You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Shen X, Jain A, Aladelokun O, Yan H, Gilbride A, Ferrucci LM, Lu L, Khan SA and Johnson CH: Asparagine, colorectal cancer, and the role of sex, genes, microbes, and diet: A narrative review. Front Mol Biosci. 9:9586662022. View Article : Google Scholar : PubMed/NCBI | |
|
Fuentes N, Silva Rodriguez M and Silveyra P: Role of sex hormones in lung cancer. Exp Biol Med (Maywood). 246:2098–2110. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Coelingh Bennink HJT, Prowse A, Egberts JFM, Debruyne FMJ, Huhtaniemi IT and Tombal B: The loss of estradiol by androgen deprivation in prostate cancer patients shows the importance of estrogens in males. J Endocr Soc. 8:bvae1072024. View Article : Google Scholar : PubMed/NCBI | |
|
Frederiksen H, Johannsen TH, Andersen SE, Albrethsen J, Landersoe SK, Petersen JH, Andersen AN, Vestergaard ET, Schorring ME, Linneberg A, et al: Sex-specific estrogen levels and reference intervals from infancy to late adulthood determined by LC-MS/MS. J Clin Endocrinol Metab. 105:754–768. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gates MA, Mekary RA, Chiu GR, Ding EL, Wittert GA and Araujo AB: Sex steroid hormone levels and body composition in men. J Clin Endocrinol Metab. 98:2442–2450. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Marriott RJ, Murray K, Adams RJ, Antonio L, Ballantyne CM, Bauer DC, Bhasin S, Biggs ML, Cawthon PM, Couper DJ, et al: Factors associated with circulating sex hormones in men: Individual participant data meta-analyses. Ann Intern Med. 176:1221–1234. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Simpson ER, Misso M, Hewitt KN, Hill RA, Boon WC, Jones ME, Kovacic A, Zhou J and Clyne CD: Estrogen-the good, the bad, and the unexpected. Endocr Rev. 26:322–330. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gandhi N, Omer S and Harrison RE: In vitro cell culture model for osteoclast activation during estrogen withdrawal. Int J Mol Sci. 25:61342024. View Article : Google Scholar : PubMed/NCBI | |
|
Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR and Boyce BF: Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med. 2:1132–1136. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP and Pacifici R: Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem. 276:8836–8840. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Gavali S, Gupta MK, Daswani B, Wani MR, Sirdeshmukh R and Khatkhatay MI: LYN, a key mediator in estrogen-dependent suppression of osteoclast differentiation, survival, and function. Biochim Biophys Acta Mol Basis Dis. 1865:547–557. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kharb R, Haider K, Neha K and Yar MS: Aromatase inhibitors: Role in postmenopausal breast cancer. Arch Pharm (Weinheim). 353:e20000812020. View Article : Google Scholar : PubMed/NCBI | |
|
Arumugam A, Lissner EA and Lakshmanaswamy R: The role of hormones and aromatase inhibitors on breast tumor growth and general health in a postmenopausal mouse model. Reprod Biol Endocrinol. 12:662014. View Article : Google Scholar : PubMed/NCBI | |
|
Parish SJ, Simon JA, Davis SR, Giraldi A, Goldstein I, Goldstein SW, Kim NN, Kingsberg SA, Morgentaler A, Nappi RE, et al: International society for the study of women's sexual health clinical practice guideline for the use of systemic testosterone for hypoactive sexual desire disorder in women. J Sex Med. 18:849–867. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Van-Duyne G, Blair IA, Sprenger C, Moiseenkova-Bell V, Plymate S and Penning TM: The androgen receptor. Vitam Horm. 123:439–481. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai CC, Yang YSH, Chen YF, Huang LY, Yang YN, Lee SY, Wang WL, Lee HL, Whang-Peng J, Lin HY, et al: Integrins and actions of androgen in breast cancer. Cells. 12:21262023. View Article : Google Scholar : PubMed/NCBI | |
|
Naamneh Elzenaty R, du Toit T and Flück CE: Basics of androgen synthesis and action. Best Pract Res Clin Endocrinol Metab. 36:1016652022. View Article : Google Scholar : PubMed/NCBI | |
|
Bienenfeld A, Azarchi S, Lo Sicco K, Marchbein S, Shapiro J and Nagler AR: Androgens in women: Androgen-mediated skin disease and patient evaluation. J Am Acad Dermatol. 80:1497–1506. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Hu K, Bai H, Liu H, Pu Y, Yang C, Liu Q and Fan P: Increased oxidative stress is associated with hyperandrogenemia in polycystic ovary syndrome evidenced by oxidized lipoproteins stimulating rat ovarian androgen synthesis in vitro. Endocrine. 84:1238–1249. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Paakinaho V and Palvimo JJ: Genome-wide crosstalk between steroid receptors in breast and prostate cancers. Endocr Relat Cancer. 28:R231–R250. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Amirghofran Z, Monabati A and Gholijani N: Androgen receptor expression in relation to apoptosis and the expression of cell cycle related proteins in prostate cancer. Pathol Oncol Res. 10:37–41. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bodner K, Laubichler P, Kimberger O, Czerwenka K, Zeillinger R and Bodner-Adler B: Oestrogen and progesterone receptor expression in patients with adenocarcinoma of the uterine cervix and correlation with various clinicopathological parameters. Anticancer Res. 30:1341–1345. 2010.PubMed/NCBI | |
|
Yoon K, Park Y, Kang E, Kim E, Kim JH, Kim SH, Suh KJ, Kim SM, Jang M, Yun BR, et al: Effect of estrogen receptor expression level and hormonal therapy on prognosis of early breast cancer. Cancer Res Treat. 54:1081–1090. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Amin MB, Greene FL, Edge SB, Compton CC, Gershenwald JE, Brookland RK, Meyer L, Gress DM, Byrd DR and Winchester DP: The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more ‘personalized’ approach to cancer staging. CA Cancer J Clin. 67:93–99. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Giuliano AE, Edge SB and Hortobagyi GN: Eighth edition of the AJCC cancer staging manual: Breast cancer. Ann Surg Oncol. 25:1783–1785. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sørlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, et al: Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 98:10869–10874. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Cheang MCU, Chia SK, Voduc D, Gao D, Leung S, Snider J, Watson M, Davies S, Bernard PS, Parker JS, et al: Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 101:736–750. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, et al: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 344:783–792. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 121:2750–2767. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Huggins C and Hodges CV: Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol. 167:948–952. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Scher HI and Sawyers CL: Biology of progressive, castration-resistant prostate cancer: Directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol. 23:8253–8261. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Gu G, Tian L, Herzog SK, Rechoum Y, Gelsomino L, Gao M, Du L, Kim JA, Dustin D, Lo HC, et al: Hormonal modulation of ESR1 mutant metastasis. Oncogene. 40:997–1011. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kolyvas EA, Caldas C, Kelly K and Ahmad SS: Androgen receptor function and targeted therapeutics across breast cancer subtypes. Breast Cancer Res. 24:792022. View Article : Google Scholar : PubMed/NCBI | |
|
