Fungal influence on immune cells and inflammatory responses in the tumor microenvironment (Review)
- Authors:
- Jinke Zhang
- Yahui Feng
- Dongmei Li
- Dongmei Shi
-
Affiliations: Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China, Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, Shandong 272001, P.R. China, Department of Microbiology and Immunology, Georgetown University Medical Center, Washington DC 20057, USA - Published online on: November 11, 2024 https://doi.org/10.3892/ol.2024.14796
- Article Number: 50
This article is mentioned in:
Abstract
El-Sayed A, Aleya L and Kamel M: Microbiota's role in health and diseases. Environ Sci Pollut Res Int. 28:36967–36983. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Xu T, Huang G, Jiang S, Gu Y and Chen F: Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell. 9:488–500. 2018. View Article : Google Scholar : PubMed/NCBI | |
Byrd AL, Belkaid Y and Segre JA: The human skin microbiome. Nat Rev Microbiol. 16:143–155. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sommer F, Anderson JM, Bharti R, Raes J and Rosenstiel P: The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 15:630–638. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, Li F, Yu X, Feng Q, Wang Z, et al: The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat Commun. 8:8752017. View Article : Google Scholar : PubMed/NCBI | |
Ottman N, Smidt H, de Vos WH and Belzer C: The function of our microbiota: Who is out there and what do they do? Front Cell Infect Microbiol. 2:1042012. View Article : Google Scholar : PubMed/NCBI | |
Zoetendal EG, Rajilic-Stojanovic M and de Vos WM: High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 57:1605–1615. 2008. View Article : Google Scholar : PubMed/NCBI | |
Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG and Knight R: The human microbiome in evolution. BMC Biol. 15:1272017. View Article : Google Scholar : PubMed/NCBI | |
Garrett WS: Cancer and the microbiota. Science. 348:80–86. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C, Zhu D, Koya JB, Wei L, Li J and Chen ZS: Microbiota in health and diseases. Signal Transduct Target Ther. 7:1352022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhou J and Wang L: Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol. 11:6259132021. View Article : Google Scholar : PubMed/NCBI | |
Belvoncikova P, Maronek M and Gardlik R: Gut dysbiosis and fecal microbiota transplantation in autoimmune diseases. Int J Mol Sci. 23:107292022. View Article : Google Scholar : PubMed/NCBI | |
Paget S: The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8:98–101. 1989.PubMed/NCBI | |
Preisler HD, Bjornsson S, Mori M and Barcos M: Granulocyte differentiation by friend leukemia cells. Cell Differ. 4:273–283. 1975. View Article : Google Scholar : PubMed/NCBI | |
Izraely S and Witz IP: Site-specific metastasis: A cooperation between cancer cells and the metastatic microenvironment. Int J Cancer. 148:1308–1322. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bicher HI, Hetzel FW, Sandhu TS, Frinak S, Vaupel P, O'Hara MD and O'Brien T: Effects of hyperthermia on normal and tumor microenvironment. Radiology. 137:523–530. 1980. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Xie F, Zhou X, Zhang L, Yang B, Huang J, Wang F, Yan H, Zeng L, Zhang L and Zhou F: Microbiota in tumors: From understanding to application. Adv Sci (Weinh). 9:e22004702022. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Liu H, Gong X, Wen B, Chen D, Liu J and Hu F: Analysis of different components in the peritumoral tissue microenvironment of colorectal cancer: A potential prospect in tumorigenesis. Mol Med Rep. 14:2555–2565. 2016. View Article : Google Scholar : PubMed/NCBI | |
de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D and Plummer M: Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 13:607–615. 2012. View Article : Google Scholar : PubMed/NCBI | |
Vallianou N, Kounatidis D, Christodoulatos GS, Panagopoulos F, Karampela I and Dalamaga M: Mycobiome and cancer: What is the evidence? Cancers (Basel). 13:31492021. View Article : Google Scholar : PubMed/NCBI | |
Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, Asraf O, Martino C, Nejman D, Gavert N, Stajich JE, Amit G, González A, et al: Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell. 185:3789–3806.e17. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dohlman AB, Klug J, Mesko M, Gao IH, Lipkin SM, Shen X and Iliev ID: A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell. 185:3807–3822. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhong M, Xiong Y, Zhao J, Gao Z, Ma J, Wu Z, Song Y and Hong X: Candida albicans disorder is associated with gastric carcinogenesis. Theranostics. 11:4945–4956. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ramirez-Garcia A, Rementeria A, Aguirre-Urizar JM, Moragues MD, Antoran A, Pellon A, Abad-Diaz-de-Cerio A and Hernando FL: Candida albicans and cancer: Can this yeast induce cancer development or progression? Crit Rev Microbiol. 42:181–193. 2016.PubMed/NCBI | |
Conti HR and Gaffen SL: Host responses to Candida albicans: Th17 cells and mucosal candidiasis. Microbes Infect. 12:518–527. 2010. View Article : Google Scholar : PubMed/NCBI | |
Williamson DM: Chronic hyperplastic candidiasis and squamous carcinoma. Br J Dermatol. 81:125–127. 1969. View Article : Google Scholar : PubMed/NCBI | |
Gupta SR, Gupta N, Sharma A, Xess I, Singh G and Mani K: The association of Candida and antifungal therapy with pro-inflammatory cytokines in oral leukoplakia. Clin Oral Investig. 25:6287–6296. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bastiaan RJ and Reade PC: The prevalence of Candida albicans in the mouths of tobacco smokers with and without oral mucous membrane keratoses. Oral Surg Oral Med Oral Pathol. 53:148–151. 1982. View Article : Google Scholar : PubMed/NCBI | |
Daftary DK, Mehta FS, Gupta PC and Pindborg JJ: The presence of Candida in 723 oral leukoplakias among Indian villagers. Scand J Dent Res. 80:75–79. 1972.PubMed/NCBI | |
Healy CM and Moran GP: The microbiome and oral cancer: More questions than answers. Oral Oncol. 89:30–33. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alnuaimi AD, Wiesenfeld D, O'Brien-Simpson NM, Reynolds EC and McCullough MJ: Oral Candida colonization in oral cancer patients and its relationship with traditional risk factors of oral cancer: A matched case-control study. Oral Oncol. 51:139–145. 2015. View Article : Google Scholar : PubMed/NCBI | |
McCullough M, Jaber M, Barrett AW, Bain L, Speight PM and Porter SR: Oral yeast carriage correlates with presence of oral epithelial dysplasia. Oral Oncol. 38:391–393. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Chen C, Chai D, Li C, Qiu Z, Kuang T, Liu L, Deng W and Wang W: Characterization of the intestinal fungal microbiome in patients with hepatocellular carcinoma. J Transl Med. 21:1262023. View Article : Google Scholar : PubMed/NCBI | |
Aykut B, Pushalkar S, Chen R, Li Q, Abengozar R, Kim JI, Shadaloey SA, Wu D, Preiss P, Verma N, et al: The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature. 574:264–267. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ishikawa T, Itoh F, Yoshida S, Saijo S, Matsuzawa T, Gonoi T, Saito T, Okawa Y, Shibata N, Miyamoto T and Yamasaki S: Identification of distinct ligands for the C-type lectin receptors mincle and dectin-2 in the pathogenic Fungus Malassezia. Cell Host Microbe. 13:477–488. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zambirinis CP, Pushalkar S, Saxena D and Miller G: Pancreatic cancer, inflammation, and microbiome. Cancer J. 20:195–202. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sparmann A and Bar-Sagi D: Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell. 6:447–458. 2004. View Article : Google Scholar : PubMed/NCBI | |
Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS, Funari V, Gargus M, Nguyen C, Sharma P, Maymi VI, et al: Malassezia Is associated with Crohn's disease and exacerbates colitis in mouse models. Cell Host Microbe. 25:377–388.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nixon MW: Aflatoxin and liver cancer. Lancet. 335:11651990. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Lau HC, Liu Y, Kang X, Wang Y, Ting NL, Kwong TN, Han J, Liu W, Liu C, et al: Altered mycobiota signatures and enriched pathogenic Aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology. 163:908–921. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu NN, Yi CX, Wei LQ, Zhou JA, Jiang T, Hu CC, Wang L, Wang YY, Zou Y, Zhao YK, et al: The intratumor mycobiome promotes lung cancer progression via myeloid-derived suppressor cells. Cancer Cell. 41:1927–1944. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao R, Kong C, Li H, Huang L, Qu X, Qin N and Qin H: Dysbiosis signature of mycobiota in colon polyp and colorectal cancer. Eur J Clin Microbiol Infect Dis. 36:2457–2468. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Shi ZW, Strickland AB and Shi M: Cryptococcus neoformans infection in the central nervous system: The battle between host and pathogen. J Fungi (Basel). 8:10692022. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Tian T, Wei Z, Shih N, Feldman MD, Alwine JC, Coukos G and Robertson ES: The ovarian cancer oncobiome. Oncotarget. 8:36225–36245. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu NN, Jiao N, Tan JC, Wang Z, Wu D, Wang AJ, Chen J, Tao L, Zhou C, Fang W, et al: Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts. Nat Microbiol. 7:238–250. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dudeck A, Köberle M, Goldmann O, Meyer N, Dudeck J, Lemmens S, Rohde M, Roldán NG, Dietze-Schwonberg K, Orinska Z, et al: Mast cells as protectors of health. J Allergy Clin Immunol. 144:S4–S18. 2019. View Article : Google Scholar : PubMed/NCBI | |
De Zuani M, Paolicelli G, Zelante T, Renga G, Romani L, Arzese A, Pucillo CEM and Frossi B: Mast cells respond to candida albicans infections and modulate macrophages phagocytosis of the Fungus. Front Immunol. 9:28292018. View Article : Google Scholar : PubMed/NCBI | |
Abraham SN and St John AL: Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol. 10:440–452. 2010. View Article : Google Scholar : PubMed/NCBI | |
Renga G, Moretti S, Oikonomou V, Borghi M, Zelante T, Paolicelli G, Costantini C, De Zuani M, Villella VR, Raia V, et al: IL-9 and mast cells are key players of candida albicans commensalism and pathogenesis in the gut. Cell Rep. 23:1767–1778. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gerard R, Sendid B, Colombel JF, Poulain D and Jouault T: An immunological link between Candida albicanscolonization and Crohn's disease. Crit Rev Microbiol. 41:135–139. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Yang MQ, Yu TY, Yin YY, Liu Y, Wang XD, He ZG, Yin L, Chen CQ and Li JY: Mast cell tryptase promotes inflammatory bowel disease-induced intestinal fibrosis. Inflamm Bowel Dis. 27:242–255. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nalleweg N, Chiriac MT, Podstawa E, Lehmann C, Rau TT, Atreya R, Krauss E, Hundorfean G, Fichtner-Feigl S, Hartmann A, et al: IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut. 64:743–755. 2015. View Article : Google Scholar : PubMed/NCBI | |
Richardson JP, Moyes DL, Ho J and Naglik JR: Candida innate immunity at the mucosa. Semin Cell Dev Biol. 89:58–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiao Q, Luo Y, Scheffel J, Zhao Z and Maurer M: The complex role of mast cells in fungal infections. Exp Dermatol. 28:749–755. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu SC, Yu HS, Yen FL, Lin CL, Chen GS and Lan CC: Neutrophil extracellular trap formation is increased in psoriasis and induces human beta-defensin-2 production in epidermal keratinocytes. Sci Rep. 6:311192016. View Article : Google Scholar : PubMed/NCBI | |
Miksch RC, Schoenberg MB, Weniger M, Bösch F, Ormanns S, Mayer B, Werner J, Bazhin AV and D'Haese JG: Prognostic impact of tumor-infiltrating lymphocytes and neutrophils on survival of patients with upfront resection of pancreatic cancer. Cancers (Basel). 11:392019. View Article : Google Scholar : PubMed/NCBI | |
Raftopoulou S, Valadez-Cosmes P, Mihalic ZN, Schicho R and Kargl J: Tumor-mediated neutrophil polarization and therapeutic implications. Int J Mol Sci. 23:32182022. View Article : Google Scholar : PubMed/NCBI | |
Que H, Fu Q, Lan T, Tian X and Wei X: Tumor-associated neutrophils and neutrophil-targeted cancer therapies. Biochim Biophys Acta Rev Cancer. 1877:1887622022. View Article : Google Scholar : PubMed/NCBI | |
Triner D, Devenport SN, Ramakrishnan SK, Ma X, Frieler RA, Greenson JK, Inohara N, Nunez G, Colacino JA, Mortensen RM and Shah YM: Neutrophils restrict tumor-associated microbiota to reduce growth and invasion of colon tumors in mice. Gastroenterology. 156:1467–1482. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nikou SA, Zhou C, Griffiths JS, Kotowicz NK, Coleman BM, Green MJ, Moyes DL, Gaffen SL, Naglik JR and Parker PJ: The Candida albicans toxin candidalysin mediates distinct epithelial inflammatory responses through p38 and EGFR-ERK pathways. Sci Signal. 15:eabj69152022. View Article : Google Scholar : PubMed/NCBI | |
