Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
January-2025 Volume 29 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2025 Volume 29 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.xlsx
    • Supplementary_Data3.xlsx
    • Supplementary_Data4.xlsx
    • Supplementary_Data5.xlsx
    • Supplementary_Data6.xlsx
    • Supplementary_Data7.xlsx
    • Supplementary_Data8.xlsx
    • Supplementary_Data9.pdf
    • Supplementary_Data10.xlsx
Article Open Access

Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse

  • Authors:
    • Rumeysa Biyik‑Sit
    • Sabine Waigel
    • Kalina Andreeva
    • Eric Rouchka
    • Brian F. Clem
  • View Affiliations / Copyright

    Affiliations: Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA, Brown Cancer Center, Louisville, KY 40202, USA, Kentucky IDeA Network of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
    Copyright: © Biyik‑Sit et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 9
    |
    Published online on: October 17, 2024
       https://doi.org/10.3892/ol.2024.14755
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

 The majority of malignant tumors exhibit an altered metabolic phenotype that ultimately provides the required energy and molecular precursors necessary for unregulated cell division. Within this, phosphoserine aminotransferase 1 (PSAT1) is involved in de novo serine biosynthesis and its activity promotes various biochemical processes, including one‑carbon metabolism. It also directly generates α‑ketoglutarate (α‑KG), a Kreb cycle intermediate and epigenetic‑regulating metabolite. Prior studies examining PSAT1 depletion have identified individual affected downstream pathways, such as GSK3β and E2F, in several cancer types, including non‑small‑cell lung cancer (NSCLC). However, global gene expression examination in response to PSAT1 loss, particularly in EGFR mutant NSCLC, has not been unexplored. Transcriptional profiling of EGFR mutant NSCLC cells with or without stable knock‑down of PSAT1 identified differentially expressed genes (DEGs) enriched in several metabolic pathways required for cell division, including amino acid and nucleotide biosynthesis. Supplementation studies involving non‑essential amino acids, nucleosides and α‑KG partially restored defects in anchorage‑independent growth due to the knockdown of PSAT1. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analysis identified potential impacts on actin cytoskeleton arrangement and β‑catenin activity, which were rescued by PSAT1 re‑expression. Finally, a comparative analysis of PSAT1 DEGs against transcripts enriched in patient EGFR mutant lung tumors identified a gene signature that is associated with overall and relapse‑free survival (RFS) and was able to distinguish low or high‑risk populations for RFS in early‑stage EGFR mutant NSCLC. Overall, investigating genes altered by PSAT1 loss confirmed known PSAT1‑regulated cellular pathways, identified a previously unknown role in the mediation of cytoskeleton arrangement in EGFR mutant NSCLC cells and allowed for the characterization of a gene signature with putative predictive potential for RFS in early‑stage disease.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Zhou X, Tian C, Cao Y, Zhao M and Wang K: The role of serine metabolism in lung cancer: From oncogenesis to tumor treatment. Front Genet. 13:10846092023. View Article : Google Scholar : PubMed/NCBI

3 

Kim SK, Jung WH and Koo JS: Differential expression of enzymes associated with serine/glycine metabolism in different breast cancer subtypes. PLoS One. 9:e1010042014. View Article : Google Scholar : PubMed/NCBI

4 

Sun WY, Kim HM, Jung WH and Koo JS: Expression of serine/glycine metabolism-related proteins is different according to the thyroid cancer subtype. J Transl Med. 14:1682016. View Article : Google Scholar : PubMed/NCBI

5 

Mullarky E, Lucki NC, Beheshti Zavareh R, Anglin JL, Gomes AP, Nicolay BN, Wong JC, Christen S, Takahashi H, Singh PK, et al: Identification of a small molecule inhibitor of 3-phosphoglycerate dehydrogenase to target serine biosynthesis in cancers. Proc Natl Acad Sci USA. 113:1778–1783. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Pacold ME, Brimacombe KR, Chan SH, Rohde JM, Lewis CA, Swier LJ, Possemato R, Chen WW, Sullivan LB, Fiske BP, et al: A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate. Nat Chem Biol. 12:452–458. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Zhu S, Wang X, Liu L and Ren G: Stabilization of Notch1 and β-catenin in response to ER-breast cancer-specific up-regulation of PSAT1 mediates distant metastasis. Transl Oncol. 20:1013992022. View Article : Google Scholar : PubMed/NCBI