Peters AA, Buchanan G, Ricciardelli C, Bianco-Miotto T, Centenera MM, Harris JM, Jindal S, Segara D, Jia L, Moore NL, et al: Androgen receptor inhibits estrogen receptor-alpha activity and is prognostic in breast cancer. Cancer Res. 69:6131–6140. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Hickey TE, Selth LA, Chia KM, Laven-Law G, Milioli HH, Roden D, Jindal S, Hui M, Finlay-Schultz J, Ebrahimie E, et al: The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat Med. 27:310–320. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Secreto G, Girombelli A and Krogh V: Androgen excess in breast cancer development: Implications for prevention and treatment. Endocr Relat Cancer. 26:R81–R94. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gehrig J, Kaulfuß S, Jarry H, Bremmer F, Stettner M, Burfeind P and Thelen P: Prospects of estrogen receptor β activation in the treatment of castration-resistant prostate cancer. Oncotarget. 8:34971–34979. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lung DK, Reese RM and Alarid ET: Intrinsic and extrinsic factors governing the transcriptional regulation of ESR1. Horm Cancer. 11:129–147. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jensen EV, Desombre ER, Kawashima T, Suzuki T, Kyser K and Jungblut PW: Estrogen-binding substances of target tissues. Science. 158:529–530. 1967. View Article : Google Scholar : PubMed/NCBI | |
|
Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, et al: Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 270:1491–1494. 1995. View Article : Google Scholar : PubMed/NCBI | |
|
Bunone G, Briand PA, Miksicek RJ and Picard D: Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 15:2174–2183. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Tremblay A, Tremblay GB, Labrie F and Giguère V: Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1. Mol Cell. 3:513–519. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Yi P, Wang Z, Feng Q, Pintilie GD, Foulds CE, Lanz RB, Ludtke SJ, Schmid MF, Chiu W and O'Malley BW: Structure of a biologically active estrogen receptor-coactivator complex on DNA. Mol Cell. 57:1047–1058. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engström O, Ohman L, Greene GL, Gustafsson JA and Carlquist M: Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 389:753–758. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Heery DM, Kalkhoven E, Hoare S and Parker MG: A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature. 387:733–736. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK and Rosenfeld MG: The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature. 387:677–684. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar R, Betney R, Li J, Thompson EB and McEwan IJ: Induced alpha-helix structure in AF1 of the androgen receptor upon binding transcription factor TFIIF. Biochemistry. 43:3008–3013. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Bevan CL, Hoare S, Claessens F, Heery DM and Parker MG: The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol. 19:8383–8392. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Huang B, Omoto Y, Iwase H, Yamashita H, Toyama T, Coombes RC, Filipovic A, Warner M and Gustafsson JÅ: Differential expression of estrogen receptor alpha, beta1, and beta2 in lobular and ductal breast cancer. Proc Natl Acad Sci USA. 111:1933–1938. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Couse JF and Korach KS: Estrogen receptor null mice: What have we learned and where will they lead us? Endocr Rev. 20:358–417. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Jia M, Dahlman-Wright K and Gustafsson JÅ: Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab. 29:557–568. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Martin EC, Conger AK, Yan TJ, Hoang VT, Miller DF, Buechlein A, Rusch DB, Nephew KP, Collins-Burow BM and Burow ME: MicroRNA-335-5p and −3p synergize to inhibit estrogen receptor alpha expression and promote tamoxifen resistance. FEBS Lett. 591:382–392. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Santner SJ, Feil PD and Santen RJ: In situ estrogen production via the estrone sulfatase pathway in breast tumors: Relative importance versus the aromatase pathway. J Clin Endocrinol Metab. 59:29–33. 1984. View Article : Google Scholar : PubMed/NCBI | |
|
Jordan VC: Antiestrogenic action of raloxifene and tamoxifen: Today and tomorrow. J Natl Cancer Inst. 90:967–971. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK and Elledge RM: Estrogen receptor-positive, progesterone receptor-negative breast cancer: Association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst. 97:1254–1261. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Horwitz KB, Koseki Y and McGuire WL: Estrogen control of progesterone receptor in human breast cancer: Role of estradiol and antiestrogen. Endocrinology. 103:1742–1751. 1978. View Article : Google Scholar : PubMed/NCBI | |
|
Dowsett M, Houghton J, Iden C, Salter J, Farndon J, A'Hern R and Baum M: Estrogen receptor status, progesterone receptor status, and HER2 status as biomarkers for predicting response to endocrine therapy. J Clin Oncol. 26:1814–1820. 2008. | |
|
Kumar R, Zakharov MN, Khan SH, Miki R, Jang H, Toraldo G, Singh R, Bhasin S and Jasuja R: The dynamic structure of the estrogen receptor. J Amino Acids. 2011:8125402011. View Article : Google Scholar : PubMed/NCBI | |
|
Weihua Z, Andersson S, Cheng G, Simpson ER, Warner M and Gustafsson JA: Update on estrogen signaling. FEBS Lett. 546:17–24. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Flouriot G, Brand H, Denger S, Metivier R, Kos M, Reid G, Sonntag-Buck V and Gannon F: Identification of a new isoform of the human estrogen receptor-alpha (hER-alpha) that is encoded by distinct transcripts and that is able to repress hER-alpha activation function 1. EMBO J. 19:4688–4700. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Langley RE, Godsland IF, Kynaston H, Clarke NW, Rosen SD, Morgan RC, Pollock P, Kockelbergh R, Lalani EN, Dearnaley D, et al: Early hormonal data from a multicentre phase II trial using transdermal oestrogen patches as first-line hormonal therapy in patients with locally advanced or metastatic prostate cancer. BJU Int. 102:442–445. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Lau KM and To KF: Importance of estrogenic signaling and its mediated receptors in prostate cancer. Int J Mol Sci. 17:14342016. View Article : Google Scholar : PubMed/NCBI | |
|
Ricke WA, McPherson SJ, Bianco JJ, Cunha GR, Wang Y and Risbridger GP: Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J. 22:1512–1520. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Olczak M, Orzechowska MJ, Bednarek AK and Lipiński M: The transcriptomic profiles of ESR1 and MMP3 stratify the risk of biochemical recurrence in primary prostate cancer beyond clinical features. Int J Mol Sci. 24:83992023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Q, Cao J, Du X, Yang K, Yang X, Liang Z, Shi J and Zhang J: CYP1B1-catalyzed 4-OHE2 promotes the castration resistance of prostate cancer stem cells by estrogen receptor α-mediated IL6 activation. Cell Commun Signal. 20:312022. View Article : Google Scholar : PubMed/NCBI | |
|
Reis LO, Zani EL and García-Perdomo HA: Estrogen therapy in patients with prostate cancer: A contemporary systematic review. Int Urol Nephrol. 50:993–1003. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Christoforou P, Christopoulos PF and Koutsilieris M: The role of estrogen receptor β in prostate cancer. Mol Med. 20:427–434. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sieh W, Köbel M, Longacre TA, Bowtell DD, deFazio A, Goodman MT, Høgdall E, Deen S, Wentzensen N, Moysich KB, et al: Hormone-receptor expression and ovarian cancer survival: An ovarian tumor tissue analysis consortium study. Lancet Oncol. 14:853–862. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Park SH, Cheung LWT, Wong AST and Leung PCK: Estrogen regulates Snail and Slug in the down-regulation of E-cadherin and induces metastatic potential of ovarian cancer cells through estrogen receptor alpha. Mol Endocrinol. 22:2085–2098. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Chan KK, Leung TH, Chan DW, Wei N, Lau GT, Liu SS, Siu MK and Ngan HY: Targeting estrogen receptor subtypes (ERα and ERβ) with selective ER modulators in ovarian cancer. J Endocrinol. 221:325–336. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Langdon SP, Herrington CS, Hollis RL and Gourley C: Estrogen signaling and its potential as a target for therapy in ovarian cancer. Cancers (Basel). 12:16472020. View Article : Google Scholar : PubMed/NCBI | |