Swamydas M, Gao JL, Break TJ, Johnson MD, Jaeger M, Rodriguez CA, Lim JK, Green NM, Collar AL, Fischer BG, et al: CXCR1-mediated neutrophil degranulation and fungal killing promote Candida clearance and host survival. Sci Transl Med. 8:322ra102016. View Article : Google Scholar : PubMed/NCBI | |
Wynn TA and Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44:450–462. 2016. View Article : Google Scholar : PubMed/NCBI | |
Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK and Striz I: M1/M2 macrophages and their overlaps-myth or reality? Clin Sci (Lond). 137:1067–1093. 2023. View Article : Google Scholar : PubMed/NCBI | |
Biswas SK and Mantovani A: Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 11:889–896. 2010. View Article : Google Scholar : PubMed/NCBI | |
Condeelis J and Pollard JW: Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell. 124:263–266. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gu P, Liu R, Yang Q, Xie L, Wei R, Li J, Mei F, Chen T, Zeng Z, He Y, et al: A metabolite from commensal Candida albicans enhances the bactericidal activity of macrophages and protects against sepsis. Cell Mol Immunol. 20:1156–1170. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Lan T, Zhang C, Zeng C, Hou J, Yang Z, Zhang M, Liu J and Liu B: Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells. Oncotarget. 6:1031–1048. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cheng CW, Kuo CY, Fan CC, Fang WC, Jiang SS, Lo YK, Wang TY, Kao MC and Lee AY: Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis. 4:e6812013. View Article : Google Scholar : PubMed/NCBI | |
Prasad S, Gupta SC and Tyagi AK: Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 387:95–105. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Cao S, Toole BP and Xu Y: Cancer may be a pathway to cell survival under persistent hypoxia and elevated ROS: A model for solid-cancer initiation and early development. Int J Cancer. 136:2001–2011. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Shi T, Lu X, Xu Z, Qu J, Zhang Z, Shi G, Shen S, Hou Y, Chen Y and Wang T: Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22. EMBO J. 40:e1053202021. View Article : Google Scholar : PubMed/NCBI | |
Dmitrieva-Posocco O, Dzutsev A, Posocco DF, Hou V, Yuan W, Thovarai V, Mufazalov IA, Gunzer M, Shilovskiy IP, Khaitov MR, et al: Cell-type-specific responses to interleukin-1 control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity. 50:166–180.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O and Powrie F: Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med. 210:917–931. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T, Canli O, Schwitalla S, et al: gp130-mediated stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 15:91–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
Keir ME, Yi T, Lu TT and Ghilardi N: The role of IL-22 in intestinal health and disease. J Exp Med. 217:e201921952020. View Article : Google Scholar : PubMed/NCBI | |
Kashem SW, Igyarto BZ, Gerami-Nejad M, Kumamoto Y, Mohammed JA, Jarrett E, Drummond RA, Zurawski SM, Zurawski G, Berman J, et al: Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity. 42:356–366. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pittet MJ, Di Pilato M, Garris C and Mempel TR: Dendritic cells as shepherds of T cell immunity in cancer. Immunity. 56:2218–2230. 2023. View Article : Google Scholar : PubMed/NCBI | |
Schmidt S, Condorelli A, Koltze A and Lehrnbecher T: NK cells and their role in invasive mold infection. J Fungi (Basel). 3:252017. View Article : Google Scholar : PubMed/NCBI | |
Charpak-Amikam Y, Lapidus T, Isaacson B, Duev-Cohen A, Levinson T, Elbaz A, Levi-Schaffer F, Osherov N, Bachrach G, Hoyer LL, et al: Candida albicans evades NK cell elimination via binding of Agglutinin-Like Sequence proteins to the checkpoint receptor TIGIT. Nat Commun. 13:24632022. View Article : Google Scholar : PubMed/NCBI | |
