Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2024 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2024 Volume 28 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review)

  • Authors:
    • Minghe Wang
    • Xuejing Wang
    • Yanqi Wang
    • Yikuo Gai
    • Jingran Ye
    • Xinyan Xu
    • Xue You
  • View Affiliations / Copyright

    Affiliations: College of Second Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China, College of Clinical Medical, Jining Medical University, Jining, Shandong 272067, P.R. China, Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong 272067, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 541
    |
    Published online on: September 6, 2024
       https://doi.org/10.3892/ol.2024.14674
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Globally, nearly 2 million deaths annually are attributed to the development of liver diseases, with liver cancer and cirrhosis being particularly prominent, which makes liver disease a significant global health concern. Cirrhosis is closely linked to the evolution of hepatitis, hepatic fibrosis and fatty liver. However, most liver diseases have an insidious onset, are challenging to treat and the prognosis and efficacy of current therapies are unsatisfactory, which can result in irreversible functional damage to the liver. Therefore, there is an urgent need to explore the molecular mechanisms underlying liver disease and identify new biomarkers and therapeutic targets. In previous years, microRNAs (miRs), a class of short non‑coding RNAs comprising 17‑25 nucleotides, have attracted attention for their roles in various types of liver diseases. Among them, miR‑22 serves a unique role in mediating multiple pathway mechanisms and epigenetic modifications and can act both as an inhibitor of liver cancer and a metabolic blocker. Given its close association with the liver, several studies have reported that the differential expression of miR‑22 regulates the metabolic process of liver cancer and is involved in the evolution of hepatic fibrosis and steatohepatitis, making it a potential target for early diagnosis and treatment. The present manuscript aimed to comprehensively review the key role of miR‑22 in the evolution of liver diseases and offer valuable references and guidance for subsequent studies by identifying its specific mechanism of action and future development prospects.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Asrani SK, Devarbhavi H, Eaton J and Kamath PS: Burden of liver diseases in the world. J Hepatol. 70:151–171. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Devarbhavi H, Asrani SK, Arab JP, Nartey YA, Pose E and Kamath PS: Global burden of liver disease: 2023 Update. J Hepatol. 79:516–537. 2023. View Article : Google Scholar : PubMed/NCBI

3 

Boldo E, Santafe A, Mayol A, Lozoya R, Coret A, Escribano D, Fortea-Sanchis C, Muñoz A, Pastor JC, Perez de Lucia G and Bosch N: Rare site hepatocellular carcinoma metastasis. J Hepatocell Carcinoma. 7:39–44. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Singal AG, Kudo M and Bruix J: Breakthroughs in hepatocellular carcinoma therapies. Clin Gastroenterol Hepatol. 21:2135–2149. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD, Christofori G and Tang F: YAP/TAZ and ATF4 drive resistance to sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 13:e143512021. View Article : Google Scholar : PubMed/NCBI

6 

Bodzin AS and Busuttil RW: Hepatocellular carcinoma: Advances in diagnosis, management, and long term outcome. World J Hepatol. 7:1157–1167. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Zhang Y, Shi ZL, Yang X and Yin ZF: Targeting of circulating hepatocellular carcinoma cells to prevent postoperative recurrence and metastasis. World J Gastroenterol. 20:142–147. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Zhu JZ, Zhou QY, Wang YM, Dai YN, Zhu J, Yu CH and Li YM: Prevalence of fatty liver disease and the economy in China: A systematic review. World J Gastroenterol. 21:5695–5706. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Wu Y, Zheng Q, Zou B, Yeo YH, Li X, Li J, Xie X, Feng Y, Stave CD, Zhu Q, et al: The epidemiology of NAFLD in Mainland China with analysis by adjusted gross regional domestic product: A meta-analysis. Hepatol Int. 14:259–269. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C and Henry L: The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology. 77:1335–1347. 2023. View Article : Google Scholar : PubMed/NCBI

11 

Greten TF, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, Ruppin E and Wang XW: Biomarkers for immunotherapy of hepatocellular carcinoma. Nat Rev Clin Oncol. 20:780–798. 2023. View Article : Google Scholar : PubMed/NCBI

12 

Zhang Y, Wei C, Guo CC, Bi RX, Xie J, Guan DH, Yang CH and Jiang YH: Prognostic value of microRNAs in hepatocellular carcinoma: A meta-analysis. Oncotarget. 8:107237–107257. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Hu Y, Setayesh T, Vaziri F, Wu X, Hwang ST, Chen X and Yvonne Wan YJ: miR-22 gene therapy treats HCC by promoting anti-tumor immunity and enhancing metabolism. Mol Ther. 31:1829–1845. 2023. View Article : Google Scholar : PubMed/NCBI

