|
1
|
El-Sayed A, Aleya L and Kamel M:
Microbiota's role in health and diseases. Environ Sci Pollut Res
Int. 28:36967–36983. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gao L, Xu T, Huang G, Jiang S, Gu Y and
Chen F: Oral microbiomes: More and more importance in oral cavity
and whole body. Protein Cell. 9:488–500. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Byrd AL, Belkaid Y and Segre JA: The human
skin microbiome. Nat Rev Microbiol. 16:143–155. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sommer F, Anderson JM, Bharti R, Raes J
and Rosenstiel P: The resilience of the intestinal microbiota
influences health and disease. Nat Rev Microbiol. 15:630–638. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen C, Song X, Wei W, Zhong H, Dai J, Lan
Z, Li F, Yu X, Feng Q, Wang Z, et al: The microbiota continuum
along the female reproductive tract and its relation to
uterine-related diseases. Nat Commun. 8:8752017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ottman N, Smidt H, de Vos WH and Belzer C:
The function of our microbiota: Who is out there and what do they
do? Front Cell Infect Microbiol. 2:1042012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zoetendal EG, Rajilic-Stojanovic M and de
Vos WM: High-throughput diversity and functionality analysis of the
gastrointestinal tract microbiota. Gut. 57:1605–1615. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Davenport ER, Sanders JG, Song SJ, Amato
KR, Clark AG and Knight R: The human microbiome in evolution. BMC
Biol. 15:1272017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Garrett WS: Cancer and the microbiota.
Science. 348:80–86. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D,
Xiao C, Zhu D, Koya JB, Wei L, Li J and Chen ZS: Microbiota in
health and diseases. Signal Transduct Target Ther. 7:1352022.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chen Y, Zhou J and Wang L: Role and
mechanism of gut microbiota in human disease. Front Cell Infect
Microbiol. 11:6259132021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Belvoncikova P, Maronek M and Gardlik R:
Gut dysbiosis and fecal microbiota transplantation in autoimmune
diseases. Int J Mol Sci. 23:107292022. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Paget S: The distribution of secondary
growths in cancer of the breast. 1889. Cancer Metastasis Rev.
8:98–101. 1989.PubMed/NCBI
|
|
14
|
Preisler HD, Bjornsson S, Mori M and
Barcos M: Granulocyte differentiation by friend leukemia cells.
Cell Differ. 4:273–283. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Izraely S and Witz IP: Site-specific
metastasis: A cooperation between cancer cells and the metastatic
microenvironment. Int J Cancer. 148:1308–1322. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bicher HI, Hetzel FW, Sandhu TS, Frinak S,
Vaupel P, O'Hara MD and O'Brien T: Effects of hyperthermia on
normal and tumor microenvironment. Radiology. 137:523–530. 1980.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Xie Y, Xie F, Zhou X, Zhang L, Yang B,
Huang J, Wang F, Yan H, Zeng L, Zhang L and Zhou F: Microbiota in
tumors: From understanding to application. Adv Sci (Weinh).
9:e22004702022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Huang C, Liu H, Gong X, Wen B, Chen D, Liu
J and Hu F: Analysis of different components in the peritumoral
tissue microenvironment of colorectal cancer: A potential prospect
in tumorigenesis. Mol Med Rep. 14:2555–2565. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
de Martel C, Ferlay J, Franceschi S,
Vignat J, Bray F, Forman D and Plummer M: Global burden of cancers
attributable to infections in 2008: A review and synthetic
analysis. Lancet Oncol. 13:607–615. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Vallianou N, Kounatidis D, Christodoulatos
GS, Panagopoulos F, Karampela I and Dalamaga M: Mycobiome and
cancer: What is the evidence? Cancers (Basel). 13:31492021.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Narunsky-Haziza L, Sepich-Poore GD,
Livyatan I, Asraf O, Martino C, Nejman D, Gavert N, Stajich JE,
Amit G, González A, et al: Pan-cancer analyses reveal
cancer-type-specific fungal ecologies and bacteriome interactions.
