Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2025 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review)

  • Authors:
    • Chanqi Yuan
  • View Affiliations / Copyright

    Affiliations: Department of Geriatrics, Harbin 242 Hospital, Harbin, Heilongjiang 150060, P.R. China
    Copyright: © Yuan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 104
    |
    Published online on: December 17, 2024
       https://doi.org/10.3892/ol.2024.14850
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Sarcopenia is an age‑related disease that is characterized by a decline in muscle mass and function with significant epidemiological and clinical implications. In recent years, gut microbiota has gained attention as an important regulatory factor in human health. To the best of our knowledge, this is the first study to introduce the definition and epidemiological background of sarcopenia and analyze the potential impact of the gut microbiota on muscle metabolism and growth, including aspects such as gut microbiota metabolites, muscle protein synthesis and energy metabolism. Additionally, this article summarizes the current research progress in gut microbiota interventions for the treatment of sarcopenia, such as probiotics, prebiotics and fecal microbiota transplantation and discusses future research directions and potential therapeutic strategies.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Hussain H: Effectiveness of exercise interventions on body composition and functional outcomes in sarcopenia: A systematic review. Clin Med (Lond). 23 (Suppl 6):S762023. View Article : Google Scholar

2 

Gay-As MU, Lee SC and Lai FC: Sarcopenia among older people in the philippines: A scoping review. Creat Nurs. 30:133–144. 2024. View Article : Google Scholar : PubMed/NCBI

3 

Xiong Y, Jiang X, Zhong Q, Zhang Y, Zhang H, Liu Z and Wang X: Possible sarcopenia and risk of chronic kidney disease: A four-year follow-up study and Mendelian randomization analysis. Endocr Res. 49:165–178. 2024. View Article : Google Scholar : PubMed/NCBI

4 

Bali T, Chrysavgis L and Cholongitas E: Metabolic-Associated fatty liver disease and sarcopenia. Endocrinol Metab Clin North Am. 52:497–508. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Blagec P, Sara S, Tripalo Batos A, Trivic Mazuranic I, Mocic Pavic A, Misak Z and Hojsak I: Magnetic resonance imaging can be used to assess sarcopenia in children with newly diagnosed crohn's disease. Nutrients. 15:38382023. View Article : Google Scholar : PubMed/NCBI

6 

Liu Y and Tian L: Research progress on the predictive role of sarcopenia in the course and prognosis of inflammatory bowel disease. PeerJ. 11:e164212023. View Article : Google Scholar : PubMed/NCBI

7 

Liu QW, Mao CJ, Lu ZH, Shi RF, Zhang YC, Zhao P and Liu CF: Sarcopenia is associated with non-motor symptoms in Han Chinese patients with Parkinson's Disease: A cross-sectional study. BMC Geriatr. 23:4942023. View Article : Google Scholar : PubMed/NCBI

8 

Kim M, Kim D, Kang H, Park S, Kim S and Yoo JI: A machine learning model for prediction of sarcopenia in patients with Parkinson's Disease. PLoS One. 19:e02962822024. View Article : Google Scholar : PubMed/NCBI

9 

Nan Y, Zhou Y, Dai Z, Yan T, Zhong P, Zhang F, Chen Q and Peng L: Role of nutrition in patients with coexisting chronic obstructive pulmonary disease and sarcopenia. Front Nutr. 10:12146842023. View Article : Google Scholar : PubMed/NCBI

10 

Pedauye-Rueda B, Garcia-Fernandez P, Maicas-Perez L, Mate-Munoz JL and Hernandez-Lougedo J: Different diagnostic criteria for determining the prevalence of sarcopenia in older adults: A systematic review. J Clin Med. 13:25202024. View Article : Google Scholar : PubMed/NCBI

11 

He Y, Cui W, Fang T, Zhang Z and Zeng M: Metabolites of the gut microbiota may serve as precise diagnostic markers for sarcopenia in the elderly. Front Microbiol. 14:13018052023. View Article : Google Scholar : PubMed/NCBI

12 

Lahiri S, Kim H, Garcia-Perez I, Reza MM, Martin KA, Kundu P, Cox LM, Selkrig J, Posma JM, Zhang H, et al: The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med. 11:eaan56622019. View Article : Google Scholar : PubMed/NCBI

13 

Yan X, Li H, Xie R, Lin L, Ding L, Cheng X, Xu J, Bai L and Qiao Y: Relationships between sarcopenia, nutrient intake, and gut microbiota in Chinese community-dwelling older women. Arch Gerontol Geriatr. 113:1050632023. View Article : Google Scholar : PubMed/NCBI