14 

Song W, Zheng C, Liu M, Xu Y, Qian Y, Zhang Z, Su H, Li X, Wu H, Gong P, et al: TRERNA1 upregulation mediated by HBx promotes sorafenib resistance and cell proliferation in HCC via targeting NRAS by sponging miR-22-3p. Mol Ther. 29:2601–2616. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Menon A, Abd-Aziz N, Khalid K, Poh CL and Naidu R: miRNA: A promising therapeutic target in cancer. Int J Mol Sci. 23:115022022. View Article : Google Scholar : PubMed/NCBI

16 

Shukla GC, Singh J and Barik S: MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI

17 

Cui S, Chen Y, Guo Y, Wang X and Chen D: Hsa-miR-22-3p inhibits liver cancer cell EMT and cell migration/invasion by indirectly regulating SPRY2. PLoS One. 18:e02815362023. View Article : Google Scholar : PubMed/NCBI

18 

Fan T, Wang CQ, Li XT, Yang H, Zhou J and Song YJ: MiR-22-3p suppresses cell migration and invasion by targeting PLAGL2 in breast cancer. J Coll Physicians Surg Pak. 31:937–940. 2021. View Article : Google Scholar : PubMed/NCBI

19 

Wang X, Wang X, Jiang T, Zhang Z, Xie N and Yang G: MiR-22-3p suppresses NSCLC cell migration and EMT via targeting RAC1 expression. Funct Integr Genomics. 23:2812023. View Article : Google Scholar : PubMed/NCBI

20 

Qiao H, Wang N, Guan QL, Xie P and Li XK: miR-22-3p suppresses cell proliferation and migration of gastric cancer by targeting ENO1. Altern Ther Health Med. 29:278–283. 2023.PubMed/NCBI

21 

Liu Y, Chen X, Cheng R, Yang F, Yu M, Wang C, Cui S, Hong Y, Liang H, Liu M, et al: The Jun/miR-22/HuR regulatory axis contributes to tumourigenesis in colorectal cancer. Mol Cancer. 17:112018. View Article : Google Scholar : PubMed/NCBI

22 

Zeng Z, Dong J, Li Y, Dong Z, Liu Z, Huang J, Wang Y, Zhen Y and Lu Y: The expression level and diagnostic value of microRNA-22 in HCC patients. Artif Cells Nanomed Biotechnol. 48:683–686. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Panella R, Petri A, Desai BN, Fagoonee S, Cotton CA, Nguyen PK, Lundin EM, Wagshal A, Wang DZ, Näär AM, et al: MicroRNA-22 is a key regulator of lipid and metabolic homeostasis. Int J Mol Sci. 24:128702023. View Article : Google Scholar : PubMed/NCBI

24 

Wang Y, Zhang R, Li J, Han X, Lu H, Su J, Liu Y, Tian X, Wang M, Xiong Y, et al: MiR-22-3p and miR-29a-3p synergistically inhibit hepatic stellate cell activation by targeting AKT3. Exp Biol Med (Maywood). 247:1712–1731. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Azar S, Udi S, Drori A, Hadar R, Nemirovski A, Vemuri KV, Miller M, Sherill-Rofe D, Arad Y, Gur-Wahnon D, et al: Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol Metab. 42:1010872020. View Article : Google Scholar : PubMed/NCBI

26 

Chen J, Wu FX, Luo HL, Liu JJ, Luo T, Bai T, Li LQ and Fan XH: Berberine upregulates miR-22-3p to suppress hepatocellular carcinoma cell proliferation by targeting Sp1. Am J Transl Res. 8:4932–4941. 2016.PubMed/NCBI

27 

Huang W, Huang F, Zhang R and Luo H: LncRNA Neat1 expedites the progression of liver fibrosis in mice through targeting miR-148a-3p and miR-22-3p to upregulate Cyth3. Cell Cycle. 20:490–507. 2021. View Article : Google Scholar : PubMed/NCBI

28 

Li H, Zhang P and Li F, Yuan G, Wang X, Zhang A and Li F: Plasma miR-22-5p, miR-132-5p, and miR-150-3p are associated with acute myocardial infarction. Biomed Res Int. 2019:50126482019.PubMed/NCBI

29 

Wang Y, Chang W, Zhang Y, Zhang L, Ding H, Qi H, Xue S, Yu H, Hu L, Liu D, et al: Circulating miR-22-5p and miR-122-5p are promising novel biomarkers for diagnosis of acute myocardial infarction. J Cell Physiol. 234:4778–4786. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Peng WX, Koirala P and Mo YY: LncRNA-mediated regulation of cell signaling in cancer. Oncogene. 36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Xu J, Shao T, Song M, Xie Y, Zhou J, Yin J, Ding N, Zou H, Li Y and Zhang J: MIR22HG acts as a tumor suppressor via TGFbeta/SMAD signaling and facilitates immunotherapy in colorectal cancer. Mol Cancer. 19:512020. View Article : Google Scholar : PubMed/NCBI

32 

Zhang W, Shi C, Xu Q, Chen X, Zhu H and Zheng B: Long non-coding RNA MIR22HG suppresses cell proliferation and promotes apoptosis in prostate cancer cells by sponging microRNA-9-3p. Bioengineered. 13:13108–13117. 2022. View Article : Google Scholar : PubMed/NCBI