8 

Zhang Y, Li J, Dong X, Meng D, Zhi X, Yuan L and Yao L: PSAT1 regulated oxidation-reduction balance affects the growth and prognosis of epithelial ovarian cancer. Onco Targets Ther. 13:5443–5453. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Fang Y, Liang X, Xu J and Cai X: miR-424 targets AKT3 and PSAT1 and has a tumor-suppressive role in human colorectal cancer. Cancer Manag Res. 10:6537–6547. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Wang H, Cui L, Li D, Fan M, Liu Z, Liu C, Pan S, Zhang L, Zhang H and Zhao Y: Overexpression of PSAT1 regulated by G9A sustains cell proliferation in colorectal cancer. Signal Transduct Target Ther. 5:472020. View Article : Google Scholar : PubMed/NCBI

11 

Biyik-Sit R, Kruer T, Dougherty S, Bradley JA, Wilkey DW, Merchant ML, Trent JO and Clem BF: Nuclear pyruvate kinase M2 (PKM2) contributes to phosphoserine aminotransferase 1 (PSAT1)-mediated cell migration in EGFR-activated lung cancer cells. Cancers (Basel). 13:39382021. View Article : Google Scholar : PubMed/NCBI

12 

Luo MY, Zhou Y, Gu WM, Wang C, Shen NX, Dong JK, Lei HM, Tang YB, Liang Q, Zou JH, et al: Metabolic and nonmetabolic functions of PSAT1 coordinate signaling cascades to confer EGFR inhibitor resistance and drive progression in lung adenocarcinoma. Cancer Res. 82:3516–3531. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Duan W and Liu X: PSAT1 upregulation contributes to cell growth and cisplatin resistance in cervical cancer cells via regulating PI3K/AKT signaling pathway. Ann Clin Lab Sci. 50:512–518. 2020.PubMed/NCBI

14 

Gao S, Ge A, Xu S, You Z, Ning S, Zhao Y and Pang D: PSAT1 is regulated by ATF4 and enhances cell proliferation via the GSK3β/β-catenin/cyclin D1 signaling pathway in ER-negative breast cancer. J Exp Clin Cancer Res. 36:1792017. View Article : Google Scholar : PubMed/NCBI

15 

Yang Y, Wu J, Cai J, He Z, Yuan J, Zhu X, Li Y, Li M and Guan H: PSAT1 regulates cyclin D1 degradation and sustains proliferation of non-small cell lung cancer cells. Int J Cancer. 136:E39–E50. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Wu S and Le H: Dual roles of PKM2 in cancer metabolism. Acta Biochim Biophys Sin (Shanghai). 45:27–35. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Sutendra G, Kinnaird A, Dromparis P, Paulin R, Stenson TH, Haromy A, Hashimoto K, Zhang N, Flaim E and Michelakis ED: A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell. 158:84–97. 2014. View Article : Google Scholar : PubMed/NCBI

18 

O'Cathail SM, Wu CH, Lewis A, Holmes C, Hawkins MA and Maughan T: NRF2 metagene signature is a novel prognostic biomarker in colorectal cancer. Cancer Genet. 248–249. 1–10. 2020.

19 

Wang X, Yu Q, Ghareeb WM, Zhang Y, Lu X, Huang Y, Huang S, Sun Y, Lin J, Liu J and Chi P: Downregulated SPINK4 is associated with poor survival in colorectal cancer. BMC Cancer. 19:12582019. View Article : Google Scholar : PubMed/NCBI

20 

You GR, Cheng AJ, Lee LY, Huang YC, Liu H, Chen YJ and Chang JT: Prognostic signature associated with radioresistance in head and neck cancer via transcriptomic and bioinformatic analyses. BMC Cancer. 19:642019. View Article : Google Scholar : PubMed/NCBI

21 

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R and Salzberg SL: TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14:R362013. View Article : Google Scholar : PubMed/NCBI

22 

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL and Pachter L: Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 7:562–578. 2012. View Article : Google Scholar : PubMed/NCBI

