|
1
|
Tanoue T and Takeichi M: New insights into
Fat cadherins. J Cell Sci. 118:2347–2353. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Irshad K, Malik N, Arora M, Gupta Y, Sinha
S and Chosdol K: The quest for ligands and binding partners of
atypical cadherin FAT1. Transl Oncol. 14:1010972021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Dunne J, Hanby AM, Poulsom R, Jones TA,
Sheer D, Chin WG, Da SM, Zhao Q, Beverley PC and Owen MJ: Molecular
cloning and tissue expression of FAT, the human homologue of the
Drosophila fat gene that is located on chromosome 4q34-q35 and
encodes a putative adhesion molecule. Genomics. 30:207–223. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sadeqzadeh E, de Bock CE, Zhang XD,
Shipman KL, Scott NM, Song C, Yeadon T, Oliveira CS, Jin B, Hersey
P, et al: Dual processing of FAT1 cadherin protein by human
melanoma cells generates distinct protein products. J Biol Chem.
286:28181–28191. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cao LL, Riascos-Bernal DF, Chinnasamy P,
Dunaway CM, Hou R, Pujato MA, O'Rourke BP, Miskolci V, Guo L,
Hodgson L, et al: Control of mitochondrial function and cell growth
by the atypical cadherin Fat1. Nature. 539:575–578. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Magg T, Schreiner D, Solis GP, Bade EG and
Hofer HW: Processing of the human protocadherin Fat1 and
translocation of its cytoplasmic domain to the nucleus. Exp Cell
Res. 307:100–108. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Riascos-Bernal DF, Maira A and Sibinga
NES: The atypical cadherin FAT1 limits mitochondrial respiration
and proliferation of vascular smooth muscle cells. Front Cardiovasc
Med. 9:9057172022. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hou R, Liu L, Anees S, Hiroyasu S and
Sibinga NE: The Fat1 cadherin integrates vascular smooth muscle
cell growth and migration signals. J Cell Biol. 173:417–429. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Riascos-Bernal DF, Ressa G, Korrapati A
and Sibinga NES: The FAT1 cadherin drives vascular smooth muscle
cell migration. Cells. 12:16212023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tanoue T and Takeichi M: Mammalian Fat1
cadherin regulates actin dynamics and cell-cell contact. J Cell
Biol. 165:517–528. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Saburi S, Hester I, Goodrich L and McNeil
H: Functional interactions between Fat family cadherins in tissue
morphogenesis and planar polarity. Development. 139:1806–1820.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ahmed AF, de Bock CE, Sontag E,
Hondermarck H, Lincz LF and Thorne R: FAT1 cadherin controls
neuritogenesis during NTera2 cell differentiation. Biochem Biophys
Res Commun. 514:625–631. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Braun GS, Kuszka A, Dau C, Kriz W and
Moeller MJ: Interaction of atypical cadherin Fat1 with SoHo adaptor
proteins CAP/ponsin and ArgBP2. Biochem Biophys Res Commun.
472:88–94. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Peng Z, Gong Y and Liang X: Role of FAT1
in health and disease. Oncol Lett. 21:3982021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li M, Zhong Y and Wang M: Fat1 suppresses
the tumor-initiating ability of nonsmall cell lung cancer cells by
promoting Yes-associated protein 1 nuclear-cytoplasmic
translocation. Environ Toxicol. 36:2333–2341. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Katoh M: Function and cancer genomics of
FAT family genes (review). Int J Oncol. 41:1913–1918. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Morris LG, Ramaswami D and Chan TA: The
FAT epidemic: A gene family frequently mutated across multiple
human cancer types. Cell Cycle. 12:1011–1012. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Morris LG, Kaufman AM, Gong Y, Ramaswami
D, Walsh LA, Turcan Ş, Eng S, Kannan K, Zou Y, Peng L, et al:
Recurrent somatic mutation of FAT1 in multiple human cancers leads
to aberrant Wnt activation. Nat Genet. 45:253–261. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
He Z, Li R and Jiang H: Mutations and copy
number abnormalities of hippo pathway components in human cancers.