33 

Deng X, Ye D, Hua K, Song H, Luo Q, Munankarmy A, Liu D, Zhou B, Zheng W, Zhou X, et al: MIR22HG inhibits breast cancer progression by stabilizing LATS2 tumor suppressor. Cell Death Dis. 12:8102021. View Article : Google Scholar : PubMed/NCBI

34 

Zhang L, Li C and Su X: Emerging impact of the long noncoding RNA MIR22HG on proliferation and apoptosis in multiple human cancers. J Exp Clin Cancer Res. 39:2712020. View Article : Google Scholar : PubMed/NCBI

35 

Zhang J, Yang Y, Yang T, Liu Y, Li A, Fu S, Wu M, Pan Z and Zhou W: microRNA-22, downregulated in hepatocellular carcinoma and correlated with prognosis, suppresses cell proliferation and tumourigenicity. Br J Cancer. 103:1215–1220. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Yang F, Hu Y, Liu HX and Wan YJY: MiR-22-silenced cyclin A expression in colon and liver cancer cells is regulated by bile acid receptor. J Biol Chem. 290:6507–6515. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Huang JN, Zhang HM, Cai JD, Wang WL and Wang P: Long noncoding RNA DSCR8 promotes the proliferation of liver cancer cells and inhibits apoptosis via the miR-22-3p/ARPC5 axis. J Cancer. 14:35–49. 2023. View Article : Google Scholar : PubMed/NCBI

38 

Chen M, Hu W, Xiong CL, Qu Z, Yin CQ, Wang YH, Luo CL, Guan Q, Yuan CH and Wang FB: miR-22 targets YWHAZ to inhibit metastasis of hepatocellular carcinoma and its down-regulation predicts a poor survival. Oncotarget. 7:80751–80764. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Gjorgjieva M, Ay AS, Correia de Sousa M, Delangre E, Dolicka D, Sobolewski C, Maeder C, Fournier M, Sempoux C and Foti M: MiR-22 deficiency fosters hepatocellular carcinoma development in fatty liver. Cells. 11:28602022. View Article : Google Scholar : PubMed/NCBI

40 

Zhang L, Yang P, Wang J, Liu Q, Wang T, Wang Y and Lin F: MiR-22 regulated T cell differentiation and hepatocellular carcinoma growth by directly targeting Jarid2. Am J Cancer Res. 11:2159–2173. 2021.PubMed/NCBI

41 

Zhao L, Wang Y and Liu Q: Catalpol inhibits cell proliferation, invasion and migration through regulating miR-22-3p/MTA3 signalling in hepatocellular carcinoma. Exp Mol Pathol. 109:51–60. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Wu Y, Zhou Y, Huan L, Xu L, Shen M, Huang S and Liang L: LncRNA MIR22HG inhibits growth, migration and invasion through regulating the miR-10a-5p/NCOR2 axis in hepatocellular carcinoma cells. Cancer Sci. 110:973–984. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Zhang DY, Zou XJ, Cao CH, Zhang T, Lei L, Qi XL, Liu L and Wu DH: Identification and functional characterization of long non-coding RNA MIR22HG as a tumor suppressor for hepatocellular carcinoma. Theranostics. 8:3751–3765. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Luo LJ, Zhang LP, Duan CY, Wang B, He NN, Abulimiti P and Lin Y: The inhibition role of miR-22 in hepatocellular carcinoma cell migration and invasion via targeting CD147. Cancer Cell Int. 17:172017. View Article : Google Scholar : PubMed/NCBI

45 

Yim DGR, Ghosh S, Guy GR and Virshup DM: Casein kinase 1 regulates sprouty2 in FGF-ERK signaling. Oncogene. 34:474–484. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Zhao L, Hu K, Cao J, Wang P, Li J, Zeng K, He X, Tu PF, Tong T and Han L: lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging (Albany NY). 11:7098–7122. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Guo C, Zhou S, Yi W, Yang P, Li O, Liu J and Peng C: Long non-coding RNA muskelin 1 antisense RNA (MKLN1-AS) is a potential diagnostic and prognostic biomarker and therapeutic target for hepatocellular carcinoma. Exp Mol Pathol. 120:1046382021. View Article : Google Scholar : PubMed/NCBI

49 

Pan G, Zhang J, You F, Cui T, Luo P, Wang S, Li X and Yuan Q: ETS proto-oncogene 1-activated muskelin 1 antisense RNA drives the malignant progression of hepatocellular carcinoma by targeting miR-22-3p to upregulate ETS proto-oncogene 1. Bioengineered. 13:1346–1358. 2022. View Article : Google Scholar : PubMed/NCBI