23 

de Hoon MJL, Imoto S, Nolan J and Miyano S: Open source clustering software. Bioinformatics. 20:1453–1454. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Saldanha AJ: Java Treeview-extensible visualization of microarray data. Bioinformatics. 20:3246–3248. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Simon R, Lam A, Li MC, Ngan M, Menenzes S and Zhao Y: Analysis of gene expression data using BRB-ArrayTools. Cancer Inform. 3:11–17. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Okayama H, Kohno T, Ishii Y, Shimada Y, Shiraishi K, Iwakawa R, Furuta K, Tsuta K, Shibata T, Yamamoto S, et al: Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72:100–111. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Simon RM, Subramanian J, Li MC and Menezes S: Using cross-validation to evaluate predictive accuracy of survival risk classifiers based on high-dimensional data. Brief Bioinform. 12:203–214. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Nguyen DX, Chiang AC, Zhang XHF, Kim JY, Kris MG, Ladanyi M, Gerald WL and Massagué J: WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 138:51–62. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Bair E and Tibshirani R: Semi-supervised methods to predict patient survival from gene expression data. PLoS Biol. 2:E1082004. View Article : Google Scholar : PubMed/NCBI

31 

Yang W, Xia Y, Ji H, Zheng Y, Liang J, Huang W, Gao X, Aldape K and Lu Z: Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 480:118–122. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Snaebjornsson MT and Schulze A: Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med. 50:1–16. 2018. View Article : Google Scholar : PubMed/NCBI

33 

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P and Mesirov JP: Molecular signatures database (MSigDB) 3.0. Bioinformatics. 27:1739–1740. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Gross SR: Actin binding proteins: Their ups and downs in metastatic life. Cell Adh Migr. 7:199–213. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Beurel E, Grieco SF and Jope RS: Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacol Ther. 148:114–131. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Nakata A, Yoshida R, Yamaguchi R, Yamauchi M, Tamada Y, Fujita A, Shimamura T, Imoto S, Higuchi T, Nomura M, et al: Elevated β-catenin pathway as a novel target for patients with resistance to EGF receptor targeting drugs. Sci Rep. 5:130762015. View Article : Google Scholar : PubMed/NCBI

37 

Nakayama S, Sng N, Carretero J, Welner R, Hayashi Y, Yamamoto M, Tan AJ, Yamaguchi N, Yasuda H, Li D, et al: β-catenin contributes to lung tumor development induced by EGFR mutations. Cancer Res. 74:5891–5902. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Yang F, Li Y, Liu B, You J and Zhou Q: Cancer stem cell-like population is preferentially suppressed by EGFR-TKIs in EGFR-mutated PC-9 tumor models. Exp Cell Res. 362:195–202. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Yang F, Xu J, Li H, Tan M, Xiong X and Sun Y: FBXW2 suppresses migration and invasion of lung cancer cells via promoting β-catenin ubiquitylation and degradation. Nat Commun. 10:13822019. View Article : Google Scholar : PubMed/NCBI

40 

Fan FT, Shen CS, Tao L, Tian C, Liu ZG, Zhu ZJ, Liu YP, Pei CS, Wu HY, Zhang L, et al: PKM2 regulates hepatocellular carcinoma cell epithelial-mesenchymal transition and migration upon EGFR activation. Asian Pac J Cancer Prev. 15:1961–1970. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Aktary Z, Bertrand JU and Larue L: The WNT-less wonder: WNT-independent β-catenin signaling. Pigment Cell Melanoma Res. 29:524–540. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Arce L, Yokoyama NN and Waterman ML: Diversity of LEF/TCF action in development and disease. Oncogene. 25:7492–7504. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Robertson H, Hayes JD and Sutherland C: A partnership with the proteasome; the destructive nature of GSK3. Biochem Pharmacol. 147:77–92. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Valenta T, Hausmann G and Basler K: The many faces and functions of β-catenin. EMBO J. 31:2714–2736. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Arao T, Fukumoto H, Takeda M, Tamura T, Saijo N and Nishio K: Small in-frame deletion in the epidermal growth factor receptor as a target for ZD6474. Cancer Res. 64:9101–9104. 2004. View Article : Google Scholar : PubMed/NCBI