Front Cell Dev Biol. 9:6617182021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Faraji F, Ramirez SI, Quiroz PY,
Mendez-Molina AN and Gutkind JS: Genomic hippo pathway alterations
and persistent YAP/TAZ activation: New hallmarks in head and neck
cancer. Cells. 11:13702022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen M, Sun X, Wang Y, Ling K, Chen C, Cai
X, Liang X and Liang Z: FAT1 inhibits the proliferation and
metastasis of cervical cancer cells by binding β-catenin. Int J
Clin Exp Pathol. 12:3807–3818. 2019.PubMed/NCBI
|
|
22
|
Ma W, Niu Z, Han D, Wang B and Wang X:
Circ-FAT1 up-regulates FOSL2 expression by sponging miR-619-5p to
facilitate colorectal cancer progression. Biochem Genet.
60:1362–1379. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jia L, Wang Y and Wang CY: circFAT1
promotes cancer stemness and immune evasion by promoting STAT3
activation. Adv Sci (Weinh). 8:20033762021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang TL, Miao XJ, Shuai YR, Sun HP, Wang
X, Yang M and Zhang N: FAT1 inhibits the proliferation of DLBCL
cells via increasing the m(6)A modification of YAP1 mRNA. Sci Rep.
14:118362024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pastushenko I, Mauri F, Song Y, de Cock F,
Meeusen B, Swedlund B, Impens F, Van Haver D, Opitz M, Thery M, et
al: Fat1 deletion promotes hybrid EMT state, tumour stemness and
metastasis. Nature. 589:448–455. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang X, Liu J, Liang X, Chen J, Hong J,
Li L, He Q and Cai X: History and progression of Fat cadherins in
health and disease. Onco Targets Ther. 9:7337–7343. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Katoh Y and Katoh M: Comparative
integromics on FAT1, FAT2, FAT3 and FAT4. Int J Mol Med.
18:523–528. 2006.PubMed/NCBI
|
|
28
|
Chen ZG, Saba NF and Teng Y: The diverse
functions of FAT1 in cancer progression: Good, bad, or ugly? J Exp
Clin Cancer Res. 41:2482022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang Z, Lin K and Xiao H: A pan-cancer
analysis of the FAT1 in human tumors. Sci Rep. 12:215982022.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhu W, Yang L, Gao Y, Zhou Y, Shi Y, Liu
K, Yu R, Shao Y, Zhang W, Wu G and He J: Clinical value of FAT1
mutations to indicate the immune response in colorectal cancer
patients. Genomics. 116:1108082024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ding C, Huang H, Wu D, Chen C, Hua Y, Liu
J, Li Y, Liu H and Chen J: Pan-cancer analysis predict that FAT1 is
a therapeutic target and immunotherapy biomarker for multiple
cancer types including non-small cell lung cancer. Front Immunol.
15:13690732024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Valletta D, Czech B, Spruss T, Ikenberg K,
Wild P, Hartmann A, Weiss TS, Oefner PJ, Müller M, Bosserhoff AK
and Hellerbrand C: Regulation and function of the atypical cadherin
FAT1 in hepatocellular carcinoma. Carcinogenesis. 35:1407–1415.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Pennathur A, Gibson MK, Jobe BA and
Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Song Y, Li L, Ou Y, Gao Z, Li E, Li X,
Zhang W, Wang J, Xu L, Zhou Y, et al: Identification of genomic
alterations in oesophageal squamous cell cancer. Nature. 509:91–95.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun
ZM, Zhang F, Zhao ZR, Li ZT, Liu ZY, et al: Genetic landscape of
esophageal squamous cell carcinoma. Nat Genet. 46:1097–1102. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Cui Y, Chen H, Xi R, Cui H, Zhao Y, Xu E,
Yan T, Lu X, Huang F, Kong P, et al: Whole-genome sequencing of 508
patients identifies key molecular features associated with poor
prognosis in esophageal squamous cell carcinoma. Cell Res.
30:902–913. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhang N, Shi J, Shi X, Chen W and Liu J:
Mutational characterization and potential prognostic biomarkers of
Chinese patients with esophageal squamous cell carcinoma. Onco
Targets Ther. 13:12797–12809. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang L, Zhou Y, Cheng C, Cui H, Cheng L,
Kong P, Wang J, Li Y, Chen W, Song B, et al: Genomic analyses
reveal mutational signatures and frequently altered genes in
esophageal squamous cell carcinoma. Am J Hum Genet. 107:3752020.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hu X, Zhai Y, Shi R, Qian Y, Cui H, Yang
J, Bi Y, Yan T, Yang J, Ma Y, et al: FAT1 inhibits cell migration
and invasion by affecting cellular mechanical properties in
esophageal squamous cell carcinoma. Oncol Rep. 39:2136–2146.