Cell. 185:3789–3806.e17. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Dohlman AB, Klug J, Mesko M, Gao IH,
Lipkin SM, Shen X and Iliev ID: A pan-cancer mycobiome analysis
reveals fungal involvement in gastrointestinal and lung tumors.
Cell. 185:3807–3822. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhong M, Xiong Y, Zhao J, Gao Z, Ma J, Wu
Z, Song Y and Hong X: Candida albicans disorder is associated with
gastric carcinogenesis. Theranostics. 11:4945–4956. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ramirez-Garcia A, Rementeria A,
Aguirre-Urizar JM, Moragues MD, Antoran A, Pellon A,
Abad-Diaz-de-Cerio A and Hernando FL: Candida albicans and cancer:
Can this yeast induce cancer development or progression? Crit Rev
Microbiol. 42:181–193. 2016.PubMed/NCBI
|
|
25
|
Conti HR and Gaffen SL: Host responses to
Candida albicans: Th17 cells and mucosal candidiasis. Microbes
Infect. 12:518–527. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Williamson DM: Chronic hyperplastic
candidiasis and squamous carcinoma. Br J Dermatol. 81:125–127.
1969. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gupta SR, Gupta N, Sharma A, Xess I, Singh
G and Mani K: The association of Candida and antifungal therapy
with pro-inflammatory cytokines in oral leukoplakia. Clin Oral
Investig. 25:6287–6296. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bastiaan RJ and Reade PC: The prevalence
of Candida albicans in the mouths of tobacco smokers with and
without oral mucous membrane keratoses. Oral Surg Oral Med Oral
Pathol. 53:148–151. 1982. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Daftary DK, Mehta FS, Gupta PC and
Pindborg JJ: The presence of Candida in 723 oral leukoplakias among
Indian villagers. Scand J Dent Res. 80:75–79. 1972.PubMed/NCBI
|
|
30
|
Healy CM and Moran GP: The microbiome and
oral cancer: More questions than answers. Oral Oncol. 89:30–33.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Alnuaimi AD, Wiesenfeld D, O'Brien-Simpson
NM, Reynolds EC and McCullough MJ: Oral Candida colonization in
oral cancer patients and its relationship with traditional risk
factors of oral cancer: A matched case-control study. Oral Oncol.
51:139–145. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
McCullough M, Jaber M, Barrett AW, Bain L,
Speight PM and Porter SR: Oral yeast carriage correlates with
presence of oral epithelial dysplasia. Oral Oncol. 38:391–393.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang L, Chen C, Chai D, Li C, Qiu Z,
Kuang T, Liu L, Deng W and Wang W: Characterization of the
intestinal fungal microbiome in patients with hepatocellular
carcinoma. J Transl Med. 21:1262023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Aykut B, Pushalkar S, Chen R, Li Q,
Abengozar R, Kim JI, Shadaloey SA, Wu D, Preiss P, Verma N, et al:
The fungal mycobiome promotes pancreatic oncogenesis via activation
of MBL. Nature. 574:264–267. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ishikawa T, Itoh F, Yoshida S, Saijo S,
Matsuzawa T, Gonoi T, Saito T, Okawa Y, Shibata N, Miyamoto T and
Yamasaki S: Identification of distinct ligands for the C-type
lectin receptors mincle and dectin-2 in the pathogenic Fungus
Malassezia. Cell Host Microbe. 13:477–488. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zambirinis CP, Pushalkar S, Saxena D and
Miller G: Pancreatic cancer, inflammation, and microbiome. Cancer
J. 20:195–202. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sparmann A and Bar-Sagi D: Ras-induced
interleukin-8 expression plays a critical role in tumor growth and
angiogenesis. Cancer Cell. 6:447–458. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Limon JJ, Tang J, Li D, Wolf AJ, Michelsen
KS, Funari V, Gargus M, Nguyen C, Sharma P, Maymi VI, et al:
Malassezia Is associated with Crohn's disease and exacerbates
colitis in mouse models. Cell Host Microbe. 25:377–388.e6. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nixon MW: Aflatoxin and liver cancer.