50 

Guan B, Ma J, Yang Z, Yu F and Yao J: LncRNA NCK1-AS1 exerts oncogenic property in gastric cancer by targeting the miR-22-3p/BCL9 axis to activate the Wnt/β-catenin signaling. Environ Toxicol. 36:1640–1653. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Wang B, Wang K, Jin T, Xu Q, He Y, Cui B and Wang Y: NCK1-AS1 enhances glioma cell proliferation, radioresistance and chemoresistance via miR-22-3p/IGF1R ceRNA pathway. Biomed Pharmacother. 129:1103952020. View Article : Google Scholar : PubMed/NCBI

52 

Zhou W, Wang J, Zhang J, Wang Y, Jiang L, Guo T, Luo B, Xu Q and Huang Y: LncRNA NCK1-AS1 aggravates hepatocellular carcinoma by the miR-22-3p/YARS axis to activate PI3K/AKT signaling. J Gastrointestin Liver Dis. 31:48–59. 2022. View Article : Google Scholar : PubMed/NCBI

53 

Zhang C, Lin X, Zhao Q, Wang Y, Jiang F, Ji C, Li Y, Gao J, Li J and Shen L: YARS as an oncogenic protein that promotes gastric cancer progression through activating PI3K-Akt signaling. J Cancer Res Clin Oncol. 146:329–342. 2020. View Article : Google Scholar : PubMed/NCBI

54 

Pant K, Yadav AK, Gupta P, Islam R, Saraya A and Venugopal SK: Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT-1 pathway in hepatic cancer cells. Redox Biol. 12:340–349. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Yang F, Gong J, Wang G, Chen P, Yang L and Wang Z: Waltonitone inhibits proliferation of hepatoma cells and tumorigenesis via FXR-miR-22-CCNA2 signaling pathway. Oncotarget. 7:75165–75175. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Xia L, Oyang L, Lin J, Tan S, Han Y, Wu N, Yi P, Tang L, Pan Q, Rao S, et al: The cancer metabolic reprogramming and immune response. Mol Cancer. 20:282021. View Article : Google Scholar : PubMed/NCBI

57 

Donne R and Lujambio A: The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology. 77:1773–1796. 2023.PubMed/NCBI

58 

Jhunjhunwala S, Hammer C and Delamarre L: Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 21:298–312. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Kumar R, Theiss AL and Venuprasad K: RORgammat protein modifications and IL-17-mediated inflammation. Trends Immunol. 42:1037–1050. 2021. View Article : Google Scholar : PubMed/NCBI

60 

Lequeux A, Noman MZ, Xiao M, Van Moer K, Hasmim M, Benoit A, Bosseler M, Viry E, Arakelian T, Berchem G, et al: Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene. 40:4725–4735. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Togashi Y, Shitara K and Nishikawa H: Regulatory T cells in cancer immunosuppression-implications for anticancer therapy. Nat Rev Clin Oncol. 16:356–371. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Kang JH and Zappasodi R: Modulating Treg stability to improve cancer immunotherapy. Trends Cancer. 9:911–927. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Golden-Mason L and Rosen HR: Galectin-9: Diverse roles in hepatic immune homeostasis and inflammation. Hepatology. 66:271–279. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Sauer N, Janicka N, Szlasa W, Skinderowicz B, Kołodzińska K, Dwernicka W, Oślizło M, Kulbacka J, Novickij V and Karłowicz-Bodalska K: TIM-3 as a promising target for cancer immunotherapy in a wide range of tumors. Cancer Immunol Immunother. 72:3405–3425. 2023. View Article : Google Scholar : PubMed/NCBI

65 

Zhao L, Cheng S, Fan L, Zhang B and Xu S: TIM-3: An update on immunotherapy. Int Immunopharmacol. 99:1079332021. View Article : Google Scholar : PubMed/NCBI

66 

Yang Q, Jiang W, Zhuang C, Geng Z, Hou C, Huang D, Hu L and Wang X: microRNA-22 downregulation of galectin-9 influences lymphocyte apoptosis and tumor cell proliferation in liver cancer. Oncol Rep. 34:1771–1778. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Shao X, Zhu J, Shi Y, Fang H, Chen J, Zhang Y, Wang J, Jian H, Lan S, Jiang F, et al: Upregulated UBE4B expression correlates with poor prognosis and tumor immune infiltration in hepatocellular carcinoma. Aging (Albany NY). 14:9632–9646. 2022.PubMed/NCBI

68 

McGlynn KA, Petrick JL and El-Serag HB: Epidemiology of hepatocellular carcinoma. Hepatology. 73 (Suppl 1):S4–S13. 2021. View Article : Google Scholar

69 

Qiao DD, Yang J, Lei XF, Mi GL, Li SL, Li K, Xu CQ and Yang HL: Expression of microRNA-122 and microRNA-22 in HBV-related liver cancer and the correlation with clinical features. Eur Rev Med Pharmacol Sci. 21:742–747. 2017.PubMed/NCBI