14 

Zhang Q, Li X, Huang T, Zhang S, Teng K, Rousitemu N, Lan T and Wen Y: Alterations in the diversity, composition and function of the gut microbiota in Uyghur individuals with sarcopenia. Exp Gerontol. 187:1123762024. View Article : Google Scholar : PubMed/NCBI

15 

Picca A, Fanelli F, Calvani R, Mule G, Pesce V, Sisto A, Pantanelli C, Bernabei R, Landi F and Marzetti E: Gut dysbiosis and muscle aging: Searching for Novel Targets against Sarcopenia. Mediators Inflamm. 2018:70261982018. View Article : Google Scholar : PubMed/NCBI

16 

Liu C, Cheung WH, Li J, Chow SK, Yu J, Wong SH, Ip M, Sung JJY and Wong RMY: Understanding the gut microbiota and sarcopenia: A systematic review. J Cachexia Sarcopenia Muscle. 12:1393–1407. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Aboshady HM, Gavriilidou A, Ghanem N, Radwan MA, Elnahas A, Agamy R, Fahim NH, Elsawy MH, Shaarawy ABM, Abdel-Hafeez AM, et al: Gut microbiota diversity of local egyptian cattle managed in different ecosystems. Animals (Basel). 14:27522024. View Article : Google Scholar : PubMed/NCBI

18 

Lim X, Ooi L, Ding U, Wu HHL and Chinnadurai R: Gut microbiota in patients receiving dialysis: A review. Pathogens. 13:8012024. View Article : Google Scholar : PubMed/NCBI

19 

Liu S, Yin J, Wan D and Yin Y: The role of iron in intestinal mucus: Perspectives from both the host and gut microbiota. Adv Nutr. 15:1003072024. View Article : Google Scholar : PubMed/NCBI

20 

Gao H, Nepovimova E, Adam V, Heger Z, Valko M, Wu Q and Kuca K: Age-associated changes in innate and adaptive immunity: Role of the gut microbiota. Front Immunol. 15:14210622024. View Article : Google Scholar : PubMed/NCBI

21 

Zhang Y, Zhu Y, Guo Q, Wang W and Zhang L: High-throughput sequencing analysis of the characteristics of the gut microbiota in aged patients with sarcopenia. Exp Gerontol. 182:1122872023. View Article : Google Scholar : PubMed/NCBI

22 

Casati M, Ferri E, Azzolino D, Cesari M and Arosio B: Gut microbiota and physical frailty through the mediation of sarcopenia. Exp Gerontol. 124:1106392019. View Article : Google Scholar : PubMed/NCBI

23 

Tang J and Zhang H, Yin L, Zhou Q and Zhang H: The gut microbiota from maintenance hemodialysis patients with sarcopenia influences muscle function in mice. Front Cell Infect Microbiol. 13:12259912023. View Article : Google Scholar : PubMed/NCBI

24 

O'Toole PW and Jeffery IB: Microbiome-health interactions in older people. Cell Mol Life Sci. 75:119–128. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O'Sullivan O, et al: Gut microbiota composition correlates with diet and health in the elderly. Nature. 488:178–184. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Biagi E, Candela M, Turroni S, Garagnani P, Franceschi C and Brigidi P: Ageing and gut microbes: Perspectives for health maintenance and longevity. Pharmacol Res. 69:11–20. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Ning M, An L, Dong L, Zhu R, Hao J, Liu X and Zhang Y: Causal associations between gut microbiota, gut microbiota-derived metabolites, and Alzheimer's Disease: A Multivariable Mendelian Randomization Study. J Alzheimers Dis. 100:229–237. 2024. View Article : Google Scholar : PubMed/NCBI

28 

Lu J, Gong X, Zhang C, Yang T and Pei D: A multi-omics approach to investigate characteristics of gut microbiota and metabolites in hypertension and diabetic nephropathy SPF rat models. Front Microbiol. 15:13561762024. View Article : Google Scholar : PubMed/NCBI

29 

Lee SY, Kim JH, Lee DY and Hur SJ: Characterization of gut microbiota in mouse models of aging and sarcopenia. Microbiol Res. 275:1274622023. View Article : Google Scholar : PubMed/NCBI

30 

Yan ZX, Gao XJ, Li T, Wei B, Wang PP, Yang Y and Yan R: Fecal microbiota transplantation in experimental ulcerative colitis reveals associated gut microbial and host metabolic reprogramming. Appl Environ Microbiol. 84:e00434–18. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Qaisar R, Burki A, Karim A, Iqbal MS and Ahmad F: Probiotics supplements improve the sarcopenia-related quality of life in older adults with age-related muscle decline. Calcif Tissue Int. 114:583–591. 2024. View Article : Google Scholar : PubMed/NCBI

