoshizaki T, Mikaeilian AG and Cao M: Inadequate target volume delineation and local-regional recurrence after intensity-modulated radiotherapy for human papillomavirus-positive oropharynx cancer. Radiother Oncol. 123:412–418. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Walker GV, Awan M, Tao R, Koay EJ, Boehling NS, Grant JD, Sittig DF, Gunn GB, Garden AS, Phan J, et al: Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer. Radiother Oncol. 112:321–325. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Rezaeijo SM, Jafarpoor Nesheli S, Fatan Serj M and Tahmasebi Birgani MJ: Segmentation of the prostate, its zones, anterior fibromuscular stroma, and urethra on the MRIs and multimodality image fusion using U-Net model. Quant Imaging Med Surg. 12:4786–4804. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Voet PWJ, Dirkx MLP, Teguh DN, Hoogeman MS, Levendag PC and Heijmen BJM: Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis. Radiother Oncol. 98:373–377. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Daisne JF and Blumhofer A: Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: A clinical validation. Radiat Oncol. 8:1542013. View Article : Google Scholar : PubMed/NCBI

9 

Ma CY, Zhou JY, Xu XT, Guo J, Han MF, Gao YZ, Du H, Stahl JN and Maltz JS: Deep learning-based auto-segmentation of clinical target volumes for radiotherapy treatment of cervical cancer. J Appl Clin Med Phys. 23:e134702022. View Article : Google Scholar : PubMed/NCBI

10 

Marin T, Zhuo Y, Lahoud RM, Tian F, Ma X, Xing F, Moteabbed M, Liu X, Grogg K, Shusharina N, et al: Deep learning-based GTV contouring modeling inter- and intra-observer variability in sarcomas. Radiother Oncol. 167:269–276. 2022. View Article : Google Scholar : PubMed/NCBI

11 

Casati M, Piffer S, Calusi S, Marrazzo L, Simontacchi G, Di Cataldo V, Greto D, Desideri I, Vernaleone M, Francolini G, et al: Clinical validation of an automatic atlas-based segmentation tool for male pelvis CT images. J Appl Clin Med Phys. 23:e135072022. View Article : Google Scholar : PubMed/NCBI

12 

Vinod SK, Min M, Jameson MG and Holloway LC: A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology. J Med Imaging Radiat Oncol. 60:393–406. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Wang Z, Chang Y, Peng Z, Lv Y, Shi W, Wang F, Pei X and Xu XG: Evaluation of deep learning-based auto-segmentation algorithms for delineating clinical target volume and organs at risk involving data for 125 cervical cancer patients. J Appl Clin Med Phys. 21:272–279. 2020. View Article : Google Scholar : PubMed/NCBI

14 

Young AV, Wortham A, Wernick I, Evans A and Ennis RD: Atlas-based segmentation improves consistency and decreases time required for contouring postoperative endometrial cancer nodal volumes. Int J Radiat Oncol Biol Phys. 79:943–947. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Song Y, Hu J, Wu Q, Xu F, Nie S, Zhao Y, Bai S and Yi Z: Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy. Radiother Oncol. 145:186–192. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Chen W, Wang C, Zhan W, Jia Y, Ruan F, Qiu L, Yang S and Li Y: A comparative study of auto-contouring softwares in delineation of organs at risk in lung cancer and rectal cancer. Sci Rep. 11:230022021. View Article : Google Scholar : PubMed/NCBI

17 

Piqeur F, Hupkens BJP, Nordkamp S, Witte MG, Meijnen P, Ceha HM, Berbee M, Dieters M, Heyman S, Valdman A, et al: Development of a consensus-based delineation guideline for locally recurrent rectal cancer. Radiother Oncol. 177:214–221. 2022. View Article : Google Scholar : PubMed/NCBI

18 

Mackay K, Bernstein D, Glocker B, Kamnitsas K and Taylor A: A review of the metrics used to assess auto-contouring systems in radiotherapy. Clin Oncol (R Coll Radiol). 35:354–369. 2023. View Article : Google Scholar : PubMed/NCBI

19 

Li Y, Wu W, Sun Y, Yu D, Zhang Y, Wang L, Wang Y, Zhang X and Lu Y: The clinical evaluation of atlas-based auto-segmentation for automatic contouring during cervical cancer radiotherapy. Front Oncol. 12:9450532022. View Article : Google Scholar : PubMed/NCBI

20 

Men K, Dai J and Li Y: Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Med Phys. 44:6377–6389. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Ronneberger O, Fischer P and Brox T: U-net: Convolutional networks for biomedical image segmentation: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings Part III. Springer International Publishing; Cham: pp. 234–241. 2015

22 

Shen G, Jin X, Sun C and Li Q: Artificial intelligence radiotherapy planning: Automatic segmentation of human organs in CT images based on a modified convolutional neural network. Front Public Health. 10:8131352022. View Article : Google Scholar : PubMed/NCBI