70 

Ke RS, Zhang K, Lv LZ, Dong YP, Pan F, Yang F, Cai QC and Jiang Y: Prognostic value and oncogene function of heterogeneous nuclear ribonucleoprotein A1 overexpression in HBV-related hepatocellular carcinoma. Int J Biol Macromol. 129:140–151. 2019. View Article : Google Scholar : PubMed/NCBI

71 

Shi C and Xu X: MicroRNA-22 is down-regulated in hepatitis B virus-related hepatocellular carcinoma. Biomed Pharmacother. 67:375–380. 2013. View Article : Google Scholar : PubMed/NCBI

72 

Qian C and Liu Q: FOXO3a inhibits nephroblastoma cell proliferation, migration and invasion, and induces apoptosis through downregulating the Wnt/β-catenin signaling pathway. Mol Med Rep. 24:7962021. View Article : Google Scholar : PubMed/NCBI

73 

Tian Y, Qi P and Hu X: Downregulated FOXO3a associates with poor prognosis and promotes cell invasion and migration via WNT/β-catenin signaling in cervical carcinoma. Front Oncol. 10:9032020. View Article : Google Scholar : PubMed/NCBI

74 

Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM and Karin M: Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 317:121–124. 2007. View Article : Google Scholar : PubMed/NCBI

75 

Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G and Karin M: Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 14:156–165. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Jiang R, Deng L, Zhao L, Li X, Zhang F, Xia Y, Gao Y, Wang X and Sun B: miR-22 promotes HBV-related hepatocellular carcinoma development in males. Clin Cancer Res. 17:5593–5603. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Pandey DP and Picard D: miR-22 inhibits estrogen signaling by directly targeting the estrogen receptor alpha mRNA. Mol Cell Biol. 29:3783–3790. 2009. View Article : Google Scholar : PubMed/NCBI

78 

Chen S, Pu J, Bai J, Yin Y, Wu K, Wang J, Shuai X, Gao J, Tao K, Wang G and Li H: EZH2 promotes hepatocellular carcinoma progression through modulating miR-22/galectin-9 axis. J Exp Clin Cancer Res. 37:32018. View Article : Google Scholar : PubMed/NCBI

79 

Guo L, Hu C, Yao M and Han G: Mechanism of sorafenib resistance associated with ferroptosis in HCC. Front Pharmacol. 14:12074962023. View Article : Google Scholar : PubMed/NCBI

80 

Cheng Y, Takeuchi H, Sonobe Y, Jin S, Wang Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T and Suzumura A: Sirtuin 1 attenuates oxidative stress via upregulation of superoxide dismutase 2 and catalase in astrocytes. J Neuroimmunol. 269:38–43. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Portmann S, Fahrner R, Lechleiter A, Keogh A, Overney S, Laemmle A, Mikami K, Montani M, Tschan MP, Candinas D and Stroka D: Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo. Mol Cancer Ther. 12:499–508. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Jin Q, Hu H, Yan S, Jin L, Pan Y, Li X, Peng Y and Cao P: lncRNA MIR22HG-derived miR-22-5p enhances the radiosensitivity of hepatocellular carcinoma by increasing histone acetylation through the inhibition of HDAC2 activity. Front Oncol. 11:5725852021. View Article : Google Scholar : PubMed/NCBI

83 

Yang J, Yan B, Yang L, Li H, Fan Y, Zhu F, Zheng J and Ma X: Macrocytic anemia is associated with the severity of liver impairment in patients with hepatitis B virus-related decompensated cirrhosis: A retrospective cross-sectional study. BMC Gastroenterol. 18:1612018. View Article : Google Scholar : PubMed/NCBI

84 

Adigun OO, Yarrarapu SNS, Zubair M and Khetarpal S: Alpha-fetoprotein analysis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024

85 

Li CQ, Huang H, Ruan SM, Hu HT, Xian MF, Xie XY, Lu MD, Kuang M, Wang Y and Chen LD: An assessment of liver lesions using a combination of CEUS LI-RADS and AFP. Abdom Radiol (NY). 47:1311–1320. 2022. View Article : Google Scholar : PubMed/NCBI

86 

Tzartzeva K and Singal AG: Testing for AFP in combination with ultrasound improves early liver cancer detection. Expert Rev Gastroenterol Hepatol. 12:947–949. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Zekri ARN, Youssef ASED, El-Desouky ED, Ahmed OS, Lotfy MM, Nassar AAM and Bahnassey AA: Serum microRNA panels as potential biomarkers for early detection of hepatocellular carcinoma on top of HCV infection. Tumour Biol. 37:12273–12286. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Xia L, Wang S, Zhang H, Yang Y, Wei J, Shi Y, Zou C, Liu J, Luo M, Huang A and Wang D: The HBx and HBc of hepatitis B virus can influence Id1 and Id3 by reducing their transcription and stability. Virus Res. 284:1979732020. View Article : Google Scholar : PubMed/NCBI

89 

Li J, Zhang X, Chen L, Zhang Z, Zhang J, Wang W, Wu M, Shi B, Zhang X, Kozlowski M, et al: Circulating miR-210 and miR-22 combined with ALT predict the virological response to interferon-alpha therapy of CHB patients. Sci Rep. 7:156582017. View Article : Google Scholar : PubMed/NCBI