32 

Nistor-Cseppento CD, Moga TD, Bungau AF, Tit DM, Negrut N, Pasca B, Bochis CF, Ghitea TC, Jurcau A, Purza AL and Uivarosan D: The contribution of diet therapy and probiotics in the treatment of sarcopenia induced by prolonged immobilization caused by the COVID-19 Pandemic. Nutrients. 14:47012022. View Article : Google Scholar : PubMed/NCBI

33 

Yu X, Li P, Li B, Yu F, Zhao W, Wang X, Wang X, Wang Y, Gao H, Cheng M and Li X: d-pinitol improves diabetic sarcopenia by regulation of the gut microbiome, metabolome, and proteome in STZ-Induced SAMP8 Mice. J Agric Food Chem. 72:14466–14478. 2024. View Article : Google Scholar : PubMed/NCBI

34 

Mo X, Shen L, Cheng R, Wang P, Wen L, Sun Y, Wang Q, Chen J, Lin S, Liao Y, et al: Faecal microbiota transplantation from young rats attenuates age-related sarcopenia revealed by multiomics analysis. J Cachexia Sarcopenia Muscle. 14:2168–2183. 2023. View Article : Google Scholar : PubMed/NCBI

35 

Baek JS, Shin YJ, Ma X, Park HS, Hwang YH and Kim DH: Bifidobacterium bifidum and Lactobacillus paracasei alleviate sarcopenia and cognitive impairment in aged mice by regulating gut microbiota-mediated AKT, NF-ĸB, and FOXO3a signaling pathways. Immun Ageing. 20:562023. View Article : Google Scholar : PubMed/NCBI

36 

Lou J, Wang Q, Wan X and Cheng J: Changes and correlation analysis of intestinal microflora composition, inflammatory index, and skeletal muscle mass in elderly patients with sarcopenia. Geriatr Gerontol Int. 24:140–146. 2024. View Article : Google Scholar : PubMed/NCBI

37 

Lee J, Kang M, Yoo J, Lee S, Kang M, Yun B, Kim JN, Moon H, Chung Y and Oh S: Lactobacillus rhamnosus JY02 ameliorates sarcopenia by anti-atrophic effects in a dexamethasone-induced cellular and murine model. J Microbiol Biotechnol. 33:915–925. 2023. View Article : Google Scholar : PubMed/NCBI

38 

Karimian S, Farahmandzad N and Mohammadipanah F: Manipulation and epigenetic control of silent biosynthetic pathways in actinobacteria. World J Microbiol Biotechnol. 40:652024. View Article : Google Scholar : PubMed/NCBI

39 

Zahr R, Zahr S, El Hajj R and Khalil M: Characterization of Actinobacteria strains in Lebanese soil with an emphasis on investigating their antibacterial activity. Braz J Microbiol. 55:255–267. 2024. View Article : Google Scholar : PubMed/NCBI

40 

Wang Z, Xu X, Deji Y, Gao S, Wu C, Song Q, Shi Z, Xiang X, Zang J and Su J: Bifidobacterium as a potential biomarker of Sarcopenia in elderly women. Nutrients. 15:12662023. View Article : Google Scholar : PubMed/NCBI

41 

Lv WQ, Lin X, Shen H, Liu HM, Qiu X, Li BY, Shen WD, Ge CL, Lv FY, Shen J, et al: Human gut microbiome impacts skeletal muscle mass via gut microbial synthesis of the short-chain fatty acid butyrate among healthy menopausal women. J Cachexia Sarcopenia Muscle. 12:1860–1870. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Sugimura Y, Yang Y, Kanda A, Mawatari A, Tamada Y, Mikami T, Nakaji S and Ihara K: Association between Gut Microbiota and Muscle Strength in Japanese General Population of the Iwaki Health Promotion Project. Microorganisms. 12:6222024. View Article : Google Scholar : PubMed/NCBI

43 

Wang M, Ren F, Zhou Y, He Y, Du T and Tan Y: Age-related sarcopenia and altered gut microbiota: A systematic review. Microb Pathog. 195:1068502024. View Article : Google Scholar : PubMed/NCBI

44 

Ticinesi A, Nouvenne A, Cerundolo N, Catania P, Prati B, Tana C and Meschi T: Gut microbiota, muscle mass and function in aging: A focus on physical frailty and sarcopenia. Nutrients. 11:16332019. View Article : Google Scholar : PubMed/NCBI

45 

Aliwa B, Horvath A, Traub J, Feldbacher N, Habisch H, Fauler G, Madl T and Stadlbauer V: Altered gut microbiome, bile acid composition and metabolome in sarcopenia in liver cirrhosis. J Cachexia Sarcopenia Muscle. 14:2676–2691. 2023. View Article : Google Scholar : PubMed/NCBI