Lancet. 335:11651990. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lin Y, Lau HC, Liu Y, Kang X, Wang Y, Ting
NL, Kwong TN, Han J, Liu W, Liu C, et al: Altered mycobiota
signatures and enriched pathogenic Aspergillus rambellii are
associated with colorectal cancer based on multicohort fecal
metagenomic analyses. Gastroenterology. 163:908–921. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu NN, Yi CX, Wei LQ, Zhou JA, Jiang T,
Hu CC, Wang L, Wang YY, Zou Y, Zhao YK, et al: The intratumor
mycobiome promotes lung cancer progression via myeloid-derived
suppressor cells. Cancer Cell. 41:1927–1944. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gao R, Kong C, Li H, Huang L, Qu X, Qin N
and Qin H: Dysbiosis signature of mycobiota in colon polyp and
colorectal cancer. Eur J Clin Microbiol Infect Dis. 36:2457–2468.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen Y, Shi ZW, Strickland AB and Shi M:
Cryptococcus neoformans infection in the central nervous system:
The battle between host and pathogen. J Fungi (Basel). 8:10692022.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Banerjee S, Tian T, Wei Z, Shih N, Feldman
MD, Alwine JC, Coukos G and Robertson ES: The ovarian cancer
oncobiome. Oncotarget. 8:36225–36245. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liu NN, Jiao N, Tan JC, Wang Z, Wu D, Wang
AJ, Chen J, Tao L, Zhou C, Fang W, et al: Multi-kingdom microbiota
analyses identify bacterial-fungal interactions and biomarkers of
colorectal cancer across cohorts. Nat Microbiol. 7:238–250. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dudeck A, Köberle M, Goldmann O, Meyer N,
Dudeck J, Lemmens S, Rohde M, Roldán NG, Dietze-Schwonberg K,
Orinska Z, et al: Mast cells as protectors of health. J Allergy
Clin Immunol. 144:S4–S18. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
De Zuani M, Paolicelli G, Zelante T, Renga
G, Romani L, Arzese A, Pucillo CEM and Frossi B: Mast cells respond
to candida albicans infections and modulate macrophages
phagocytosis of the Fungus. Front Immunol. 9:28292018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Abraham SN and St John AL: Mast
cell-orchestrated immunity to pathogens. Nat Rev Immunol.
10:440–452. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Renga G, Moretti S, Oikonomou V, Borghi M,
Zelante T, Paolicelli G, Costantini C, De Zuani M, Villella VR,
Raia V, et al: IL-9 and mast cells are key players of candida
albicans commensalism and pathogenesis in the gut. Cell Rep.
23:1767–1778. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gerard R, Sendid B, Colombel JF, Poulain D
and Jouault T: An immunological link between Candida
albicanscolonization and Crohn's disease. Crit Rev Microbiol.
41:135–139. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu B, Yang MQ, Yu TY, Yin YY, Liu Y, Wang
XD, He ZG, Yin L, Chen CQ and Li JY: Mast cell tryptase promotes
inflammatory bowel disease-induced intestinal fibrosis. Inflamm
Bowel Dis. 27:242–255. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Nalleweg N, Chiriac MT, Podstawa E,
Lehmann C, Rau TT, Atreya R, Krauss E, Hundorfean G, Fichtner-Feigl
S, Hartmann A, et al: IL-9 and its receptor are predominantly
involved in the pathogenesis of UC. Gut. 64:743–755. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Richardson JP, Moyes DL, Ho J and Naglik
JR: Candida innate immunity at the mucosa. Semin Cell Dev Biol.