90 

Hu Q, Wang Q, Zhang Y, Tao S, Zhang X, Liu X, Li X, Jiang X, Huang C, Xu W, et al: Baseline serum exosome-derived miRNAs predict HBeAg seroconversion in chronic hepatitis B patients treated with peginterferon. J Med Virol. 93:4939–4948. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Badmus OO, Hillhouse SA, Anderson CD, Hinds TD and Stec DE: Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): Functional analysis of lipid metabolism pathways. Clin Sci (Lond). 136:1347–1366. 2022. View Article : Google Scholar : PubMed/NCBI

92 

Zhang P, Wang W, Mao M, Gao R, Shi W, Li D, Calderone R, Sui B, Tian X and Meng X: Similarities and differences: A comparative review of the molecular mechanisms and effectors of NAFLD and AFLD. Front Physiol. 12:7102852021. View Article : Google Scholar : PubMed/NCBI

93 

Chen D, Yan Y, Wang X, Li S, Liu Y, Yu D, He Y, Deng R, Liu Y, Xu M, et al: Chronic alcohol exposure promotes HCC stemness and metastasis through β-catenin/miR-22-3p/TET2 axis. Aging (Albany NY). 13:14433–14455. 2021. View Article : Google Scholar : PubMed/NCBI

94 

Yang Z, Qin W, Huo J, Zhuo Q, Wang J and Wang L: MiR-22 modulates the expression of lipogenesis-related genes and promotes hepatic steatosis in vitro. FEBS Open Bio. 11:322–332. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Hu Y, Liu HX, Jena PK, Sheng L, Ali MR and Wan YY: miR-22 inhibition reduces hepatic steatosis via FGF21 and FGFR1 induction. JHEP Rep. 2:1000932020. View Article : Google Scholar : PubMed/NCBI

96 

Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, Kassir R, Singhal R, Mahawar K and Ramnarain D: Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 22:632022. View Article : Google Scholar : PubMed/NCBI

97 

Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, Li J, Su D, Chen L, Zhao Q, et al: Glycogen accumulation and phase separation drives liver tumor initiation. Cell. 184:5559–5576.e19. 2021. View Article : Google Scholar : PubMed/NCBI

98 

Agosti P, Sabbà C and Mazzocca A: Emerging metabolic risk factors in hepatocellular carcinoma and their influence on the liver microenvironment. Biochim Biophys Acta Mol Basis Dis. 1864:607–617. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Hyun J, Han J, Lee C, Yoon M and Jung Y: Pathophysiological aspects of alcohol metabolism in the liver. Int J Mol Sci. 22:57172021. View Article : Google Scholar : PubMed/NCBI

100 

Jeon S and Carr R: Alcohol effects on hepatic lipid metabolism. J Lipid Res. 61:470–479. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Lu W, Li X and Luo Y: FGF21 in obesity and cancer: New insights. Cancer Lett. 499:5–13. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Rodríguez-Agudo R, González-Recio I, Serrano-Maciá M, Bravo M, Petrov P, Blaya D, Herranz JM, Mercado-Gómez M, Rejano-Gordillo CM, Lachiondo-Ortega S, et al: Anti-miR-873-5p improves alcohol-related liver disease by enhancing hepatic deacetylation via SIRT1. JHEP Rep. 6:1009182023. View Article : Google Scholar : PubMed/NCBI

103 

Iwagami Y, Zou J, Zhang H, Cao K, Ji C, Kim M and Huang CK: Alcohol-mediated miR-34a modulates hepatocyte growth and apoptosis. J Cell Mol Med. 22:3987–3995. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, Kleiner DE and Loomba R: AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 77:1797–1835. 2023. View Article : Google Scholar : PubMed/NCBI

105 

No authors listed. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American association for the study of liver diseases. Clin Liver Dis (Hoboken). 11:812018. View Article : Google Scholar : PubMed/NCBI

106 

Castano C, Novials A and Párrizas M: Exosomes from short-term high-fat or high-sucrose fed mice induce hepatic steatosis through different pathways. Cells. 12:1692022. View Article : Google Scholar : PubMed/NCBI

107 

Thibonnier M and Esau C: Metabolic benefits of MicroRNA-22 inhibition. Nucleic Acid Ther. 30:104–116. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Thibonnier M, Esau C, Ghosh S, Wargent E and Stocker C: Metabolic and energetic benefits of microRNA-22 inhibition. BMJ Open Diabetes Res Care. 8:e0014782020. View Article : Google Scholar : PubMed/NCBI

109 

Gjorgjieva M, Sobolewski C, Ay AS, Abegg D, Correia de Sousa M, Portius D, Berthou F, Fournier M, Maeder C, Rantakari P, et al: Genetic ablation of MiR-22 fosters diet-induced obesity and NAFLD development. J Pers Med. 10:1702020. View Article : Google Scholar : PubMed/NCBI