|
He M, Yu W, Chang C, Miyamoto H, Liu X, Jiang K and Yeh S: Estrogen receptor α promotes lung cancer cell invasion via increase of and cross-talk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways. Mol Oncol. 14:1779–1799. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Siegel DA, Fedewa SA, Henley SJ, Pollack LA and Jemal A: Proportion of never smokers among men and women with lung cancer in 7 US States. JAMA Oncol. 7:302–304. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu LH, Liu KJ, Tsai MF, Wu CR, Feng AC, Chu NM and Kao SH: Estrogen adversely affects the prognosis of patients with lung adenocarcinoma. Cancer Sci. 106:51–59. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chlebowski RT, Schwartz AG, Wakelee H, Anderson GL, Stefanick ML, Manson JE, Rodabough RJ, Chien JW, Wactawski-Wende J, Gass M, et al: Oestrogen plus progestin and lung cancer in postmenopausal women (Women's Health Initiative trial): A post-hoc analysis of a randomised controlled trial. Lancet. 374:1243–1251. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Teng R, Xu C, Wang Q, Guo J, Xu C, Li Z, Xie S, Shen J and Wang L: Overexpression of ERα inhibits proliferation and invasion of MKN28 gastric cancer cells by suppressing β-catenin. Oncol Rep. 30:1622–1630. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Takano N, Iizuka N, Hazama S, Yoshino S, Tangoku A and Oka M: Expression of estrogen receptor-alpha and -beta mRNAs in human gastric cancer. Cancer Lett. 176:129–135. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Tang W, Liu R, Yan Y, Pan X, Wang M, Han X, Ren H and Zhang Z: Expression of estrogen receptors and androgen receptor and their clinical significance in gastric cancer. Oncotarget. 8:40765–40777. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen P, Li B and Ou-Yang L: Role of estrogen receptors in health and disease. Front Endocrinol (Lausanne). 13:8390052022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J and Iverson D: Estrogen in obesity-associated colon cancer: Friend or foe? Protecting postmenopausal women but promoting late-stage colon cancer. Cancer Causes Control. 23:1767–1773. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang H, Teng R, Wang Q, Zhang X, Wang H, Wang Z, Cao J and Teng L: Transcriptional analysis of estrogen receptor alpha variant mRNAs in colorectal cancers and their matched normal colorectal tissues. J Steroid Biochem Mol Biol. 112:20–24. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Dai B, Geng L, Yu Y, Sui C, Xie F, Shen W, Zheng T and Yang J: Methylation patterns of estrogen receptor α promoter correlate with estrogen receptor α expression and clinicopathological factors in hepatocellular carcinoma. Exp Biol Med (Maywood). 239:883–890. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hou J, Xu J, Jiang R, Wang Y, Chen C, Deng L, Huang X, Wang X and Sun B: Estrogen-sensitive PTPRO expression represses hepatocellular carcinoma progression by control of STAT3. Hepatology. 57:678–688. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Iyer JK, Kalra M, Kaul A, Payton ME and Kaul R: Estrogen receptor expression in chronic hepatitis C and hepatocellular carcinoma pathogenesis. World J Gastroenterol. 23:6802–6816. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S and Gustafsson JA: Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA. 93:5925–5930. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Mal R, Magner A, David J, Datta J, Vallabhaneni M, Kassem M, Manouchehri J, Willingham N, Stover D, Vandeusen J, et al: Estrogen receptor beta (ERβ): A ligand activated tumor suppressor. Front Oncol. 10:5873862020. View Article : Google Scholar : PubMed/NCBI | |
|
Lewandowski S, Kalita K and Kaczmarek L: Estrogen receptor beta. Potential functional significance of a variety of mRNA isoforms. FEBS Lett. 524:1–5. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Hua H, Zhang H, Kong Q and Jiang Y: Mechanisms for estrogen receptor expression in human cancer. Exp Hematol Oncol. 7:242018. View Article : Google Scholar : PubMed/NCBI | |
|
Haldosén LA, Zhao C and Dahlman-Wright K: Estrogen receptor beta in breast cancer. Mol Cell Endocrinol. 382:665–672. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Dalal H, Dahlgren M, Gladchuk S, Brueffer C, Gruvberger-Saal SK and Saal LH: Clinical associations of ESR2 (estrogen receptor beta) expression across thousands of primary breast tumors. Sci Rep. 12:46962022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Zhang C, Chen K, Tang H, Tang J, Song C and Xie X: ERβ1 inversely correlates with PTEN/PI3K/AKT pathway and predicts a favorable prognosis in triple-negative breast cancer. Breast Cancer Res Treat. 152:255–269. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Grober OM, Mutarelli M, Giurato G, Ravo M, Cicatiello L, De Filippo MR, Ferraro L, Nassa G, Papa MF, Paris O, et al: Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation. BMC Genomics. 12:362011. View Article : Google Scholar : PubMed/NCBI | |
|
Hurtado A, Pinós T, Barbosa-Desongles A, López-Avilés S, Barquinero J, Petriz J, Santamaria-Martínez A, Morote J, de Torres I, Bellmunt J, et al: Estrogen receptor beta displays cell cycle-dependent expression and regulates the G1 phase through a non-genomic mechanism in prostate carcinoma cells. Cell Oncol. 30:349–365. 2008.PubMed/NCBI | |
|
Hwang NM and Stabile LP: Estrogen receptor ß in cancer: To ß(e) or not to ß(e)? Endocrinology. 162:bqab1622021. View Article : Google Scholar : PubMed/NCBI | |
|
Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA, Gouvin LM, Sharma VM and Mercurio AM: ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: Implications for Gleason grading. Cancer Cell. 17:319–332. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Mak P, Chang C, Pursell B and Mercurio AM: Estrogen receptor β sustains epithelial differentiation by regulating prolyl hydroxylase 2 transcription. Proc Natl Acad Sci USA. 110:4708–4713. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lim W, Cho J, Kwon HY, Park Y, Rhyu MR and Lee Y: Hypoxia-inducible factor 1 alpha activates and is inhibited by unoccupied estrogen receptor beta. FEBS Lett. 583:1314–1318. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Chaurasiya S, Widmann S, Botero C, Lin CY, Gustafsson JÅ and Strom AM: Estrogen receptor β exerts tumor suppressive effects in prostate cancer through repression of androgen receptor activity. PLoS One. 15:e02260572020. View Article : Google Scholar : PubMed/NCBI | |
|
Jefferi NES, Shamhari AA, 'Azhar NKZN, Shin JGY, Kharir NAM, Azhar MA, Hamid ZA, Budin SB and Taib IS: The role of ERα and ERβ in castration-resistant prostate cancer and current therapeutic approaches. Biomedicines. 11:8262023. View Article : Google Scholar : PubMed/NCBI | |
|
Leung YK, Lam HM, Wu S, Song D, Levin L, Cheng L, Wu CL and Ho SM: Estrogen receptor beta2 and beta5 are associated with poor prognosis in prostate cancer, and promote cancer cell migration and invasion. Endocr Relat Cancer. 17:675–689. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Lazennec G: Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis. Cancer Lett. 231:151–157. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Bossard C, Busson M, Vindrieux D, Gaudin F, Machelon V, Brigitte M, Jacquard C, Pillon A, Balaguer P, Balabanian K and Lazennec G: Potential role of estrogen receptor beta as a tumor suppressor of epithelial ovarian cancer. PLoS One. 7:e447872012. View Article : Google Scholar : PubMed/NCBI | |