Horii M and Matsushita T: Regulatory B cells and T cell regulation in cancer. J Mol Biol. 433:1666852021. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Wang S, Zheng B, Qiu X, Wang H and Chen L: Modulation of gut microbiota to enhance effect of checkpoint inhibitor immunotherapy. Front Immunol. 12:6691502021. View Article : Google Scholar : PubMed/NCBI | |
Ahmadi N, Ahmadi A, Kheirali E, Yadegari MH, Bayat M, Shajiei A, Amini AA, Ashrafi S, Abolhassani M, Faezi S, et al: Systemic infection with Candida albicans in breast tumor bearing mice: Cytokines dysregulation and induction of regulatory T cells. J Mycol Med. 29:49–55. 2019. View Article : Google Scholar : PubMed/NCBI | |
Protti MP and De Monte L: Thymic stromal lymphopoietin and cancer: Th2-dependent and -independent mechanisms. Front Immunol. 11:20882020. View Article : Google Scholar : PubMed/NCBI | |
Alam A, Levanduski E, Denz P, Villavicencio HS, Bhatta M, Alhorebi L, Zhang Y, Gomez EC, Morreale B, Senchanthisai S, et al: Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell. 40:153–167.e11. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jou E, Rodriguez-Rodriguez N, Ferreira AF, Jolin HE, Clark PA, Sawmynaden K, Ko M, Murphy JE, Mannion J, Ward C, et al: An innate IL-25-ILC2-MDSC axis creates a cancer-permissive microenvironment for Apc mutation-driven intestinal tumorigenesis. Sci Immunol. 7:eabn01752022. View Article : Google Scholar : PubMed/NCBI | |
Li GL, Tang JF, Tan WL, Zhang T, Zeng D, Zhao S, Ran JH, Li J, Wang YP and Chen DL: The anti-hepatocellular carcinoma effects of polysaccharides from Ganoderma lucidum by regulating macrophage polarization via the MAPK/NF-κB signaling pathway. Food Funct. 14:3155–3168. 2023. View Article : Google Scholar : PubMed/NCBI | |
Levy JMS and Magro C: Atrophying pityriasis versicolor as an idiosyncratic T cell-mediated response to Malassezia: A case series. J Am Acad Dermatol. 76:730–735. 2017. View Article : Google Scholar : PubMed/NCBI | |
Poggi A, Catellani S, Musso A and Zocchi MR: Gammadelta T lymphocytes producing IFNgamma and IL-17 in response to Candida albicans or mycobacterial antigens possible implications for acute and chronic inflammation. Curr Med Chem. 16:4743–4749. 2009. View Article : Google Scholar : PubMed/NCBI | |
Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJM, Ciampricotti M, Hawinkels LJAC, Jonkers J and de Visser KE: IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 522:345–348. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chao YY, Puhach A, Frieser D, Arunkumar M, Lehner L, Seeholzer T, Garcia-Lopez A, van der Wal M, Fibi-Smetana S, Dietschmann A, et al: Human TH17 cells engage gasdermin E pores to release IL-1α on NLRP3 inflammasome activation. Nat Immunol. 24:295–308. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liang WF, Gong YX, Li HF, Sun FL, Li WL, Chen DQ, Xie DP, Ren CX, Guo XY, Wang ZY, et al: Curcumin activates ros signaling to promote pyroptosis in hepatocellular carcinoma HepG2 cells. In Vivo. 35:249–257. 2021. View Article : Google Scholar : PubMed/NCBI | |
Reina-Campos M, Scharping NE and Goldrath AW: CD8+ T cell metabolism in infection and cancer. Nat Rev Immunol. 21:718–738. 2021. View Article : Google Scholar : PubMed/NCBI | |
Farhood B, Najafi M and Mortezaee K: CD8+ cytotoxic T lymphocytes in cancer immunotherapy: A review. J Cell Physiol. 234:8509–8521. 2019. View Article : Google Scholar : PubMed/NCBI | |
Picard FSR, Lutz V, Brichkina A, Neuhaus F, Ruckenbrod T, Hupfer A, Raifer H, Klein M, Bopp T, Pfefferle PI, et al: IL-17A-producing CD8+ T cells promote PDAC via induction of inflammatory cancer-associated fibroblasts. Gut. 72:1510–1522. 2023. View Article : Google Scholar : PubMed/NCBI | |
Han J, Khatwani N, Searles TG, Turk MJ and Angeles CV: Memory CD8+ T cell responses to cancer. Semin Immunol. 49:1014352020. View Article : Google Scholar : PubMed/NCBI | |