46 

Zhou W, Han L and Altman RB: Imputing gene expression to maximize platform compatibility. Bioinformatics. 33:522–528. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Amelio I, Markert EK, Rufini A, Antonov AV, Sayan BS, Tucci P, Agostini M, Mineo TC, Levine AJ and Melino G: p73 regulates serine biosynthesis in cancer. Oncogene. 33:5039–5046. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Chan YC, Chang YC, Chuang HH, Yang YC, Lin YF, Huang MS, Hsiao M, Yang CJ and Hua KT: Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by suppressing the IRF1-IFNγ axis. Oncogene. 39:2509–2522. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Mattaini KR, Sullivan MR and Vander Heiden MG: The importance of serine metabolism in cancer. J Cell Biol. 214:249–257. 2016. View Article : Google Scholar : PubMed/NCBI

50 

DeNicola GM, Chen PH, Mullarky E, Sudderth JA, Hu Z, Wu D, Tang H, Xie Y, Asara JM, Huffman KE, et al: NRF2 regulates serine biosynthesis in non-small cell lung cancer. Nat Genet. 47:1475–1481. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Liu B, Jia Y, Cao Y, Wu S, Jiang H, Sun X, Ma J, Yin X, Mao A and Shang M: Overexpression of phosphoserine aminotransferase 1 (PSAT1) predicts poor prognosis and associates with tumor progression in human esophageal squamous cell carcinoma. Cell Physiol Biochem. 39:395–406. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Morita T, Mayanagi T and Sobue K: Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs). Exp Cell Res. 313:3432–3445. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Gau D and Roy P: SRF'ing and SAP'ing-the role of MRTF proteins in cell migration. J Cell Sci. 131:jcs2182222018. View Article : Google Scholar : PubMed/NCBI

54 

Shi X, Zhao S, Cai J, Wong G and Jiu Y: Active FHOD1 promotes the formation of functional actin stress fibers. Biochem J. 476:2953–2963. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Schönichen A, Mannherz HG, Behrmann E, Mazur AJ, Kühn S, Silván U, Schoenenberger CA, Fackler OT, Raunser S, Dehmelt L and Geyer M: FHOD1 is a combined actin filament capping and bundling factor that selectively associates with actin arcs and stress fibers. J Cell Sci. 126:1891–1901. 2013.PubMed/NCBI

56 

Heuser VD, Mansuri N, Mogg J, Kurki S, Repo H, Kronqvist P, Carpén O and Gardberg M: Formin proteins FHOD1 and INF2 in triple-negative breast cancer: Association with basal markers and functional activities. Breast Cancer (Auckl). 12:11782234187922472018. View Article : Google Scholar : PubMed/NCBI

57 

Gardberg M, Kaipio K, Lehtinen L, Mikkonen P, Heuser VD, Talvinen K, Iljin K, Kampf C, Uhlen M, Grénman R, et al: FHOD1, a formin upregulated in epithelial-mesenchymal transition, participates in cancer cell migration and invasion. PLoS One. 8:e749232013. View Article : Google Scholar : PubMed/NCBI

58 

Koka S, Neudauer CL, Li X, Lewis RE, McCarthy JB and Westendorf JJ: The formin-homology-domain-containing protein FHOD1 enhances cell migration. J Cell Sci. 116:1745–1755. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Rottner K, Faix J, Bogdan S, Linder S and Kerkhoff E: Actin assembly mechanisms at a glance. J Cell Sci. 130:3427–3435. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Lee CW, Vitriol EA, Shim S, Wise AL, Velayutham RP and Zheng JQ: Dynamic localization of G-actin during membrane protrusion in neuronal motility. Curr Biol. 23:1046–1056. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, et al: MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 22:8031–8041. 2003. View Article : Google Scholar : PubMed/NCBI

62 

Fei F, Qu J, Zhang M, Li Y and Zhang S: S100A4 in cancer progression and metastasis: A systematic review. Oncotarget. 8:73219–73239. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Peippo M, Gardberg M, Lamminen T, Kaipio K, Carpén O and Heuser VD: FHOD1 formin is upregulated in melanomas and modifies proliferation and tumor growth. Exp Cell Res. 350:267–278. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Morita T and Hayashi K: Tumor progression is mediated by thymosin-β4 through a TGFβ/MRTF signaling axis. Mol Cancer Res. 16:880–893. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Morita T and Hayashi K: G-actin sequestering protein thymosin-β4 regulates the activity of myocardin-related transcription factor. Biochem Biophys Res Commun. 437:331–335. 2013. View Article : Google Scholar : PubMed/NCBI