89:58–70. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jiao Q, Luo Y, Scheffel J, Zhao Z and
Maurer M: The complex role of mast cells in fungal infections. Exp
Dermatol. 28:749–755. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hu SC, Yu HS, Yen FL, Lin CL, Chen GS and
Lan CC: Neutrophil extracellular trap formation is increased in
psoriasis and induces human beta-defensin-2 production in epidermal
keratinocytes. Sci Rep. 6:311192016. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Miksch RC, Schoenberg MB, Weniger M, Bösch
F, Ormanns S, Mayer B, Werner J, Bazhin AV and D'Haese JG:
Prognostic impact of tumor-infiltrating lymphocytes and neutrophils
on survival of patients with upfront resection of pancreatic
cancer. Cancers (Basel). 11:392019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Raftopoulou S, Valadez-Cosmes P, Mihalic
ZN, Schicho R and Kargl J: Tumor-mediated neutrophil polarization
and therapeutic implications. Int J Mol Sci. 23:32182022.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Que H, Fu Q, Lan T, Tian X and Wei X:
Tumor-associated neutrophils and neutrophil-targeted cancer
therapies. Biochim Biophys Acta Rev Cancer. 1877:1887622022.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Triner D, Devenport SN, Ramakrishnan SK,
Ma X, Frieler RA, Greenson JK, Inohara N, Nunez G, Colacino JA,
Mortensen RM and Shah YM: Neutrophils restrict tumor-associated
microbiota to reduce growth and invasion of colon tumors in mice.
Gastroenterology. 156:1467–1482. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Nikou SA, Zhou C, Griffiths JS, Kotowicz
NK, Coleman BM, Green MJ, Moyes DL, Gaffen SL, Naglik JR and Parker
PJ: The Candida albicans toxin candidalysin mediates distinct
epithelial inflammatory responses through p38 and EGFR-ERK
pathways. Sci Signal. 15:eabj69152022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Swamydas M, Gao JL, Break TJ, Johnson MD,
Jaeger M, Rodriguez CA, Lim JK, Green NM, Collar AL, Fischer BG, et
al: CXCR1-mediated neutrophil degranulation and fungal killing
promote Candida clearance and host survival. Sci Transl Med.
8:322ra102016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wynn TA and Vannella KM: Macrophages in
tissue repair, regeneration, and fibrosis. Immunity. 44:450–462.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Strizova Z, Benesova I, Bartolini R,
Novysedlak R, Cecrdlova E, Foley LK and Striz I: M1/M2 macrophages
and their overlaps-myth or reality? Clin Sci (Lond). 137:1067–1093.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Biswas SK and Mantovani A: Macrophage
plasticity and interaction with lymphocyte subsets: Cancer as a
paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Condeelis J and Pollard JW: Macrophages:
Obligate partners for tumor cell migration, invasion, and
metastasis. Cell. 124:263–266. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gu P, Liu R, Yang Q, Xie L, Wei R, Li J,
Mei F, Chen T, Zeng Z, He Y, et al: A metabolite from commensal
Candida albicans enhances the bactericidal activity of macrophages
and protects against sepsis. Cell Mol Immunol. 20:1156–1170. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li J, Lan T, Zhang C, Zeng C, Hou J, Yang
Z, Zhang M, Liu J and Liu B: Reciprocal activation between
IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and
survival of non-small cell lung cancer cells. Oncotarget.