|
Verardi L, Fiori J, Andrisano V, Locatelli A, Morigi R, Naldi M, Bertucci C, Strocchi E, Boga C, Micheletti G and Calonghi N: Indole derivative interacts with estrogen receptor beta and inhibits human ovarian cancer cell growth. Molecules. 25:44382020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Xin B, Pang H, Han L, Shen W, Zhao Z, Duan L, Cao P, Liu L and Zhang H: Downregulation of estrogen receptor β inhibits lung adenocarcinoma cell growth. Oncol Rep. 41:2967–2974. 2019.PubMed/NCBI | |
|
Liu S, Hu C, Li M, An J, Zhou W, Guo J and Xiao Y: Estrogen receptor beta promotes lung cancer invasion via increasing CXCR4 expression. Cell Death Dis. 13:702022. View Article : Google Scholar : PubMed/NCBI | |
|
Peri S and Niv Y: Estrogen receptor beta (ERß) in gastric cancer-A systematic review and meta-analysis. Microb Health Dis. 6:e9842024. | |
|
Zhou F, Xu Y, Shi J, Lan X, Zou X, Wang L and Huang Q: Expression profile of E-cadherin, estrogen receptors, and P53 in early-onset gastric cancers. Cancer Med. 5:3403–3411. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou F, Jin J, Zhou L, Wu L, Cao Y, Yan H, Huang Q, Wang L and Zou X: Suppression of estrogen receptor-beta promotes gastric cancer cell apoptosis with induction of autophagy. Am J Transl Res. 12:4397–4409. 2020.PubMed/NCBI | |
|
Gan L, He J, Zhang X, Zhang YJ, Yu GZ, Chen Y, Pan J, Wang JJ and Wang X: Expression profile and prognostic role of sex hormone receptors in gastric cancer. BMC Cancer. 12:5662012. View Article : Google Scholar : PubMed/NCBI | |
|
Caiazza F, Ryan EJ, Doherty G, Winter DC and Sheahan K: Estrogen receptors and their implications in colorectal carcinogenesis. Front Oncol. 5:192015. View Article : Google Scholar : PubMed/NCBI | |
|
Hartman J, Edvardsson K, Lindberg K, Zhao C, Williams C, Ström A and Gustafsson JA: Tumor repressive functions of estrogen receptor beta in SW480 colon cancer cells. Cancer Res. 69:6100–6106. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Topi G, Satapathy SR, Dash P, Fred Mehrabi S, Ehrnström R, Olsson R, Lydrup ML and Sjölander A: Tumour-suppressive effect of oestrogen receptor β in colorectal cancer patients, colon cancer cells, and a zebrafish model. J Pathol. 251:297–309. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Konstantinopoulos PA, Kominea A, Vandoros G, Sykiotis GP, Andricopoulos P, Varakis I, Sotiropoulou-Bonikou G and Papavassiliou AG: Oestrogen receptor beta (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour's dedifferentiation. Eur J Cancer. 39:1251–1258. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Rudolph A, Toth C, Hoffmeister M, Roth W, Herpel E, Jansen L, Marx A, Brenner H and Chang-Claude J: Expression of oestrogen receptor β and prognosis of colorectal cancer. Br J Cancer. 107:831–839. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Iavarone M, Lampertico P, Seletti C, Donato MF, Ronchi G, Del Ninno E and Colombo M: The clinical and pathogenetic significance of estrogen receptor-beta expression in chronic liver diseases and liver carcinoma. Cancer. 98:529–534. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Yang W, Lu Y, Xu Y, Xu L, Zheng W, Wu Y, Li L and Shen P: Estrogen represses hepatocellular carcinoma (HCC) growth via inhibiting alternative activation of tumor-associated macrophages (TAMs). J Biol Chem. 287:40140–40149. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Marzioni M, Torrice A, Saccomanno S, Rychlicki C, Agostinelli L, Pierantonelli I, Rhönnstad P, Trozzi L, Apelqvist T, Gentile R, et al: An oestrogen receptor β-selective agonist exerts anti-neoplastic effects in experimental intrahepatic cholangiocarcinoma. Dig Liver Dis. 44:134–142. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Handelsman DJ: History of androgens and androgen action. Best Pract Res Clin Endocrinol Metab. 36:1016292022. View Article : Google Scholar : PubMed/NCBI | |
|
Brinkmann AO, Faber PW, van Rooij HC, Kuiper GG, Ris C, Klaassen P, van der Korput JA, Voorhorst MM, van Laar JH, Mulder E, et al: The human androgen receptor: Domain structure, genomic organization and regulation of expression. J Steroid Biochem. 34:307–310. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Davey RA and Grossmann M: Androgen receptor structure, function and biology: From bench to bedside. Clin Biochem Rev. 37:3–15. 2016.PubMed/NCBI | |
|
Moilanen A, Rouleau N, Ikonen T, Palvimo JJ and Jänne OA: The presence of a transcription activation function in the hormone-binding domain of androgen receptor is revealed by studies in yeast cells. FEBS Lett. 412:355–358. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Ueda T, Bruchovsky N and Sadar MD: Activation of the androgen receptor N-terminal domain by interleukin-6 via MAPK and STAT3 signal transduction pathways. J Biol Chem. 277:7076–7085. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Asai S, Goto Y, Tanigawa K, Tomioka Y, Kato M, Mizuno K, Sakamoto S and Seki N: MiR-15b-5p inhibits castration-resistant growth of prostate cancer cells by targeting the muscarinic cholinergic receptor CHRM3. FEBS Lett. 597:1164–1175. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Martin-Caraballo M: Regulation of molecular biomarkers associated with the progression of prostate cancer. Int J Mol Sci. 25:41712024. View Article : Google Scholar : PubMed/NCBI | |
|
Muralidhar A, Gamat-Huber M, Vakkalanka S and McNeel DG: Sequence of androgen receptor-targeted vaccination with androgen deprivation therapy affects anti-prostate tumor efficacy. J Immunother Cancer. 12:e0088482024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong M, Xu W, Tian P, Zhang Q, Wang Z, Liang L, Zhang Q, Yang Y, Lu Y and Wei GH: An inherited allele confers prostate cancer progression and drug resistance via RFX6/HOXA10-orchestrated TGFβ signaling. Adv Sci (Weinh). 11:e24014922024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Chen B, Xu P, Yang J, Nip C, Wang L, Shen Y, Ning S, Shang Y, Corey E, et al: Plexin D1 emerges as a novel target in the development of neural lineage plasticity in treatment-resistant prostate cancer. Res Sq [Preprint]. rs.3.rs-4095949. 2024. | |
|
Matsumoto K, Kosaka T, Takeda T, Fukumoto K, Yasumizu Y, Tanaka N, Morita S, Mizuno R, Asanuma H and Oya M: Appropriate definition of non-metastatic castration-resistant prostate cancer (nmCRPC) and optimal timing of androgen receptor signaling inhibitor (ARSI). Int J Clin Oncol. 29:1198–1203. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Shiota M, Ushijima M, Tsukahara S, Nagakawa S, Okada T, Tanegashima T, Kobayashi S, Matsumoto T and Eto M: Oxidative stress in peroxisomes induced by androgen receptor inhibition through peroxisome proliferator-activated receptor promotes enzalutamide resistance in prostate cancer. Free Radic Biol Med. 221:81–88. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ramírez-de-Arellano A, Pereira-Suárez AL, Rico-Fuentes C, López-Pulido EI, Villegas-Pineda JC and Sierra-Diaz E: Distribution and effects of estrogen receptors in prostate cancer: Associated molecular mechanisms. Front Endocrinol (Lausanne). 12:8115782022. View Article : Google Scholar : PubMed/NCBI | |
|
Palmieri C, Linden H, Birrell SN, Wheelwright S, Lim E, Schwartzberg LS, Dwyer AR, Hickey TE, Rugo HS, Cobb P, et al: Activity and safety of enobosarm, a novel, oral, selective androgen receptor modulator, in androgen receptor-positive, oestrogen receptor-positive, and HER2-negative advanced breast cancer (Study G200802): A randomised, open-label, multicentre, multinational, parallel design, phase 2 trial. Lancet Oncol. 25:317–325. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu F, Xu K, Fan L, Li X, Liu Y, Yang F, Zhu C and Guan X: Estrogen receptor beta suppresses the androgen receptor oncogenic effects in triple-negative breast cancer. Chin Med J (Engl). 137:338–349. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Cuenca-López MD, Montero JC, Morales JC, Prat A, Pandiella A and Ocana A: Phospho-kinase profile of triple negative breast cancer and androgen receptor signaling. BMC Cancer. 14:3022014. View Article : Google Scholar : PubMed/NCBI | |