46 

Wang Y, Zhang Y, Lane NE, Wu J, Yang T, Li J, He H, Wei J, Zeng C and Lei G: Population-based metagenomics analysis reveals altered gut microbiome in sarcopenia: Data from the Xiangya Sarcopenia Study. J Cachexia Sarcopenia Muscle. 13:2340–2351. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Lee YA, Song SW, Jung SY, Bae J, Hwang N and Kim HN: Sarcopenia in community-dwelling older adults is associated with the diversity and composition of the gut microbiota. Exp Gerontol. 167:1119272022. View Article : Google Scholar : PubMed/NCBI

48 

Shan Z, Cheng N, Zhu J, Chen F and Ji J: Meilibana: Analysis of intestinal flora in elderly Uygur patients with sarcopenia. Immun Inflamm Dis. 12:e10972024. View Article : Google Scholar : PubMed/NCBI

49 

Liu X, Wu J, Tang J, Xu Z, Zhou B, Liu Y, Hu F, Zhang G, Cheng R, Xia X, et al: Prevotella copri alleviates sarcopenia via attenuating muscle mass loss and function decline. J Cachexia Sarcopenia Muscle. 14:2275–2288. 2023. View Article : Google Scholar : PubMed/NCBI

50 

Tseng CW, Kyme P, Low J, Rocha MA, Alsabeh R, Miller LG, Otto M, Arditi M, Diep BA, Nizet V, et al: Staphylococcus aureus Panton-Valentine leukocidin contributes to inflammation and muscle tissue injury. PLoS One. 4:e63872009. View Article : Google Scholar : PubMed/NCBI

51 

Avila-Novoa MG, Solis-Velazquez OA, Guerrero-Medina PJ, Gonzalez-Gomez JP, Gonzalez-Torres B, Velazquez-Suarez NY, Martínez-Chávez L, Martínez-Gonzáles NE, De la Cruz-Color L, Ibarra-Velázquez LM, et al: Genetic and compositional analysis of biofilm formed by Staphylococcus aureus isolated from food contact surfaces. Front Microbiol. 13:10017002022. View Article : Google Scholar : PubMed/NCBI

52 

Wu S, Yi J, Zhang YG, Zhou J and Sun J: Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 3:e123562015. View Article : Google Scholar : PubMed/NCBI

53 

Zhang Y, Ogbu D, Garrett S, Xia Y and Sun J: Aberrant enteric neuromuscular system and dysbiosis in amyotrophic lateral sclerosis. Gut Microbes. 13:19968482021. View Article : Google Scholar : PubMed/NCBI

54 

Bin-Jumah MN, Gilani SJ, Hosawi S, Al-Abbasi FA, Zeyadi M, Imam SS, Alshehri S, Ghoneim MM, Nadeem MS and Kazmi I: Pathobiological relationship of excessive dietary intake of Choline/L-Carnitine: A TMAO precursor-associated aggravation in heart failure in sarcopenic patients. Nutrients. 13:34532021. View Article : Google Scholar : PubMed/NCBI

55 

Hata S, Okamura T, Kobayashi A, Bamba R, Miyoshi T, Nakajima H, Hashimoto Y, Majima S, Senmaru T, Okada H, et al: Gut Microbiota Changes by an SGLT2 inhibitor, luseogliflozin, alters metabolites compared with those in a low carbohydrate diet in db/db Mice. Nutrients. 14:35312022. View Article : Google Scholar : PubMed/NCBI

56 

Potgens SA, Brossel H, Sboarina M, Catry E, Cani PD, Neyrinck AM, Delzenne NM and Bindels LB: Klebsiella oxytoca expands in cancer cachexia and acts as a gut pathobiont contributing to intestinal dysfunction. Sci Rep. 8:123212018. View Article : Google Scholar : PubMed/NCBI

57 

Ma WW, Huang ZQ, Liu K, Li DZ, Mo TL and Liu Q: The role of intestinal microbiota and metabolites in intestinal inflammation. Microbiol Res. 288:1278382024. View Article : Google Scholar : PubMed/NCBI

58 

Bourqqia-Ramzi M, Mansilla-Guardiola J, Munoz-Rodriguez D, Quarta E, Lombardo-Hernandez J, Murciano-Cespedosa A, Conejero-Meca FJ, Mateos González Á, Geuna S, Garcia-Esteban MT and Herrera-Rincon C: From the Microbiome to the Electrome: Implications for the Microbiota-Gut-Brain Axis. Int J Mol Sci. 25:62332024. View Article : Google Scholar : PubMed/NCBI

59 

Zhang J, Yu Y and Wang J: Protein nutritional support: The classical and potential new mechanisms in the prevention and therapy of sarcopenia. J Agric Food Chem. 68:4098–4108. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Mendes J, Simoes CD, Martins JO and Sousa AS: Inflammatory bowel disease and sarcopenia: A focus on muscle strength - narrative review. Arq Gastroenterol. 60:373–382. 2023. View Article : Google Scholar : PubMed/NCBI