66 

da Cunha BR, Domingos C, Stefanini ACB, Henrique T, Polachini GM, Castelo-Branco P and Tajara EH: Cellular interactions in the tumor microenvironment: The role of secretome. J Cancer. 10:4574–4587. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Karagiannis GS, Pavlou MP and Diamandis EP: Cancer secretomics reveal pathophysiological pathways in cancer molecular oncology. Mol Oncol. 4:496–510. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Lin A, Wei T, Meng H, Luo P and Zhang J: Role of the dynamic tumor microenvironment in controversies regarding immune checkpoint inhibitors for the treatment of non-small cell lung cancer (NSCLC) with EGFR mutations. Mol Cancer. 18:1392019. View Article : Google Scholar : PubMed/NCBI

69 

Li H, Wu C, Chang W, Zhong L, Gao W, Zeng M, Wen Z, Mai S and Chen Y: Overexpression of PSAT1 is correlated with poor prognosis and immune infiltration in non-small cell lung cancer. Front Biosci (Landmark Ed). 28:2432023. View Article : Google Scholar : PubMed/NCBI

70 

Sivanand S, Rhoades S, Jiang Q, Lee JV, Benci J, Zhang J, Yuan S, Viney I, Zhao S, Carrer A, et al: Nuclear Acetyl-CoA production by ACLY promotes homologous recombination. Mol Cell. 67:252–265.e6. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Wang Y, Guo YR, Liu K, Yin Z, Liu R, Xia Y, Tan L, Yang P, Lee JH, Li XJ, et al: KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature. 552:273–277. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Kottakis F, Nicolay BN, Roumane A, Karnik R, Gu H, Nagle JM, Boukhali M, Hayward MC, Li YY, Chen T, et al: LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature. 539:390–395. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Hwang IY, Kwak S, Lee S, Kim H, Lee SE, Kim JH, Kim YA, Jeon YK, Chung DH, Jin X, et al: Psat1-dependent fluctuations in α-ketoglutarate affect the timing of ESC differentiation. Cell Metab. 24:494–501. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Harmston N and Lenhard B: Chromatin and epigenetic features of long-range gene regulation. Nucleic Acids Res. 41:7185–7199. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Clark SJ: Action at a distance: Epigenetic silencing of large chromosomal regions in carcinogenesis. Hum Mol Genet. 16:Spec No 1. R88–R95. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Ahn MJ, Won HH, Lee J, Lee ST, Sun JM, Park YH, Ahn JS, Kwon OJ, Kim H, Shim YM, et al: The 18p11.22 locus is associated with never smoker non-small cell lung cancer susceptibility in Korean populations. Hum Genet. 131:365–372. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Biyik‑Sit R, Waigel S, Andreeva K, Rouchka E and Clem BF: Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse. Oncol Lett 29: 9, 2025.
APA
Biyik‑Sit, R., Waigel, S., Andreeva, K., Rouchka, E., & Clem, B.F. (2025). Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse. Oncology Letters, 29, 9. https://doi.org/10.3892/ol.2024.14755
MLA
Biyik‑Sit, R., Waigel, S., Andreeva, K., Rouchka, E., Clem, B. F."Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse". Oncology Letters 29.1 (2025): 9.
Chicago
Biyik‑Sit, R., Waigel, S., Andreeva, K., Rouchka, E., Clem, B. F."Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse". Oncology Letters 29, no. 1 (2025): 9. https://doi.org/10.3892/ol.2024.14755
Copy and paste a formatted citation
x
Spandidos Publications style
Biyik‑Sit R, Waigel S, Andreeva K, Rouchka E and Clem BF: Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse. Oncol Lett 29: 9, 2025.
APA
Biyik‑Sit, R., Waigel, S., Andreeva, K., Rouchka, E., & Clem, B.F. (2025). Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse. Oncology Letters, 29, 9. https://doi.org/10.3892/ol.2024.14755
MLA
Biyik‑Sit, R., Waigel, S., Andreeva, K., Rouchka, E., Clem, B. F."Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse". Oncology Letters 29.1 (2025): 9.
Chicago
Biyik‑Sit, R., Waigel, S., Andreeva, K., Rouchka, E., Clem, B. F."Bioinformatics analysis of PSAT1 loss identifies downstream pathways regulated in EGFR mutant NSCLC and a selective gene signature for predicting the risk of relapse". Oncology Letters 29, no. 1 (2025): 9. https://doi.org/10.3892/ol.2024.14755
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team