|
Garay JP, Karakas B, Abukhdeir AM, Cosgrove DP, Gustin JP, Higgins MJ, Konishi H, Konishi Y, Lauring J, Mohseni M, et al: The growth response to androgen receptor signaling in ERα-negative human breast cells is dependent on p21 and mediated by MAPK activation. Breast Cancer Res. 14:R272012. View Article : Google Scholar : PubMed/NCBI | |
|
Chang C, Lee SO, Yeh S and Chang TM: Androgen receptor (AR) differential roles in hormone-related tumors including prostate, bladder, kidney, lung, breast and liver. Oncogene. 33:3225–3234. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chadha S, Rao BR, Slotman BJ, van Vroonhoven CC and van der Kwast TH: An immunohistochemical evaluation of androgen and progesterone receptors in ovarian tumors. Hum Pathol. 24:90–95. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Cardillo MR, Petrangeli E, Aliotta N, Salvatori L, Ravenna L, Chang C and Castagna G: Androgen receptors in ovarian tumors: Correlation with oestrogen and progesterone receptors in an immunohistochemical and semiquantitative image analysis study. J Exp Clin Cancer Res. 17:231–237. 1998.PubMed/NCBI | |
|
Kohan-Ivani K, Gabler F, Selman A, Vega M and Romero C: Role of dihydrotestosterone (DHT) on TGF-β1 signaling pathway in epithelial ovarian cancer cells. J Cancer Res Clin Oncol. 142:47–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ligr M, Patwa RR, Daniels G, Pan L, Wu X, Li Y, Tian L, Wang Z, Xu R, Wu J, et al: Expression and function of androgen receptor coactivator p44/Mep50/WDR77 in ovarian cancer. PLoS One. 6:e262502011. View Article : Google Scholar : PubMed/NCBI | |
|
Martins FC, Couturier DL, Paterson A, Karnezis AN, Chow C, Nazeran TM, Odunsi A, Gentry-Maharaj A, Vrvilo A, Hein A, et al: Clinical and pathological associations of PTEN expression in ovarian cancer: A multicentre study from the ovarian tumour tissue analysis consortium. Br J Cancer. 123:793–802. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Hu C, Li M, Zhou W, Wang R and Xiao Y: Androgen receptor suppresses lung cancer invasion and increases cisplatin response via decreasing TPD52 expression. Int J Biol Sci. 19:3709–3725. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Wang H, Sun Q, Liu X, Wu Z, Wang X, Fang W and Ma Z: miR-224-5p-enriched exosomes promote tumorigenesis by directly targeting androgen receptor in non-small cell lung cancer. Mol Ther Nucleic Acids. 23:1217–1228. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Tang Y, Liang P, Sun M, Li T, Shen Z and Sha S: Luteolin inhibits A549 cells proliferation and migration by down-regulating androgen receptors. Eur J Med Res. 28:3532023. View Article : Google Scholar : PubMed/NCBI | |
|
Recchia AG, Musti AM, Lanzino M, Panno ML, Turano E, Zumpano R, Belfiore A, Andò S and Maggiolini M: A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells. Int J Biochem Cell Biol. 41:603–614. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Zhou M, Li X, Zhang X, Wang Q, Liu L, Yang M, Yang D, Guo Y, Zhang Q, et al: Interrogation of gender disparity uncovers androgen receptor as the transcriptional activator for oncogenic miR-125b in gastric cancer. Cell Death Dis. 12:4412021. View Article : Google Scholar : PubMed/NCBI | |
|
Xia N, Cui J, Zhu M, Xing R and Lu Y: Androgen receptor variant 12 promotes migration and invasion by regulating MYLK in gastric cancer. J Pathol. 248:304–315. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Soleymani Fard S, Yazdanbod M, Sotoudeh M, Bashash D, Mahmoodzadeh H, Saliminejad K, Mousavi SA, Ghaffari SH and Alimoghaddam K: Prognostic and therapeutic significance of androgen receptor in patients with gastric cancer. Onco Targets Ther. 13:9821–9837. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gu S, Honisch S, Kounenidakis M, Alkahtani S, Alarifi S, Alevizopoulos K, Stournaras C and Lang F: Membrane androgen receptor down-regulates c-src-activity and beta-catenin transcription and triggers GSK-3beta-phosphorylation in colon tumor cells. Cell Physiol Biochem. 34:1402–1412. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Alkahtani S: Testosterone induced apoptosis in colon cancer cells is regulated by PI3K/Rac1 signaling. Asian J Androl. 15:831–834. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez-Santiago Y, Garay-Canales CA, Nava-Castro KE and Morales-Montor J: Sexual dimorphism in colorectal cancer: Molecular mechanisms and treatment strategies. Biol Sex Differ. 15:482024. View Article : Google Scholar : PubMed/NCBI | |
|
Acosta-Lopez S, Diaz-Bethencourt D, Concepción-Massip T, Martin-Fernandez de Basoa MC, Plata-Bello A, Gonzalez-Rodriguez A, Perez-Hernandez F and Plata-Bello J: The androgen receptor expression and its activity have different relationships with prognosis in hepatocellular carcinoma. Sci Rep. 10:220462020. View Article : Google Scholar : PubMed/NCBI | |
|
Ren QN, Zhang H, Sun CY, Zhou YF, Yang XF, Long JW, Li XX, Mai SJ, Zhang MY, Zhang HZ, et al: Phosphorylation of androgen receptor by mTORC1 promotes liver steatosis and tumorigenesis. Hepatology. 75:1123–1138. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Ren H, Ren B, Zhang J, Zhang X, Li L, Meng L, Li Z, Li J, Gao Y and Ma X: Androgen enhances the activity of ETS-1 and promotes the proliferation of HCC cells. Oncotarget. 8:109271–109288. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ouyang X, Feng L, Liu G, Yao L, Wang Z, Liu S, Xiao Y and Zhang G: Androgen receptor (AR) decreases HCC cells migration and invasion via miR-325/ACP5 signaling. J Cancer. 12:1915–1925. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Porter W, Saville B, Hoivik D and Safe S: Functional synergy between the transcription factor Sp1 and the estrogen receptor. Mol Endocrinol. 11:1569–1580. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Greaves E, Collins F, Critchley HOD and Saunders PTK: ERβ-dependent effects on uterine endothelial cells are cell specific and mediated via Sp1. Hum Reprod. 28:2490–2501. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Eisermann K, Broderick CJ, Bazarov A, Moazam MM and Fraizer GC: Androgen up-regulates vascular endothelial growth factor expression in prostate cancer cells via an Sp1 binding site. Mol Cancer. 12:72013. View Article : Google Scholar : PubMed/NCBI | |
|
Setlur SR, Mertz KD, Hoshida Y, Demichelis F, Lupien M, Perner S, Sboner A, Pawitan Y, Andrén O, Johnson LA, et al: Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst. 100:815–825. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kohvakka A, Sattari M, Shcherban A, Annala M, Urbanucci A, Kesseli J, Tammela TLJ, Kivinummi K, Latonen L, Nykter M and Visakorpi T: AR and ERG drive the expression of prostate cancer specific long noncoding RNAs. Oncogene. 39:5241–5251. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lombardi AP, Pisolato R, Vicente CM, Lazari MF, Lucas TF and Porto CS: Estrogen receptor beta (ERβ) mediates expression of β-catenin and proliferation in prostate cancer cell line PC-3. Mol Cell Endocrinol. 430:12–24. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Song LN and Gelmann EP: Interaction of beta-catenin and TIF2/GRIP1 in transcriptional activation by the androgen receptor. J Biol Chem. 280:37853–37867. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Dahlman-Wright K, Qiao Y, Jonsson P, Gustafsson JÅ, Williams C and Zhao C: Interplay between AP-1 and estrogen receptor α in regulating gene expression and proliferation networks in breast cancer cells. Carcinogenesis. 33:1684–1691. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Frønsdal K, Engedal N, Slagsvold T and Saatcioglu F: CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1. J Biol Chem. 273:31853–31859. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Sato N, Sadar MD, Bruchovsky N, Saatcioglu F, Rennie PS, Sato S, Lange PH and Gleave ME: Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. J Biol Chem. 272:17485–17494. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Dadiani M, Seger D, Kreizman T, Badikhi D, Margalit R, Eilam R and Degani H: Estrogen regulation of vascular endothelial growth factor in breast cancer in vitro and in vivo: The role of estrogen receptor alpha and c-Myc. Endocr Relat Cancer. 16:819–834. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Paruthiyil S, Parmar H, Kerekatte V, Cunha GR, Firestone GL and Leitman DC: Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res. 64:423–428. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Gao L, Schwartzman J, Gibbs A, Lisac R, Kleinschmidt R, Wilmot B, Bottomly D, Coleman I, Nelson P, McWeeney S and Alumkal J: Androgen receptor promotes ligand-independent prostate cancer progression through c-Myc upregulation. PLoS One. 8:e635632013. View Article : Google Scholar : PubMed/NCBI | |
|
Smart E, Semina SE and Frasor J: Update on the role of NFκB in promoting aggressive phenotypes of estrogen receptor-positive breast cancer. Endocrinology. 161:bqaa1522020. View Article : Google Scholar : PubMed/NCBI | |
|
Mak P, Li J, Samanta S and Mercurio AM: ERβ regulation of NF-kB activation in prostate cancer is mediated by HIF-1. Oncotarget. 6:40247–40254. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Altuwaijri S, Deng F, Chen L, Lal P, Bhanot UK, Korets R, Wenske S, Lilja HG, Chang C, et al: NF-kappaB regulates androgen receptor expression and prostate cancer growth. Am J Pathol. 175:489–499. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Binai NA, Damert A, Carra G, Steckelbroeck S, Löwer J, Löwer R and Wessler S: Expression of estrogen receptor alpha increases leptin-induced STAT3 activity in breast cancer cells. Int J Cancer. 127:55–66. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wang HC, Yeh HH, Huang WL, Lin CC, Su WP, Chen HHW, Lai WW and Su WC: Activation of the signal transducer and activator of transcription 3 pathway up-regulates estrogen receptor-beta expression in lung adenocarcinoma cells. Mol Endocrinol. 25:1145–1158. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto T, Sato N, Sekine Y, Yumioka T, Imoto S, Junicho A, Fuse H and Matsuda T: Molecular interactions between STAT3 and protein inhibitor of activated STAT3, and androgen receptor. Biochem Biophys Res Commun. 306:610–615. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Csabai L, Fazekas D, Kadlecsik T, Szalay-Bekő M, Bohár B, Madgwick M, Módos D, Ölbei M, Gul L, Sudhakar P, et al: SignaLink3: A multi-layered resource to uncover tissue-specific signaling networks. Nucleic Acids Res. 50(D1): D701–D709. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Z, Yin P, Reierstad S, O'Halloran M, Coon VJS, Pearson EK, Mutlu GM and Bulun SE: Adenosine A1 receptor, a target and regulator of estrogen receptoralpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene. 29:1114–1122. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Xu J, Wu F, Zhu Y, Wu T, Cao T, Gao W, Liu M, Qian W, Feng G, Xi X and Hou S: ANGPTL4 regulates ovarian cancer progression by activating the ERK1/2 pathway. Cancer Cell Int. 24:542024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao N, Peacock SO, Lo CH, Heidman LM, Rice MA, Fahrenholtz CD, Greene AM, Magani F, Copello VA, Martinez MJ, et al: Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer. Sci Transl Med. 11:eaaw46362019. View Article : Google Scholar : PubMed/NCBI | |
|
Guan B, Ma J, Yang Z, Yu F and Yao J: LncRNA NCK1-AS1 exerts oncogenic property in gastric cancer by targeting the miR-22-3p/BCL9 axis to activate the Wnt/β-catenin signaling. Environ Toxicol. 36:1640–1653. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Feng M, Xiao T, Guo B, Liu D, Liu C, Pei J, Liu Q, Xiao Y, Rosin-Arbesfeld R, et al: BCL9/BCL9L promotes tumorigenicity through immune-dependent and independent mechanisms in triple negative breast cancer. Oncogene. 40:2982–2997. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li P, Miao C, Liang C, Shao P, Wang Z and Li J: Silencing CAPN2 expression inhibited castration-resistant prostate cancer cells proliferation and invasion via AKT/mTOR signal pathway. Biomed Res Int. 2017:25936742017.PubMed/NCBI | |
|
Fang X, Hong Y, Dai L, Qian Y, Zhu C, Wu B and Li S: CRH promotes human colon cancer cell proliferation via IL-6/JAK2/STAT3 signaling pathway and VEGF-induced tumor angiogenesis. Mol Carcinog. 56:2434–2445. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jin C, Han-Hua D, Qiu-Meng L, Deng N, Peng-Chen D, Jie M, Lei X, Xue-Wu Z, Hui-Fang L, Yan C, et al: MTDH-stabilized DDX17 promotes tumor initiation and progression through interacting with YB1 to induce EGFR transcription in hepatocellular carcinoma. Oncogene. 42:169–183. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Song Y, Li P and Gao W: GRIN2D knockdown suppresses the progression of lung adenocarcinoma by regulating the E2F signalling pathway. Cell Signal. 107:1106852023. View Article : Google Scholar : PubMed/NCBI | |
|
Yan T, Huang L, Yan Y, Zhong Y, Xie H and Wang X: MAPK/AP-1 signaling pathway is involved in the protection mechanism of bone marrow mesenchymal stem cells-derived exosomes against ultraviolet-induced photoaging in human dermal fibroblasts. Skin Pharmacol Physiol. 36:98–106. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Z, Peng G, Li E, Xi S, Zhang Y, Li Y, Lin X, Li G, Wu Q and He J: MAP kinase-interacting serine/threonine kinase 2 promotes proliferation, metastasis, and predicts poor prognosis in non-small cell lung cancer. Sci Rep. 7:106122017. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta A, Hossain MM, Miller N, Kerin M, Callagy G and Gupta S: NCOA3 coactivator is a transcriptional target of XBP1 and regulates PERK-eIF2α-ATF4 signalling in breast cancer. Oncogene. 35:5860–5871. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Baquié M, St-Onge L, Kerr-Conte J, Cobo-Vuilleumier N, Lorenzo PI, Jimenez Moreno CM, Cederroth CR, Nef S, Borot S, Bosco D, et al: The liver receptor homolog-1 (LRH-1) is expressed in human islets and protects {beta}-cells against stress-induced apoptosis. Hum Mol Genet. 20:2823–2833. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Zou Z, Nie P, Kou X, Wu B, Wang S, Song Z and He J: Downregulation of microRNA-27b-3p enhances tamoxifen resistance in breast cancer by increasing NR5A2 and CREB1 expression. Cell Death Dis. 7:e24542016. View Article : Google Scholar : PubMed/NCBI | |
|
Kao TW, Chen HH, Lin J, Wang TL and Shen YA: PBX1 as a novel master regulator in cancer: Its regulation, molecular biology, and therapeutic applications. Biochim Biophys Acta Rev Cancer. 1879:1890852024. View Article : Google Scholar : PubMed/NCBI | |
|