61 

Agostini D, Gervasi M, Ferrini F, Bartolacci A, Stranieri A, Piccoli G, Barbieri E, Sestili P, Patti A, Stocchi V and Donati Zeppa S: An integrated approach to skeletal muscle health in aging. Nutrients. 15:18022023. View Article : Google Scholar : PubMed/NCBI

62 

Wu S, Chen X, Cai R, Chen X, Zhang J, Xie J and Shen M: Sulfated Chinese yam polysaccharides alleviate LPS-induced acute inflammation in mice through modulating intestinal microbiota. Foods. 12:17722023. View Article : Google Scholar : PubMed/NCBI

63 

Li C, Wang Y, Zhao X, Li J, Wang H, Ren Y, Sun H, Zhu X, Song Q and Wang J: Comparative analysis of intestinal inflammation and microbiota dysbiosis of LPS-Challenged Piglets between Different Breeds. Animals (Basel). 14:6652024. View Article : Google Scholar : PubMed/NCBI

64 

Bian AL, Hu HY, Rong YD, Wang J, Wang JX and Zhou XZ: A study on relationship between elderly sarcopenia and inflammatory factors IL-6 and TNF-α. Eur J Med Res. 22:252017. View Article : Google Scholar : PubMed/NCBI

65 

Xuekelati S, Maimaitiwusiman Z, Bai X, Xiang H, Li Y and Wang H: Sarcopenia is associated with hypomethylation of TWEAK and increased plasma levels of TWEAK and its downstream inflammatory factor TNF-α in older adults: A case-control study. Exp Gerontol. 188:1123902024. View Article : Google Scholar : PubMed/NCBI

66 

den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ and Bakker BM: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 54:2325–2340. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Kang M, Kang M, Yoo J, Lee J, Lee S, Yun B, Song M, Kim JM, Kim HW, Yang J, et al: Dietary supplementation with Lacticaseibacillus rhamnosus IDCC3201 alleviates sarcopenia by modulating the gut microbiota and metabolites in dexamethasone-induced models. Food Funct. 15:4936–4953. 2024. View Article : Google Scholar : PubMed/NCBI

68 

Xu Y, Mao T, Wang Y, Qi X, Zhao W, Chen H, Zhang C and Li X: Effect of gut microbiota-mediated tryptophan metabolism on inflammaging in frailty and sarcopenia. J Gerontol A Biol Sci Med Sci. 79:glae0442024. View Article : Google Scholar : PubMed/NCBI

69 

Ciernikova S, Sevcikova A, Mladosievicova B and Mego M: Microbiome in cancer development and treatment. Microorganisms. 12:242023. View Article : Google Scholar : PubMed/NCBI

70 

Gellhaus B, Boker KO, Schilling AF and Saul D: Therapeutic consequences of targeting the IGF-1/PI3K/AKT/FOXO3 axis in sarcopenia: A narrative review. Cells. 12:27872023. View Article : Google Scholar : PubMed/NCBI

71 

Abuduwaili H, Kamoshita K, Ishii KA, Takahashi K, Abuduyimiti T, Qifang L, Isobe Y, Goto H, Nakano Y, Takeshita Y, et al: Selenoprotein P deficiency protects against immobilization-induced muscle atrophy by suppressing atrophy-related E3 ubiquitin ligases. Am J Physiol Endocrinol Metab. 324:E542–E552. 2023. View Article : Google Scholar : PubMed/NCBI

72 

He P, Du G, Qin X and Li Z: Reduced energy metabolism contributing to aging of skeletal muscle by serum metabolomics and gut microbiota analysis. Life Sci. 323:1216192023. View Article : Google Scholar : PubMed/NCBI

73 

Zhang X, Yang G, Jiang S, Ji B, Xie W, Li H, Sun J and Li Y: Causal relationship between gut microbiota, metabolites, and sarcopenia: A mendelian randomization study. J Gerontol A Biol Sci Med Sci. 79:glae1732024. View Article : Google Scholar : PubMed/NCBI

74 

Cailleaux PE, Dechelotte P and Coeffier M: Novel dietary strategies to manage sarcopenia. Curr Opin Clin Nutr Metab Care. 27:234–243. 2024. View Article : Google Scholar : PubMed/NCBI

75 

Lapauw L, Rutten A, Dupont J, Amini N, Vercauteren L, Derrien M, Raes J and Gielen E: Associations between gut microbiota and sarcopenia or its defining parameters in older adults: A systematic review. J Cachexia Sarcopenia Muscle. Aug 27–2024.(Epub ahead of print). View Article : Google Scholar