6:1031–1048. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cheng CW, Kuo CY, Fan CC, Fang WC, Jiang
SS, Lo YK, Wang TY, Kao MC and Lee AY: Overexpression of Lon
contributes to survival and aggressive phenotype of cancer cells
through mitochondrial complex I-mediated generation of reactive
oxygen species. Cell Death Dis. 4:e6812013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Prasad S, Gupta SC and Tyagi AK: Reactive
oxygen species (ROS) and cancer: Role of antioxidative
nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang C, Cao S, Toole BP and Xu Y: Cancer
may be a pathway to cell survival under persistent hypoxia and
elevated ROS: A model for solid-cancer initiation and early
development. Int J Cancer. 136:2001–2011. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhu Y, Shi T, Lu X, Xu Z, Qu J, Zhang Z,
Shi G, Shen S, Hou Y, Chen Y and Wang T: Fungal-induced glycolysis
in macrophages promotes colon cancer by enhancing innate lymphoid
cell secretion of IL-22. EMBO J. 40:e1053202021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Dmitrieva-Posocco O, Dzutsev A, Posocco
DF, Hou V, Yuan W, Thovarai V, Mufazalov IA, Gunzer M, Shilovskiy
IP, Khaitov MR, et al: Cell-type-specific responses to
interleukin-1 control microbial invasion and tumor-elicited
inflammation in colorectal cancer. Immunity. 50:166–180.e7. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kirchberger S, Royston DJ, Boulard O,
Thornton E, Franchini F, Szabady RL, Harrison O and Powrie F:
Innate lymphoid cells sustain colon cancer through production of
interleukin-22 in a mouse model. J Exp Med. 210:917–931. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bollrath J, Phesse TJ, von Burstin VA,
Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T,
Canli O, Schwitalla S, et al: gp130-mediated stat3 activation in
enterocytes regulates cell survival and cell-cycle progression
during colitis-associated tumorigenesis. Cancer Cell. 15:91–102.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Keir ME, Yi T, Lu TT and Ghilardi N: The
role of IL-22 in intestinal health and disease. J Exp Med.
217:e201921952020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kashem SW, Igyarto BZ, Gerami-Nejad M,
Kumamoto Y, Mohammed JA, Jarrett E, Drummond RA, Zurawski SM,
Zurawski G, Berman J, et al: Candida albicans morphology and
dendritic cell subsets determine T helper cell differentiation.
Immunity. 42:356–366. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pittet MJ, Di Pilato M, Garris C and
Mempel TR: Dendritic cells as shepherds of T cell immunity in
cancer. Immunity. 56:2218–2230. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Schmidt S, Condorelli A, Koltze A and
Lehrnbecher T: NK cells and their role in invasive mold infection.
J Fungi (Basel). 3:252017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Charpak-Amikam Y, Lapidus T, Isaacson B,
Duev-Cohen A, Levinson T, Elbaz A, Levi-Schaffer F, Osherov N,
Bachrach G, Hoyer LL, et al: Candida albicans evades NK cell
elimination via binding of Agglutinin-Like Sequence proteins to the
checkpoint receptor TIGIT. Nat Commun. 13:24632022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Horii M and Matsushita T: Regulatory B
cells and T cell regulation in cancer. J Mol Biol. 433:1666852021.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wu J, Wang S, Zheng B, Qiu X, Wang H and
Chen L: Modulation of gut microbiota to enhance effect of
checkpoint inhibitor immunotherapy. Front Immunol. 12:6691502021.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Ahmadi N, Ahmadi A, Kheirali E, Yadegari
MH, Bayat M, Shajiei A, Amini AA, Ashrafi S, Abolhassani M, Faezi
S, et al: Systemic infection with Candida albicans in breast tumor
bearing mice: Cytokines dysregulation and induction of regulatory T
cells. J Mycol Med. 29:49–55. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Protti MP and De Monte L: Thymic stromal
lymphopoietin and cancer: Th2-dependent and -independent
mechanisms. Front Immunol. 11:20882020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Alam A, Levanduski E, Denz P,
Villavicencio HS, Bhatta M, Alhorebi L, Zhang Y, Gomez EC, Morreale
B, Senchanthisai S, et al: Fungal mycobiome drives IL-33 secretion
and type 2 immunity in pancreatic cancer. Cancer Cell.
40:153–167.e11. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Jou E, Rodriguez-Rodriguez N, Ferreira AF,
Jolin HE, Clark PA, Sawmynaden K, Ko M, Murphy JE, Mannion J, Ward
C, et al: An innate IL-25-ILC2-MDSC axis creates a
cancer-permissive microenvironment for Apc mutation-driven
intestinal tumorigenesis. Sci Immunol. 7:eabn01752022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Li GL, Tang JF, Tan WL, Zhang T, Zeng D,
Zhao S, Ran JH, Li J, Wang YP and Chen DL: The anti-hepatocellular
carcinoma effects of polysaccharides from Ganoderma lucidum by
regulating macrophage polarization via the MAPK/NF-κB signaling
pathway. Food Funct. 14:3155–3168. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Levy JMS and Magro C: Atrophying
pityriasis versicolor as an idiosyncratic T cell-mediated response
to Malassezia: A case series. J Am Acad Dermatol. 76:730–735. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Poggi A, Catellani S, Musso A and Zocchi
MR: Gammadelta T lymphocytes producing IFNgamma and IL-17 in
response to Candida albicans or mycobacterial antigens possible
implications for acute and chronic inflammation. Curr Med Chem.