110 

Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A and Nader F: The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 71:793–801. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Agbu P and Carthew RW: MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol. 22:425–438. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Kaur K, Vig S, Srivastava R, Mishra A, Singh VP, Srivastava AK and Datta M: Elevated hepatic miR-22-3p expression impairs gluconeogenesis by silencing the Wnt-responsive transcription factor Tcf7. Diabetes. 64:3659–3669. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Petito G, Cioffi F, Silvestri E, De Matteis R, Lattanzi D, de Lange P, Lombardi A, Moreno M, Goglia F, Lanni A and Senese R: 3,5-Diiodo-L-thyronine (T2) administration affects visceral adipose tissue inflammatory state in rats receiving long-lasting high-fat diet. Front Endocrinol (Lausanne). 12:7031702021. View Article : Google Scholar : PubMed/NCBI

114 

Silvestri E, Cioffi F, De Matteis R, Senese R, de Lange P, Coppola M, Salzano AM, Scaloni A, Ceccarelli M, Goglia F, et al: 3,5-Diiodo-L-thyronine affects structural and metabolic features of skeletal muscle mitochondria in high-fat-diet fed rats producing a co-adaptation to the glycolytic fiber phenotype. Front Physiol. 9:1942018. View Article : Google Scholar : PubMed/NCBI

115 

Senese R, Cioffi F, Petito G, de Lange P, Russo A, Goglia F, Lanni A and Potenza N: miR-22-3p is involved in gluconeogenic pathway modulated by 3,5-diiodo-L-thyronine (T2). Sci Rep. 9:166452019. View Article : Google Scholar : PubMed/NCBI

116 

Zhao T, Wang J, He A, Wang S, Chen Y, Lu J, Lv J, Li S, Wang J, Qian M, et al: Mebhydrolin ameliorates glucose homeostasis in type 2 diabetic mice by functioning as a selective FXR antagonist. Metabolism. 119:1547712021. View Article : Google Scholar : PubMed/NCBI

117 

Cohen-Naftaly M and Friedman SL: Current status of novel antifibrotic therapies in patients with chronic liver disease. Therap Adv Gastroenterol. 4:391–417. 2011. View Article : Google Scholar : PubMed/NCBI

118 

Elpek GÖ: Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J Gastroenterol. 20:7260–7276. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Higashi T, Friedman SL and Hoshida Y: Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev. 121:27–42. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Ezhilarasan D: MicroRNA interplay between hepatic stellate cell quiescence and activation. Eur J Pharmacol. 885:1735072020. View Article : Google Scholar : PubMed/NCBI

121 

Riaz F, Chen Q, Lu K, Osoro EK, Wu L, Feng L, Zhao R, Yang L, Zhou Y, He Y, et al: Inhibition of miR-188-5p alleviates hepatic fibrosis by significantly reducing the activation and proliferation of HSCs through PTEN/PI3K/AKT pathway. J Cell Mol Med. 25:4073–4087. 2021. View Article : Google Scholar : PubMed/NCBI

122 

Chen X, Zhu S, Chen SY, Wang JN, Sun LJ, Tao SM, Li XF, Li HD, Sun YY, Xu CH, et al: miR-301a-3p promotes hepatic stellate cells activation and liver fibrogenesis via regulating PTEN/PDGFR-β. Int Immunopharmacol. 110:1090342022. View Article : Google Scholar : PubMed/NCBI

123 

Ju A, Shen Y and Yue A: Circ_0011232 contributes to hepatocellular carcinoma progression through miR-503-5p/AKT3 axis. Hepatol Res. 52:532–545. 2022. View Article : Google Scholar : PubMed/NCBI

124 

Zheng Y, Cai B, Li X, Li D and Yin G: MiR-125b-5p and miR-181b-5p inhibit keratinocyte proliferation in skin by targeting Akt3. Eur J Pharmacol. 862:1726592019. View Article : Google Scholar : PubMed/NCBI

125 

Zhang Y, Wang F, Chen G, He R and Yang L: LncRNA MALAT1 promotes osteoarthritis by modulating miR-150-5p/AKT3 axis. Cell Biosci. 9:542019. View Article : Google Scholar : PubMed/NCBI

126 

Abdullah AS, Sayed IETE, El-Torgoman AMA, Kalam A, Wageh S and Kamel MA: Green synthesis of silymarin-chitosan nanoparticles as a new nano formulation with enhanced anti-fibrotic effects against liver fibrosis. Int J Mol Sci. 23:54202022. View Article : Google Scholar : PubMed/NCBI

127 

Abdullah AS, El Sayed IET, El-Torgoman AMA, Alghamdi NA, Ullah S, Wageh S and Kamel MA: Preparation and characterization of silymarin-conjugated gold nanoparticles with enhanced anti-fibrotic therapeutic effects against hepatic fibrosis in rats: Role of MicroRNAs as molecular targets. Biomedicines. 9:17672021. View Article : Google Scholar : PubMed/NCBI