76 

Han DS, Wu WK, Liu PY, Yang YT, Hsu HC, Kuo CH, Wu MS and Wang TG: Differences in the gut microbiome and reduced fecal butyrate in elders with low skeletal muscle mass. Clin Nutr. 41:1491–1500. 2022. View Article : Google Scholar : PubMed/NCBI

77 

de Conti A, Tryndyak V, Koturbash I, Heidor R, Kuroiwa-Trzmielina J, Ong TP, Beland FA, Moreno FS and Pogribny IP: The chemopreventive activity of the butyric acid prodrug tributyrin in experimental rat hepatocarcinogenesis is associated with p53 acetylation and activation of the p53 apoptotic signaling pathway. Carcinogenesis. 34:1900–1906. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Mena P and Meschi T: The interaction between Mediterranean diet and intestinal microbiome: Relevance for preventive strategies against frailty in older individuals. Aging Clin Exp Res. 36:582024. View Article : Google Scholar : PubMed/NCBI

79 

Dong J, Gu W, Yang X, Zeng L, Wang X, Mu J, Wang Y, Li F, Yang M and Yu J: Crosstalk between polygonatum kingianum, the miRNA, and gut microbiota in the regulation of lipid metabolism. Front Pharmacol. 12:7405282021. View Article : Google Scholar : PubMed/NCBI

80 

Prukpitikul P, Sirivarasai J and Sutjarit N: The molecular mechanisms underlying gut microbiota-miRNA interaction in metabolic disorders. Benef Microbes. 15:83–96. 2024. View Article : Google Scholar : PubMed/NCBI

81 

Huang LY, Lim AY, Hsu CC, Tsai YF, Fu TC, Shyu YC, Peng SC and Wang JS: Sustainability of exercise-induced benefits on circulating MicroRNAs and physical fitness in community-dwelling older adults: A randomized controlled trial with follow up. BMC Geriatr. 24:4732024. View Article : Google Scholar : PubMed/NCBI

82 

Lee H, Kim YI, Nirmala FS, Kim JS, Seo HD, Ha TY, Jang YJ, Jung CH and Ahn J: MiR-141-3p promotes mitochondrial dysfunction in ovariectomy-induced sarcopenia via targeting Fkbp5 and Fibin. Aging (Albany NY). 13:4881–4894. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Iannone F, Montesanto A, Cione E, Crocco P, Caroleo MC, Dato S, Rose G and Passarino G: Expression patterns of muscle-specific miR-133b and miR-206 correlate with nutritional status and sarcopenia. Nutrients. 12:2972020. View Article : Google Scholar : PubMed/NCBI

84 

Chen FX, Shen Y, Liu Y, Wang HF, Liang CY and Luo M: Inflammation-dependent downregulation of miR-532-3p mediates apoptotic signaling in human sarcopenia through targeting BAK1. Int J Biol Sci. 16:1481–1494. 2020. View Article : Google Scholar : PubMed/NCBI

85 

Jin J, Yang Z, Liu H, Guo M, Chen B, Zhu H, Wang Y, Lin J, Wang S and Chen S: Effects of acupuncture on the miR-146a-mediated IRAK1/TRAF6/NF-ĸB signaling pathway in rats with sarcopenia induced by D-galactose. Ann Transl Med. 11:472023. View Article : Google Scholar : PubMed/NCBI

86 

Okugawa Y, Yao L, Toiyama Y, Yamamoto A, Shigemori T, Yin C, Omura Y, Ide S, Kitajima T, Shimura T, et al: Prognostic impact of sarcopenia and its correlation with circulating miR-21 in colorectal cancer patients. Oncol Rep. 39:1555–1564. 2018.PubMed/NCBI

87 

Wang W, Liu W, Xu J and Jin H: MiR-33a targets FOSL1 and EN2 as a clinical prognostic marker for sarcopenia by glioma. Front Genet. 13:9535802022. View Article : Google Scholar : PubMed/NCBI

88 

He N, Zhang Y, Zhang Y, Feng B, Zheng Z and Ye H: Circulating miR-29b decrease in response to sarcopenia in patients with cardiovascular risk factors in older Chinese. Front Cardiovasc Med. 9:10943882022. View Article : Google Scholar : PubMed/NCBI

89 

Qaisar R, Karim A, Muhammad T, Shah I and Khan J: Circulating MicroRNAs as biomarkers of accelerated sarcopenia in chronic heart failure. Glob Heart. 16:562021. View Article : Google Scholar : PubMed/NCBI

90 

Faraldi M, Sansoni V, Vitale J, Perego S, Gomarasca M, Verdelli C, Messina C, Sconfienza LM, Banfi G, Corbetta S and Lombardi G: Plasma microRNA signature associated with skeletal muscle wasting in post-menopausal osteoporotic women. J Cachexia Sarcopenia Muscle. 15:690–701. 2024. View Article : Google Scholar : PubMed/NCBI