Elix C, Pal SK and Jones JO: The role of peroxisome proliferator-activated receptor gamma in prostate cancer. Asian J Androl. 20:238–243. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Carotenuto M, De Antonellis P, Liguori L, Benvenuto G, Magliulo D, Alonzi A, Turino C, Attanasio C, Damiani V, Bello AM, et al: H-Prune through GSK-3β interaction sustains canonical WNT/β-catenin signaling enhancing cancer progression in NSCLC. Oncotarget. 5:5736–5749. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Teng F, Zhang JX, Chen Y, Shen XD, Su C, Guo YJ, Wang PH, Shi CC, Lei M, Cao YO and Liu SQ: LncRNA NKX2-1-AS1 promotes tumor progression and angiogenesis via upregulation of SERPINE1 expression and activation of the VEGFR-2 signaling pathway in gastric cancer. Mol Oncol. 15:1234–1255. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun G, Wei Y, Zhou B, Wang M, Luan R, Bai Y, Li H, Wang S, Zheng D, Wang C, et al: BAP18 facilitates CTCF-mediated chromatin accessible to regulate enhancer activity in breast cancer. Cell Death Differ. 30:1260–1278. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Pospiech K, Orzechowska M, Nowakowska M, Anusewicz D, Płuciennik E, Kośla K and Bednarek AK: TGFα-EGFR pathway in breast carcinogenesis, association with WWOX expression and estrogen activation. J Appl Genet. 63:339–359. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Maeda A, Nishino T, Matsunaga R, Yokoyama A, Suga H, Yagi T and Konishi H: Transglutaminase-mediated cross-linking of WDR54 regulates EGF receptor-signaling. Biochim Biophys Acta Mol Cell Res. 1866:285–295. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cao L, Petrusca DN, Satpathy M, Nakshatri H, Petrache I and Matei D: Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis. 29:1893–1900. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Qian Y, Liu X, Feng Y, Li X and Xuan Y: Tenascin C regulates cancer cell glycolysis and tumor progression in prostate cancer. Int J Urol. 29:578–585. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wei L, Sun C, Zhang Y, Han N and Sun S: miR-503-5p inhibits colon cancer tumorigenesis, angiogenesis, and lymphangiogenesis by directly downregulating VEGF-A. Gene Ther. 29:28–40. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R, Carson SE, Chang Y, Wang X, Zhang Y, et al: Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature. 601:434–439. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim YC, Chen C and Bolton EC: Androgen receptor-mediated growth suppression of HPr-1AR and PC3-Lenti-AR prostate epithelial cells. PLoS One. 10:e01382862015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou D, Chen B, Ye JJ and Chen S: A novel crosstalk mechanism between nuclear receptor-mediated and growth factor/Ras-mediated pathways through PNRC-Grb2 interaction. Oncogene. 23:5394–5404. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Huang YL, Chou WC, Hsiung CN, Hu LY, Chu HW and Shen CY: FGFR2 regulates Mre11 expression and double-strand break repair via the MEK-ERK-POU1F1 pathway in breast tumorigenesis. Hum Mol Genet. 24:3506–3517. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hua S, Kittler R and White KP: Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell. 137:1259–1271. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
O'Neill CF, Urs S, Cinelli C, Lincoln A, Nadeau RJ, León R, Toher J, Mouta-Bellum C, Friesel RE and Liaw L: Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 ×enograft growth. Am J Pathol. 171:1023–1036. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Xiu MX and Liu YM: The role of oncogenic Notch2 signaling in cancer: A novel therapeutic target. Am J Cancer Res. 9:837–854. 2019.PubMed/NCBI | |
|
Shen T, Wang W, Zhou W, Coleman I, Cai Q, Dong B, Ittmann MM, Creighton CJ, Bian Y, Meng Y, et al: MAPK4 promotes prostate cancer by concerted activation of androgen receptor and AKT. J Clin Invest. 131:e1354652021. View Article : Google Scholar : PubMed/NCBI | |
|
Ross-Innes CS, Brown GD and Carroll JS: A co-ordinated interaction between CTCF and ER in breast cancer cells. BMC Genomics. 12:5932011. View Article : Google Scholar : PubMed/NCBI | |
|
Yang SZ and Abdulkadir SA: Early growth response gene 1 modulates androgen receptor signaling in prostate carcinoma cells. J Biol Chem. 278:39906–39911. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Grinshpun A, Chen V, Sandusky ZM, Fanning SW and Jeselsohn R: ESR1 activating mutations: From structure to clinical application. Biochim Biophys Acta Rev Cancer. 1878:1888302023. View Article : Google Scholar : PubMed/NCBI | |
|
Barker R, Biernacka K, Kingshott G, Sewell A, Gwiti P, Martin RM, Lane JA, McGeagh L, Koupparis A, Rowe E, et al: Associations of CTCF and FOXA1 with androgen and IGF pathways in men with localized prostate cancer. Growth Horm IGF Res. 69–70. 1015332023. | |
|
Pu J, Zhang D, Wang B, Zhu P, Yang W, Wang K, Yang Z and Song Q: FOXA1/UBE2T inhibits CD8+T cell activity by inducing mediates glycolysis in lung adenocarcinoma. Front Biosci (Landmark Ed). 29:1342024. View Article : Google Scholar : PubMed/NCBI | |
|
Vaclavicek A, Bermejo JL, Schmutzler RK, Sutter C, Wappenschmidt B, Meindl A, Kiechle M, Arnold N, Weber BHF, Niederacher D, et al: Polymorphisms in the Janus kinase 2 (JAK)/signal transducer and activator of transcription (STAT) genes: Putative association of the STAT gene region with familial breast cancer. Endocr Relat Cancer. 14:267–277. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Xu WF, Ma YC, Ma HS, Shi L, Mu H, Ou WB, Peng J, Li TT, Qin T, Zhou HM, et al: Co-targeting CK2α and YBX1 suppresses tumor progression by coordinated inhibition of the PI3K/AKT signaling pathway. Cell Cycle. 18:3472–3490. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Xu M, Jia W, Duan Y, Ma J and Tai W: PU.1 negatively regulates tumorigenesis in non-small-cell lung cancer. Med Oncol. 40:792023. View Article : Google Scholar : PubMed/NCBI | |
|
Tortorella E, Giantulli S, Sciarra A and Silvestri I: AR and PI3K/AKT in prostate cancer: A tale of two interconnected pathways. Int J Mol Sci. 24:20462023. View Article : Google Scholar : PubMed/NCBI | |
|
Hua S, Kallen CB, Dhar R, Baquero MT, Mason CE, Russell BA, Shah PK, Liu J, Khramtsov A, Tretiakova MS, et al: Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol Syst Biol. 4:1882008. View Article : Google Scholar : PubMed/NCBI | |
|
Taslim C, Chen Z, Huang K, Huang TH, Wang Q and Lin S: Integrated analysis identifies a class of androgen-responsive genes regulated by short combinatorial long-range mechanism facilitated by CTCF. Nucleic Acids Res. 40:4754–4764. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H, Li S, Zhou R, Dong T, Zhang X, Yu M, Lin J, Shi M, Geng E, Li J, et al: SRCAP complex promotes lung cancer progression by reprograming the oncogenic transcription of Hippo-YAP/TAZ signaling pathway. Cancer Lett. 585:2166672024. View Article : Google Scholar : PubMed/NCBI | |
|
Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al: The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 54:1.30.1–1.30.33. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Montes-de-Oca-Fuentes EV, Jácome-López K, Zarco-Mendoza A, Guerrero G, Ventura-Gallegos JL, Juárez-Méndez S, Cabrera-Quintero AJ, Recillas-Targa F and Zentella-Dehesa A: Differential DNA methylation and CTCF binding between the ESR1 promoter a of MCF-7 and MDA-MB-231 breast cancer cells. Mol Biol Rep. 51:1482024. View Article : Google Scholar : PubMed/NCBI | |
|
Rossi EL, Dunlap SM, Bowers LW, Khatib SA, Doerstling SS, Smith LA, Ford NA, Holley D, Brown PH, Estecio MR, et al: Energy balance modulation impacts epigenetic reprogramming, ERα and ERβ expression, and mammary tumor development in MMTV-neu transgenic mice. Cancer Res. 77:2500–2511. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chaudhary S, Krishna BM and Mishra SK: A novel FOXA1/ESR1 interacting pathway: A study of Oncomine™ breast cancer microarrays. Oncol Lett. 14:1247–1264. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Huang YX, Wang DL, Yang B, Yan HY, Lin LH, Li Y, Chen J, Xie LM, Huang YS, et al: LncRNA DSCAM-AS1 interacts with YBX1 to promote cancer progression by forming a positive feedback loop that activates FOXA1 transcription network. Theranostics. 10:10823–10837. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Li Z, Wedn AM, Casey AN, Brown D, Rao SV, Omarjee S, Hooda J, Carroll JS, Gertz J, et al: FOXA1 reprogramming dictates retinoid X receptor response in ESR1-mutant breast cancer. Mol Cancer Res. 21:591–604. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, Carroll JS, Liu XS and Brown M: FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell. 132:958–970. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Rangel N, Fortunati N, Osella-Abate S, Annaratone L, Isella C, Catalano MG, Rinella L, Metovic J, Boldorini R, Balmativola D, et al: FOXA1 and AR in invasive breast cancer: New findings on their co-expression and impact on prognosis in ER-positive patients. BMC Cancer. 18:7032018. View Article : Google Scholar : PubMed/NCBI | |