128 

Tsuchida T, Lee YA, Fujiwara N, Ybanez M, Allen B, Martins S, Fiel MI, Goossens N, Chou HI, Hoshida Y and Friedman SL: A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J Hepatol. 69:385–395. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Ji D, Li B, Shao Q, Li F, Li Z and Chen G: MiR-22 suppresses BMP7 in the development of cirrhosis. Cell Physiol Biochem. 36:1026–1036. 2015. View Article : Google Scholar : PubMed/NCBI

130 

Onakpoya IJ, Heneghan CJ and Aronson JK: Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: A systematic review of the world literature. BMC Med. 14:102016. View Article : Google Scholar : PubMed/NCBI

131 

Li X, Tang J and Mao Y: Incidence and risk factors of drug-induced liver injury. Liver Int. 42:1999–2014. 2022. View Article : Google Scholar : PubMed/NCBI

132 

Kleiner DE: Drug-induced liver injury: The hepatic pathologist's approach. Gastroenterol Clin North Am. 46:273–296. 2017. View Article : Google Scholar : PubMed/NCBI

133 

Kleiner DE, Chalasani NP, Lee WM, Fontana RJ, Bonkovsky HL, Watkins PB, Hayashi PH, Davern TJ, Navarro V, Reddy R, et al: Hepatic histological findings in suspected drug-induced liver injury: Systematic evaluation and clinical associations. Hepatology. 59:661–670. 2014. View Article : Google Scholar : PubMed/NCBI

134 

Yang Z, Wu W, Ou P, Wu M, Zeng F, Zhou B and Wu S: MiR-122-5p knockdown protects against APAP-mediated liver injury through up-regulating NDRG3. Mol Cell Biochem. 476:1257–1267. 2021. View Article : Google Scholar : PubMed/NCBI

135 

Vliegenthart ADB, Berends C, Potter CMJ, Kersaudy-Kerhoas M and Dear JW: MicroRNA-122 can be measured in capillary blood which facilitates point-of-care testing for drug-induced liver injury. Br J Clin Pharmacol. 83:2027–2033. 2017. View Article : Google Scholar : PubMed/NCBI

136 

Liu Y, Chen H, Hao J, Li Z, Hou T and Hao H: Characterization and functional prediction of the microRNAs differentially expressed in a mouse model of concanavalin A-induced autoimmune hepatitis. Int J Med Sci. 17:2312–2327. 2020. View Article : Google Scholar : PubMed/NCBI

137 

López-Riera M, Conde I, Tolosa L, Zaragoza A, Castell JV, Gómez-Lechón MJ and Jover R: New microRNA biomarkers for drug-induced steatosis and their potential to predict the contribution of drugs to non-alcoholic fatty liver disease. Front Pharmacol. 8:32017. View Article : Google Scholar : PubMed/NCBI

138 

Amacher DE and Chalasani N: Drug-induced hepatic steatosis. Semin Liver Dis. 34:205–214. 2014. View Article : Google Scholar : PubMed/NCBI

139 

Allard J, Le Guillou D, Begriche K and Fromenty B: Drug-induced liver injury in obesity and nonalcoholic fatty liver disease. Adv Pharmacol. 85:75–107. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang M, Wang X, Wang Y, Gai Y, Ye J, Xu X and You X: Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review). Oncol Lett 28: 541, 2024.
APA
Wang, M., Wang, X., Wang, Y., Gai, Y., Ye, J., Xu, X., & You, X. (2024). Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review). Oncology Letters, 28, 541. https://doi.org/10.3892/ol.2024.14674
MLA
Wang, M., Wang, X., Wang, Y., Gai, Y., Ye, J., Xu, X., You, X."Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review)". Oncology Letters 28.5 (2024): 541.
Chicago
Wang, M., Wang, X., Wang, Y., Gai, Y., Ye, J., Xu, X., You, X."Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review)". Oncology Letters 28, no. 5 (2024): 541. https://doi.org/10.3892/ol.2024.14674
Copy and paste a formatted citation
x
Spandidos Publications style
Wang M, Wang X, Wang Y, Gai Y, Ye J, Xu X and You X: Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review). Oncol Lett 28: 541, 2024.
APA
Wang, M., Wang, X., Wang, Y., Gai, Y., Ye, J., Xu, X., & You, X. (2024). Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review). Oncology Letters, 28, 541. https://doi.org/10.3892/ol.2024.14674
MLA
Wang, M., Wang, X., Wang, Y., Gai, Y., Ye, J., Xu, X., You, X."Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review)". Oncology Letters 28.5 (2024): 541.
Chicago
Wang, M., Wang, X., Wang, Y., Gai, Y., Ye, J., Xu, X., You, X."Advances in the study of the mechanism of action of miR‑22 in liver lesions (Review)". Oncology Letters 28, no. 5 (2024): 541. https://doi.org/10.3892/ol.2024.14674
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team