91 

He N, Zhang YL, Zhang Y, Feng B, Zheng Z, Wang D, Zhang S, Guo Q and Ye H: Circulating MicroRNAs in plasma decrease in response to sarcopenia in the elderly. Front Genet. 11:1672020. View Article : Google Scholar : PubMed/NCBI

92 

Salamanna F, Contartese D, Ruffilli A, Barile F, Bellavia D, Marchese L, Manzetti M, Viroli G, Faldini C and Giavaresi G: Sharing circulating Micro-RNAs between osteoporosis and sarcopenia: A systematic review. Life (Basel). 13:6022023.PubMed/NCBI

93 

Li Z, Liu C, Li S, Li T, Li Y, Wang N, Bao X, Xue P and Liu S: BMSC-derived exosomes inhibit dexamethasone-induced muscle atrophy via the miR-486-5p/FoxO1 Axis. Front Endocrinol (Lausanne). 12:6812672021. View Article : Google Scholar : PubMed/NCBI

94 

Che J, Xu C, Wu Y, Jia P, Han Q, Ma Y, Wang X and Zheng Y: MiR-1290 promotes myoblast differentiation and protects against myotube atrophy via Akt/p70/FoxO3 pathway regulation. Skelet Muscle. 11:62021. View Article : Google Scholar : PubMed/NCBI

95 

Ahmad N, Kushwaha P, Karvande A, Tripathi AK, Kothari P, Adhikary S, Khedgikar V, Mishra VK and Trivedi R: MicroRNA-672-5p identified during weaning reverses osteopenia and sarcopenia in ovariectomized mice. Mol Ther Nucleic Acids. 14:536–549. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Stewart-Hunt L, Pratt-Phillips S, McCutcheon LJ and Geor RJ: Dietary energy source and physical conditioning affect insulin sensitivity and skeletal muscle glucose metabolism in horses. Equine Vet J. Suppl (38):355–360. 2010. View Article : Google Scholar : PubMed/NCBI

97 

Barres R and Zierath JR: The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat Rev Endocrinol. 12:441–451. 2016. View Article : Google Scholar : PubMed/NCBI

98 

Critchlow AJ, Williams RM and Alexander SE: The PoWeR of exercise: Exploring the anti-ageing effects of exercise through epigenetic modifications to skeletal muscle. J Physiol. 601:1175–1177. 2023. View Article : Google Scholar : PubMed/NCBI

99 

Sohi G and Dilworth FJ: Noncoding RNAs as epigenetic mediators of skeletal muscle regeneration. FEBS J. 282:1630–1646. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Pinheiro A and Naya FJ: The Key Lnc (RNA)s in cardiac and skeletal muscle development, regeneration, and disease. J Cardiovasc Dev Dis. 8:842021.PubMed/NCBI

101 

Human Microbiome Project Consortium, . Structure, function and diversity of the healthy human microbiome. Nature. 486:207–214. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Quigley EM: Gut bacteria in health and disease. Gastroenterol Hepatol (N Y). 9:560–569. 2013.PubMed/NCBI

103 

Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall LI, McDonald D, et al: Best practices for analysing microbiomes. Nat Rev Microbiol. 16:410–422. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Collins SL, Stine JG, Bisanz JE, Okafor CD and Patterson AD: Bile acids and the gut microbiota: Metabolic interactions and impacts on disease. Nat Rev Microbiol. 21:236–247. 2023. View Article : Google Scholar : PubMed/NCBI

105 

Lapiere A and Richard ML: Bacterial-fungal metabolic interactions within the microbiota and their potential relevance in human health and disease: A short review. Gut Microbes. 14:21056102022. View Article : Google Scholar : PubMed/NCBI

106 

Wagner J, Kancherla J, Braccia D, Matsumara J, Felix V, Crabtree J, Mahurkar A and Corrada Bravo H: Interactive exploratory data analysis of integrative human microbiome project data using metaviz. F1000Res. 9:6012020. View Article : Google Scholar : PubMed/NCBI

107 

Rahman S, Ikram AR, Azeem F, Tahir Ul Qamar M, Shaheen T and Mehboob-Ur-Rahman: Precision genome editing with CRISPR-Cas9. Methods Mol Biol. 2788:355–372. 2024. View Article : Google Scholar : PubMed/NCBI

108 

Li Y, Li C, Yan J, Liao Y, Qin C, Wang L, Huang Y, Yang C, Wang J, Ding X, et al: Polymeric micellar nanoparticles for effective CRISPR/Cas9 genome editing in cancer. Biomaterials. 309:1225732024. View Article : Google Scholar : PubMed/NCBI