16:4743–4749. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Coffelt SB, Kersten K, Doornebal CW,
Weiden J, Vrijland K, Hau CS, Verstegen NJM, Ciampricotti M,
Hawinkels LJAC, Jonkers J and de Visser KE: IL-17-producing γδ T
cells and neutrophils conspire to promote breast cancer metastasis.
Nature. 522:345–348. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Chao YY, Puhach A, Frieser D, Arunkumar M,
Lehner L, Seeholzer T, Garcia-Lopez A, van der Wal M, Fibi-Smetana
S, Dietschmann A, et al: Human TH17 cells engage gasdermin E pores
to release IL-1α on NLRP3 inflammasome activation. Nat Immunol.
24:295–308. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Liang WF, Gong YX, Li HF, Sun FL, Li WL,
Chen DQ, Xie DP, Ren CX, Guo XY, Wang ZY, et al: Curcumin activates
ros signaling to promote pyroptosis in hepatocellular carcinoma
HepG2 cells. In Vivo. 35:249–257. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Reina-Campos M, Scharping NE and Goldrath
AW: CD8+ T cell metabolism in infection and cancer. Nat
Rev Immunol. 21:718–738. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Farhood B, Najafi M and Mortezaee K:
CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A
review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Picard FSR, Lutz V, Brichkina A, Neuhaus
F, Ruckenbrod T, Hupfer A, Raifer H, Klein M, Bopp T, Pfefferle PI,
et al: IL-17A-producing CD8+ T cells promote PDAC via
induction of inflammatory cancer-associated fibroblasts. Gut.
72:1510–1522. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Han J, Khatwani N, Searles TG, Turk MJ and
Angeles CV: Memory CD8+ T cell responses to cancer.
Semin Immunol. 49:1014352020. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Pearce EL and Shen H: Making sense of
inflammation, epigenetics, and memory CD8+ T-cell differentiation
in the context of infection. Immunol Rev. 211:197–202. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Fernandes MR, Aggarwal P, Costa RG, Cole
AM and Trinchieri G: Targeting the gut microbiota for cancer
therapy. Nat Rev Cancer. 22:703–722. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xu J, Chen F, Wang G, Liu B, Song H and Ma
T: The versatile functions of G. Lucidum Polysaccharides and G.
Lucidum Triterpenes in cancer radiotherapy and chemotherapy. Cancer
Manag Res. 13:6507–6516. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tian W, Huang J, Zhang W, Wang Y, Jin R,
Guo H, Tang Y, Wang Y, Lai H and Leung EL: Harnessing natural
product polysaccharides against lung cancer and revisit its novel
mechanism. Pharmacol Res. 199:1070342024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhang S, Nie S, Huang D, Li W and Xie M:
Immunomodulatory effect of Ganoderma atrum polysaccharide on CT26
tumor-bearing mice. Food Chem. 136:1213–1219. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Li A, Shuai X, Jia Z, Li H, Liang X, Su D
and Guo W: Ganoderma lucidum polysaccharide extract inhibits
hepatocellular carcinoma growth by downregulating regulatory T
cells accumulation and function by inducing microRNA-125b. J Transl
Med. 13:1002015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Jing T, Guo Y and Wei Y: Carboxymethylated
pachyman induces ferroptosis in ovarian cancer by suppressing
NRF1/HO-1 signaling. Oncol Lett. 23:1612022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Feng L, Yuan L, Du M, Chen Y, Zhang MH, Gu
JF, He JJ, Wang Y and Cao W: Anti-lung cancer activity through
enhancement of immunomodulation and induction of cell apoptosis of
total triterpenes extracted from Ganoderma luncidum (Leyss. ex Fr.)