23 

Luan S, Xue X, Ding Y, Wei W and Zhu B: Adaptive attention convolutional neural network for liver tumor segmentation. Front Oncol. 11:6808072021. View Article : Google Scholar : PubMed/NCBI

24 

Wu Y, Kang K, Han C, Wang S, Chen Q, Chen Y, Zhang F and Liu Z: A blind randomized validated convolutional neural network for auto-segmentation of clinical target volume in rectal cancer patients receiving neoadjuvant radiotherapy. Cancer Med. 11:166–175. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Liu C, Gardner SJ, Wen N, Elshaikh MA, Siddiqui F, Movsas B and Chetty IJ: Automatic segmentation of the prostate on CT images using deep neural networks (DNN). Int J Radiat Oncol Biol Phys. 104:924–932. 2019. View Article : Google Scholar : PubMed/NCBI

26 

Liu Z, Liu X, Xiao B, Wang S, Miao Z, Sun Y and Zhang F: Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network. Phys Med. 69:184–191. 2020. View Article : Google Scholar : PubMed/NCBI

27 

To MNN, Vu DQ, Turkbey B, Choyke PL and Kwak JT: Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. Int J Comput Assist Radiol Surg. 13:1687–1696. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Breto A, Zavala-Romero O, Asher D, Baikovitz J, Ford J, Stoyanova R and Portelance L: A deep learning pipeline for per-fraction automatic segmentation of GTV and OAR in cervical cancer. Int J Radiat Oncol Biol Phys. 105 (Suppl 1):S2022019. View Article : Google Scholar

29 

Bi N, Wang J, Zhang T, Chen X, Xia W, Miao J, Xu K, Wu L, Fan Q, Wang L, et al: Deep learning improved clinical target volume contouring quality and efficiency for postoperative radiation therapy in non-small cell lung cancer. Front Oncol. 9:11922019. View Article : Google Scholar : PubMed/NCBI

30 

Sha X, Wang H, Sha H, Xie L, Zhou Q, Zhang W and Yin Y: Clinical target volume and organs at risk segmentation for rectal cancer radiotherapy using the Flex U-Net network. Front Oncol. 13:11724242023. View Article : Google Scholar : PubMed/NCBI

31 

Li J, Song Y, Wu Y, Liang L, Li G and Bai S: Clinical evaluation on automatic segmentation results of convolutional neural networks in rectal cancer radiotherapy. Front Oncol. 13:11583152023. View Article : Google Scholar : PubMed/NCBI

32 

Chen Y, Li J, Xiao H, Jin X, Yan S and Feng J: Dual path networks. Adv Neural Inf Process Syst. 30:2017.PubMed/NCBI

33 

Liu Z, Liu X, Guan H, Zhen H, Sun Y, Chen Q, Chen Y, Wang S and Qiu J: Development and validation of a deep learning algorithm for auto-delineation of clinical target volume and organs at risk in cervical cancer radiotherapy. Radiother Oncol. 153:172–179. 2020. View Article : Google Scholar : PubMed/NCBI

34 

Liu Z, Liu F, Chen W, Liu X, Hou X, Shen J, Guan H, Zhen H, Wang S, Chen Q, et al: Automatic segmentation of clinical target volumes for post-modified radical mastectomy radiotherapy using convolutional neural networks. Front Oncol. 10:5813472021. View Article : Google Scholar : PubMed/NCBI

35 

Valentini V, Gambacorta MA, Barbaro B, Chiloiro G, Coco C, Das P, Fanfani F, Joye I, Kachnic L, Maingon P, et al: International consensus guidelines on clinical target volume delineation in rectal cancer. Radiother Oncol. 120:195–201. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Gay HA, Barthold HJ, O'Meara E, Bosch WR, El Naqa I, Al-Lozi R, Rosenthal SA, Lawton C, Lee WR, Sandler H, et al: Pelvic normal tissue contouring guidelines for radiation therapy: A radiation therapy oncology group consensus panel atlas. Int J Radiat Oncol Biol Phys. 83:e353–e362. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Yeghiazaryan V and Voiculescu I: Family of boundary overlap metrics for the evaluation of medical image segmentation. J Med Imaging (Bellingham). 5:0150062018.PubMed/NCBI

38 

Geets X, Daisne JF, Arcangeli S, Coche E, De Poel M, Duprez T, Nardella G and Grégoire V: Inter-observer variability in the delineation of pharyngo-laryngeal tumor and parotid glands and cervical spinal cord: Comparison between CT-scan and MRI. Radiother Oncol. 77:25–31. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Brouwer CL, Steenbakkers RJHM, Bourhis J, Budach W, Grau C, Grégoire V, Van Herk M, Lee A, Maingon P, Nutting C, et al: CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG oncology and TROG consensus guidelines. Radiother Oncol. 117:83–90. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Rhee DJ, Jhingran A, Rigaud B, Netherton T, Cardenas CE, Zhang L, Vedam S, Kry S, Brock KK, Shaw W, et al: Automatic contouring system for cervical cancer using convolutional neural networks. Med Phys. 47:5648–5658. 2020. View Article : Google Scholar : PubMed/NCBI