Pearce EL and Shen H: Making sense of inflammation, epigenetics, and memory CD8+ T-cell differentiation in the context of infection. Immunol Rev. 211:197–202. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fernandes MR, Aggarwal P, Costa RG, Cole AM and Trinchieri G: Targeting the gut microbiota for cancer therapy. Nat Rev Cancer. 22:703–722. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Chen F, Wang G, Liu B, Song H and Ma T: The versatile functions of G. Lucidum Polysaccharides and G. Lucidum Triterpenes in cancer radiotherapy and chemotherapy. Cancer Manag Res. 13:6507–6516. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, Tang Y, Wang Y, Lai H and Leung EL: Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol Res. 199:1070342024. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Nie S, Huang D, Li W and Xie M: Immunomodulatory effect of Ganoderma atrum polysaccharide on CT26 tumor-bearing mice. Food Chem. 136:1213–1219. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li A, Shuai X, Jia Z, Li H, Liang X, Su D and Guo W: Ganoderma lucidum polysaccharide extract inhibits hepatocellular carcinoma growth by downregulating regulatory T cells accumulation and function by inducing microRNA-125b. J Transl Med. 13:1002015. View Article : Google Scholar : PubMed/NCBI | |
Jing T, Guo Y and Wei Y: Carboxymethylated pachyman induces ferroptosis in ovarian cancer by suppressing NRF1/HO-1 signaling. Oncol Lett. 23:1612022. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Yuan L, Du M, Chen Y, Zhang MH, Gu JF, He JJ, Wang Y and Cao W: Anti-lung cancer activity through enhancement of immunomodulation and induction of cell apoptosis of total triterpenes extracted from Ganoderma luncidum (Leyss. ex Fr.) Karst. Molecules. 18:9966–9981. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bin G and Gui-Zhen Y: Effects of Ganoderma applanatum polysaccharide on cellular and humoral immunity in normal and sarcoma-180 transplanted mice. Phytother. 5:134–138. 1991. View Article : Google Scholar | |
Wu Q, Yang Z, Nie Y, Shi Y and Fan D: Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 347:159–166. 2014. View Article : Google Scholar : PubMed/NCBI | |
Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, et al: Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 371:596–602. 2021. View Article : Google Scholar | |
Routy B, Lenehan JG, Miller WH Jr, Jamal R, Messaoudene M, Daisley BA, Hes C, Al KF, Martinez-Gili L, Punčochář M, et al: Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: A phase I trial. Nat Med. 29:2121–2132. 2023. View Article : Google Scholar : PubMed/NCBI | |
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qian X, Zhang HY, Li QL, Ma GJ, Chen Z, Ji XM, Li CY and Zhang AQ: Integrated microbiome, metabolome, and proteome analysis identifies a novel interplay among commensal bacteria, metabolites and candidate targets in non-small cell lung cancer. Clin Transl Med. 12:e9472022. View Article : Google Scholar : PubMed/NCBI | |
Derosa L, Routy B, Fidelle M, Iebba V, Alla L, Pasolli E, Segata N, Desnoyer A, Pietrantonio F, Ferrere G, et al: Gut bacteria composition drives primary resistance to cancer immunotherapy in renal cell carcinoma patients. Eur Urol. 78:195–206. 2020. View Article : Google Scholar : PubMed/NCBI | |
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Yuan X, Wang M, He Z, Li H, Wang J and Li Q: Gut microbiota influence immunotherapy responses: Mechanisms and therapeutic strategies. J Hematol Oncol. 15:472022. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Hong Y, Wu T, Ben E, Li S, Hu L and Xie T: Role of gut microbiota in regulating immune checkpoint inhibitor therapy for glioblastoma. Front Immunol. 15:14019672024. View Article : Google Scholar : PubMed/NCBI | |
Kohi S, Macgregor-Das A, Dbouk M, Yoshida T, Chuidian M, Abe T, Borges M, Lennon AM, Shin EJ, Canto MI and Goggins M: Alterations in the duodenal fluid microbiome of patients with pancreatic cancer. Clin Gastroenterol Hepatol. 20:e196–e227. 2022. View Article : Google Scholar : PubMed/NCBI | |
Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, Lucas AS, et al: Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 178:795–806.e12. 2019. View Article : Google Scholar : PubMed/NCBI | |
Apostolou P, Tsantsaridou A, Papasotiriou I, Toloudi M, Chatziioannou M and Giamouzis G: Bacterial and fungal microflora in surgically removed lung cancer samples. J Cardiothorac Surg. 6:1372011. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Alwine JC, Wei Z, Tian T, Shih N, Sperling C, Guzzo T, Feldman MD and Robertson ES: Microbiome signatures in prostate cancer. Carcinogenesis. 40:749–764. 2019. View Article : Google Scholar : PubMed/NCBI | |
Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, Chan FKL, Sung JJY and Yu J: Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 68:654–662. 2019. View Article : Google Scholar : PubMed/NCBI |