|
Seachrist DD, Anstine LJ and Keri RA: FOXA1: A pioneer of nuclear receptor action in breast cancer. Cancers (Basel). 13:52052021. View Article : Google Scholar : PubMed/NCBI | |
|
Tsirigoti C, Ali MM, Maturi V, Heldin CH and Moustakas A: Loss of SNAI1 induces cellular plasticity in invasive triple-negative breast cancer cells. Cell Death Dis. 13:8322022. View Article : Google Scholar : PubMed/NCBI | |
|
Gerhardt J, Montani M, Wild P, Beer M, Huber F, Hermanns T, Müntener M and Kristiansen G: FOXA1 promotes tumor progression in prostate cancer and represents a novel hallmark of castration-resistant prostate cancer. Am J Pathol. 180:848–861. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Jin HJ, Zhao JC, Ogden I, Bergan RC and Yu J: Androgen receptor-independent function of FoxA1 in prostate cancer metastasis. Cancer Res. 73:3725–3736. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Tuteja G, Schug J and Kaestner KH: Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell. 148:72–83. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ross-Innes CS, Stark R, Holmes KA, Schmidt D, Spyrou C, Russell R, Massie CE, Vowler SL, Eldridge M and Carroll JS: Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev. 24:171–182. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Salvatori L, Ravenna L, Caporuscio F, Principessa L, Coroniti G, Frati L, Russo MA and Petrangeli E: Action of retinoic acid receptor on EGFR gene transactivation and breast cancer cell proliferation: Interplay with the estrogen receptor. Biomed Pharmacother. 65:307–312. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Gorodetska I, Offermann A, Püschel J, Lukiyanchuk V, Gaete D, Kurzyukova A, Freytag V, Haider MT, Fjeldbo CS, Di Gaetano S, et al: ALDH1A1 drives prostate cancer metastases and radioresistance by interplay with AR- and RAR-dependent transcription. Theranostics. 14:714–737. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zou A, Marschke KB, Arnold KE, Berger EM, Fitzgerald P, Mais DE and Allegretto EA: Estrogen receptor beta activates the human retinoic acid receptor alpha-1 promoter in response to tamoxifen and other estrogen receptor antagonists, but not in response to estrogen. Mol Endocrinol. 13:418–430. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Magnani L, Patten DK, Nguyen VT, Hong SP, Steel JH, Patel N, Lombardo Y, Faronato M, Gomes AR, Woodley L, et al: The pioneer factor PBX1 is a novel driver of metastatic progression in ERα-positive breast cancer. Oncotarget. 6:21878–21891. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Magnani L, Ballantyne EB, Zhang X and Lupien M: PBX1 genomic pioneer function drives ERα signaling underlying progression in breast cancer. PLoS Genet. 7:e10023682011. View Article : Google Scholar : PubMed/NCBI | |
|
Kikugawa T, Kinugasa Y, Shiraishi K, Nanba D, Nakashiro KI, Tanji N, Yokoyama M and Higashiyama S: PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation. Prostate. 66:1092–1099. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Shen T, Dong B, Meng Y, Moore DD and Yang F: A COP1-GATA2 axis suppresses AR signaling and prostate cancer. Proc Natl Acad Sci USA. 119:e22053501192022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang X, Zhang Q, Li S, Devarajan R, Luo B, Tan Z, Wang Z, Giannareas N, Wenta T, Ma W, et al: GATA2 co-opts TGFβ1/SMAD4 oncogenic signaling and inherited variants at 6q22 to modulate prostate cancer progression. J Exp Clin Cancer Res. 42:1982023. View Article : Google Scholar : PubMed/NCBI | |
|
Chaytor L, Simcock M, Nakjang S, Heath R, Walker L, Robson C, Jones D and Gaughan L: The pioneering role of GATA2 in androgen receptor variant regulation is controlled by bromodomain and extraterminal proteins in castrate-resistant prostate cancer. Mol Cancer Res. 17:1264–1278. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, He X, Ngeow J and Eng C: GATA2 negatively regulates PTEN by preventing nuclear translocation of androgen receptor and by androgen-independent suppression of PTEN transcription in breast cancer. Hum Mol Genet. 21:569–576. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Treeck O, Diepolder E, Skrzypczak M, Schüler-Toprak S and Ortmann O: Knockdown of estrogen receptor β increases proliferation and affects the transcriptome of endometrial adenocarcinoma cells. BMC Cancer. 19:7452019. View Article : Google Scholar : PubMed/NCBI | |
|
Konduri SD, Medisetty R, Liu W, Kaipparettu BA, Srivastava P, Brauch H, Fritz P, Swetzig WM, Gardner AE, Khan SA and Das GM: Mechanisms of estrogen receptor antagonism toward p53 and its implications in breast cancer therapeutic response and stem cell regulation. Proc Natl Acad Sci USA. 107:15081–15086. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Fritah A, Saucier C, Mester J, Redeuilh G and Sabbah M: p21WAF1/CIP1 selectively controls the transcriptional activity of estrogen receptor alpha. Mol Cell Biol. 25:2419–2430. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Nishimura FG, Sampaio BB, Komoto TT, da Silva WJ, da Costa MMG, Haddad GI, Peronni KC, Evangelista AF, Hossain M, Dimmock JR, et al: Exploring CDKN1A upregulation mechanisms: Insights into cell cycle arrest induced by NC2603 curcumin analog in MCF-7 breast cancer cells. Int J Mol Sci. 25:49892024. View Article : Google Scholar : PubMed/NCBI | |
|
Mukhopadhyay UK, Oturkar CC, Adams C, Wickramasekera N, Bansal S, Medisetty R, Miller A, Swetzig WM, Silwal-Pandit L, Børresen-Dale AL, et al: TP53 status as a determinant of pro-vs anti-tumorigenic effects of estrogen receptor-beta in breast cancer. J Natl Cancer Inst. 111:1202–1215. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Alejo S, Venkata PP, Johnson JD, Loeffel I, Pratap UP, Zou Y, Lai Z, Tekmal RR, Kost ER and Sareddy GR: Therapeutic targeting of ovarian cancer stem cells using estrogen receptor beta agonist. Int J Mol Sci. 23:71592022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee CI, Goodwin A and Wilcken N: Fulvestrant for hormone-sensitive metastatic breast cancer. Cochrane Database Syst Rev. CD0110932017.PubMed/NCBI | |
|
Augusto TV, Amaral C, Varela CL, Bernardo F, da Silva ET, Roleira FFM, Costa S, Teixeira N and Correia-da-Silva G: Effects of new C6-substituted steroidal aromatase inhibitors in hormone-sensitive breast cancer cells: Cell death mechanisms and modulation of estrogen and androgen receptors. J Steroid Biochem Mol Biol. 195:1054862019. View Article : Google Scholar : PubMed/NCBI | |
|
Jacobson EM, Hugo ER, Tuttle TR, Papoian R and Ben-Jonathan N: Unexploited therapies in breast and prostate cancer: Blockade of the prolactin receptor. Trends Endocrinol Metab. 21:691–698. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Basile D, Cinausero M, Iacono D, Pelizzari G, Bonotto M, Vitale MG, Gerratana L and Puglisi F: Androgen receptor in estrogen receptor positive breast cancer: Beyond expression. Cancer Treat Rev. 61:15–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bonkhoff H, Fixemer T, Hunsicker I and Remberger K: Estrogen receptor expression in prostate cancer and premalignant prostatic lesions. Am J Pathol. 155:641–647. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Robinson JLL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG and Carroll JS: Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J. 30:3019–3027. 2011. View Article : Google Scholar : PubMed/NCBI |