109 

Adlard B, Donaldson SG, Odland JO, Weihe P, Berner J, Carlsen A, Bonefeld-Jorgensen EC, Dudarev AA, Gibson JC, Krümmel EM, et al: Future directions for monitoring and human health research for the arctic monitoring and assessment programme. Glob Health Action. 11:14800842018. View Article : Google Scholar : PubMed/NCBI

110 

Jackson R, Yao T, Bulut N, Cantu-Jungles TM and Hamaker BR: Protein combined with certain dietary fibers increases butyrate production in gut microbiota fermentation. Food Funct. 15:3186–3198. 2024. View Article : Google Scholar : PubMed/NCBI

111 

Modoux M, Rolhion N, Lefevre JH, Oeuvray C, Nadvornik P, Illes P, Emond P, Parc Y, Mani S, Dvorak Z and Sokol H: Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes. 14:21056372022. View Article : Google Scholar : PubMed/NCBI

112 

Wan F, Deng FL, Chen L, Zhong RQ, Wang MY, Yi B, Liu L, Zhao HB and Zhang HF: Long-term chemically protected sodium butyrate supplementation in broilers as an antibiotic alternative to dynamically modulate gut microbiota. Poult Sci. 101:1022212022. View Article : Google Scholar : PubMed/NCBI

113 

Drut A, Mkaouar H, Kriaa A, Mariaule V, Akermi N, Meric T, Sénécat O, Maguin E, Hernandez J and Rhimi M: Gut microbiota in cats with inflammatory bowel disease and low-grade intestinal T-cell lymphoma. Front Microbiol. 15:13466392024. View Article : Google Scholar : PubMed/NCBI

114 

Yang Y, Huang S, Liao Y, Wu X, Zhang C, Wang X and Yang Z: Hippuric acid alleviates dextran sulfate sodium-induced colitis via suppressing inflammatory activity and modulating gut microbiota. Biochem Biophys Res Commun. 710:1498792024. View Article : Google Scholar : PubMed/NCBI

115 

Liu M, Ma J, Xu J, Huangfu W, Zhang Y, Ali Q, Liu B, Li D, Cui Y, Wang Z, et al: Fecal microbiota transplantation alleviates intestinal inflammatory diarrhea caused by oxidative stress and pyroptosis via reducing gut microbiota-derived lipopolysaccharides. Int J Biol Macromol. 261((Pt 1)): 1296962024. View Article : Google Scholar : PubMed/NCBI

116 

Wu R, Xiong R, Li Y, Chen J and Yan R: Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun. 141:1030622023. View Article : Google Scholar : PubMed/NCBI

117 

Monda V, Villano I, Messina A, Valenzano A, Esposito T, Moscatelli F, Viggiano A, Cibelli G, Chieffi S, Monda M and Messina G: Exercise modifies the gut microbiota with positive health effects. Oxid Med Cell Longev. 2017:38319722017. View Article : Google Scholar : PubMed/NCBI

118 

Mimee M, Tucker AC, Voigt CA and Lu TK: Programming a human commensal bacterium, bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 2:2142016. View Article : Google Scholar : PubMed/NCBI

119 

Das S, Preethi B, Kushwaha S and Shrivastava R: Therapeutic strategies to modulate gut microbial health: Approaches for sarcopenia management. Histol Histopathol. 39:1395–1425. 2024.PubMed/NCBI

120 

Li T, Yin D and Shi R: Gut-muscle axis mechanism of exercise prevention of sarcopenia. Front Nutr. 11:14187782024. View Article : Google Scholar : PubMed/NCBI

121 

Zhang T, Cheng JK and Hu YM: Gut microbiota as a promising therapeutic target for age-related sarcopenia. Ageing Res Rev. 81:1017392022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yuan C: Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review). Oncol Lett 29: 104, 2025.
APA
Yuan, C. (2025). Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review). Oncology Letters, 29, 104. https://doi.org/10.3892/ol.2024.14850
MLA
Yuan, C."Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review)". Oncology Letters 29.3 (2025): 104.
Chicago
Yuan, C."Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review)". Oncology Letters 29, no. 3 (2025): 104. https://doi.org/10.3892/ol.2024.14850
Copy and paste a formatted citation
x
Spandidos Publications style
Yuan C: Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review). Oncol Lett 29: 104, 2025.
APA
Yuan, C. (2025). Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review). Oncology Letters, 29, 104. https://doi.org/10.3892/ol.2024.14850
MLA
Yuan, C."Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review)". Oncology Letters 29.3 (2025): 104.
Chicago
Yuan, C."Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review)". Oncology Letters 29, no. 3 (2025): 104. https://doi.org/10.3892/ol.2024.14850
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team