Karst. Molecules. 18:9966–9981. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Bin G and Gui-Zhen Y: Effects of Ganoderma
applanatum polysaccharide on cellular and humoral immunity in
normal and sarcoma-180 transplanted mice. Phytother. 5:134–138.
1991. View Article : Google Scholar
|
|
105
|
Wu Q, Yang Z, Nie Y, Shi Y and Fan D:
Multi-drug resistance in cancer chemotherapeutics: Mechanisms and
lab approaches. Cancer Lett. 347:159–166. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Davar D, Dzutsev AK, McCulloch JA,
Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding
Q, Pagliano O, et al: Fecal microbiota transplant overcomes
resistance to anti-PD-1 therapy in melanoma patients. Science.
371:596–602. 2021. View Article : Google Scholar
|
|
107
|
Routy B, Lenehan JG, Miller WH Jr, Jamal
R, Messaoudene M, Daisley BA, Hes C, Al KF, Martinez-Gili L,
Punčochář M, et al: Fecal microbiota transplantation plus anti-PD-1
immunotherapy in advanced melanoma: A phase I trial. Nat Med.
29:2121–2132. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Routy B, Le Chatelier E, Derosa L, Duong
CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C,
Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based
immunotherapy against epithelial tumors. Science. 359:91–97. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Qian X, Zhang HY, Li QL, Ma GJ, Chen Z, Ji
XM, Li CY and Zhang AQ: Integrated microbiome, metabolome, and
proteome analysis identifies a novel interplay among commensal
bacteria, metabolites and candidate targets in non-small cell lung
cancer. Clin Transl Med. 12:e9472022. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Derosa L, Routy B, Fidelle M, Iebba V,
Alla L, Pasolli E, Segata N, Desnoyer A, Pietrantonio F, Ferrere G,
et al: Gut bacteria composition drives primary resistance to cancer
immunotherapy in renal cell carcinoma patients. Eur Urol.
78:195–206. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Matson V, Fessler J, Bao R, Chongsuwat T,
Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome
is associated with anti-PD-1 efficacy in metastatic melanoma
patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Lu Y, Yuan X, Wang M, He Z, Li H, Wang J
and Li Q: Gut microbiota influence immunotherapy responses:
Mechanisms and therapeutic strategies. J Hematol Oncol. 15:472022.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Zhang H, Hong Y, Wu T, Ben E, Li S, Hu L
and Xie T: Role of gut microbiota in regulating immune checkpoint
inhibitor therapy for glioblastoma. Front Immunol. 15:14019672024.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Kohi S, Macgregor-Das A, Dbouk M, Yoshida
T, Chuidian M, Abe T, Borges M, Lennon AM, Shin EJ, Canto MI and
Goggins M: Alterations in the duodenal fluid microbiome of patients
with pancreatic cancer. Clin Gastroenterol Hepatol. 20:e196–e227.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Riquelme E, Zhang Y, Zhang L, Montiel M,
Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, Lucas AS, et al:
Tumor microbiome diversity and composition influence pancreatic
cancer outcomes. Cell. 178:795–806.e12. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Apostolou P, Tsantsaridou A, Papasotiriou
I, Toloudi M, Chatziioannou M and Giamouzis G: Bacterial and fungal
microflora in surgically removed lung cancer samples. J
Cardiothorac Surg. 6:1372011. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Banerjee S, Alwine JC, Wei Z, Tian T, Shih
N, Sperling C, Guzzo T, Feldman MD and Robertson ES: Microbiome
signatures in prostate cancer. Carcinogenesis. 40:749–764. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong
SH, Ng SC, Chan FKL, Sung JJY and Yu J: Enteric fungal microbiota
dysbiosis and ecological alterations in colorectal cancer. Gut.
68:654–662. 2019. View Article : Google Scholar : PubMed/NCBI
|