41 

Zabihollahy F, Viswanathan AN, Schmidt EJ and Lee J: Fully automated segmentation of clinical target volume in cervical cancer from magnetic resonance imaging with convolutional neural network. J Appl Clin Med Phys. 23:e137252022. View Article : Google Scholar : PubMed/NCBI

42 

Mohammadi R, Shokatian I, Salehi M, Arabi H, Shiri I and Zaidi H: Deep learning-based auto-segmentation of organs at risk in high-dose rate brachytherapy of cervical cancer. Radiother Oncol. 159:231–240. 2021. View Article : Google Scholar : PubMed/NCBI

43 

Ju Z, Guo W, Gu S, Zhou J, Yang W, Cong X, Dai X, Quan H, Liu J, Qu B and Liu G: CT based automatic clinical target volume delineation using a dense-fully connected convolution network for cervical Cancer radiation therapy. BMC Cancer. 21:2432021. View Article : Google Scholar : PubMed/NCBI

44 

Chan JW, Kearney V, Haaf S, Wu S, Bogdanov M, Reddick M, Dixit N, Sudhyadhom A, Chen J, Yom SS and Solberg TD: A convolutional neural network algorithm for automatic segmentation of head and neck organs at risk using deep lifelong learning. Med Phys. 46:2204–2213. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Ginn JS, Gay HA, Hilliard J, Shah J, Mistry N, Möhler C, Hugo GD and Hao Y: A clinical and time savings evaluation of a deep learning automatic contouring algorithm. Med Dosim. 48:55–60. 2023. View Article : Google Scholar : PubMed/NCBI

46 

Åström LM, Behrens CP, Calmels L, Sjöström D, Geertsen P, Mouritsen LS, Serup-Hansen E, Lindberg H and Sibolt P: Online adaptive radiotherapy of urinary bladder cancer with full re-optimization to the anatomy of the day: Initial experience and dosimetric benefits. Radiother Oncol. 171:37–42. 2022. View Article : Google Scholar : PubMed/NCBI

47 

D'Aviero A, Re A, Catucci F, Piccari D, Votta C, Piro D, Piras A, Di Dio C, Iezzi M, Preziosi F, et al: Clinical validation of a deep-learning segmentation software in head neck: An early analysis in a developing radiation oncology center. Int J Environ Res Public Health. 19:90572022. View Article : Google Scholar : PubMed/NCBI

48 

Lustberg T, van Soest J, Gooding M, Peressutti D, Aljabar P, van der Stoep J, van Elmpt W and Dekker A: Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 126:312–317. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Hu Y, Nguyen H, Smith C, Chen T, Byrne M, Archibald-Heeren B, Rijken J and Aland T: Clinical assessment of a novel machine-learning automated contouring tool for radiotherapy planning. J Appl Clin Med Phys. 24:e139492023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang Y, Song R, Qin T, Yang M and Liu Z: Clinical evaluation of the convolutional neural network‑based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy. Oncol Lett 28: 539, 2024.
APA
Huang, Y., Song, R., Qin, T., Yang, M., & Liu, Z. (2024). Clinical evaluation of the convolutional neural network‑based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy. Oncology Letters, 28, 539. https://doi.org/10.3892/ol.2024.14672
MLA
Huang, Y., Song, R., Qin, T., Yang, M., Liu, Z."Clinical evaluation of the convolutional neural network‑based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy". Oncology Letters 28.5 (2024): 539.
Chicago
Huang, Y., Song, R., Qin, T., Yang, M., Liu, Z."Clinical evaluation of the convolutional neural network‑based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy". Oncology Letters 28, no. 5 (2024): 539. https://doi.org/10.3892/ol.2024.14672
Copy and paste a formatted citation
x
Spandidos Publications style
Huang Y, Song R, Qin T, Yang M and Liu Z: Clinical evaluation of the convolutional neural network‑based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy. Oncol Lett 28: 539, 2024.
APA
Huang, Y., Song, R., Qin, T., Yang, M., & Liu, Z. (2024). Clinical evaluation of the convolutional neural network‑based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy. Oncology Letters, 28, 539. https://doi.org/10.3892/ol.2024.14672
MLA
Huang, Y., Song, R., Qin, T., Yang, M., Liu, Z."Clinical evaluation of the convolutional neural network‑based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy". Oncology Letters 28.5 (2024): 539.
Chicago
Huang, Y., Song, R., Qin, T., Yang, M., Liu, Z."Clinical evaluation of the convolutional neural network‑based automatic delineation tool in determining the clinical target volume and organs at risk in rectal cancer radiotherapy". Oncology Letters 28, no. 5 (2024): 539. https://doi.org/10.3892/ol.2024.14672
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team