2018.PubMed/NCBI
|
|
40
|
Mishra R, Nikoo MZ, Veeraballi S and Singh
A: Venetoclax and hypomethylating agent combination in myeloid
malignancies: Mechanisms of synergy and challenges of resistance.
Int J Mol Sci. 25:4842023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang Y, Wang G, Ma Y, Teng J, Wang Y, Cui
Y, Dong Y, Shao S, Zhan Q and Liu X: FAT1, a direct transcriptional
target of E2F1, suppresses cell proliferation, migration and
invasion in esophageal squamous cell carcinoma. Chin J Cancer Res.
31:609–619. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hu X, Zhai Y, Kong P, Cui H, Yan T, Yang
J, Qian Y, Ma Y, Wang F, Li H, et al: FAT1 prevents epithelial
mesenchymal transition (EMT) via MAPK/ERK signaling pathway in
esophageal squamous cell cancer. Cancer Lett. 397:83–93. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ashrafizadeh M, Zarrabi A, Hushmandi K,
Kalantari M, Mohammadinejad R, Javaheri T and Sethi G: Association
of the epithelial-mesenchymal transition (EMT) with cisplatin
resistance. Int J Mol Sci. 21:40022020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hu X, Zhai Y, Kong P, Cui H, Yan T, Yang
J, Qian Y, Ma Y, Wang F, Li H, et al: Corrigendum to ‘FAT1 prevents
epithelial mesenchymal transition (EMT) via MAPK/ERK signaling
pathway in esophageal squamous cell cancer’ [(Canc. Lett. 397
(2017) 83–93)]. Cancer Lett. 494:1–2. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhai Y, Shan C, Zhang H, Kong P, Zhang L,
Wang Y, Hu X and Cheng X: FAT1 downregulation enhances stemness and
cisplatin resistance in esophageal squamous cell carcinoma. Mol
Cell Biochem. 477:2689–2702. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Mai Z, Yuan J, Yang H, Fang S, Xie X, Wang
X, Xie J, Wen J and Fu J: Inactivation of Hippo pathway
characterizes a poor-prognosis subtype of esophageal cancer. JCI
Insight. 7:e1552182022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lu Y, Wang Z, Zhou L, Ma Z, Zhang J, Wu Y,
Shao Y and Yang Y: FAT1 and PTPN14 regulate the malignant
progression and chemotherapy resistance of esophageal cancer
through the hippo signaling pathway. Anal Cell Pathol (Amst).
2021:92903722021.PubMed/NCBI
|
|
48
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cramer JD, Burtness B, Le QT and Ferris R:
The changing therapeutic landscape of head and neck cancer. Nat Rev
Clin Oncol. 16:669–683. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Leemans CR, Snijders PJF and Brakenhoff
RH: The molecular landscape of head and neck cancer. Nat Rev
Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Cancer Genome Atlas Network, .
Comprehensive genomic characterization of head and neck squamous
cell carcinomas. Nature. 517:576–582. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Campbell JD, Yau C, Bowlby R, Liu Y,
Brennan K, Fan H, Taylor AM, Wang C, Walter V, Akbani R, et al:
Genomic, pathway network, and immunologic features distinguishing
squamous carcinomas. Cell Rep. 23:194–212.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Alamoud KA and Kukuruzinska MA: Emerging
insights into Wnt/β-catenin signaling in head and neck cancer. J
Dent Res. 97:665–673. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zwirner K, Hilke FJ, Demidov G, Fernandez
JS, Ossowski S, Gani C, Thorwarth D, Riess O, Zips D, Schroeder C
and Welz S: Radiogenomics in head and neck cancer: Correlation of
radiomic heterogeneity and somatic mutations in TP53, FAT1 and
KMT2D. Strahlenther Onkol. 195:771–779. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Moreira A, Poulet A, Masliah-Planchon J,
Lecerf C, Vacher S, Chérif LL, Dupain C, Marret G, Girard E, Syx L,
et al: Prognostic value of tumor mutational burden in patients with
oral cavity squamous cell carcinoma treated with upfront surgery.
ESMO Open. 6:1001782021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kim S, Lee C, Kim H and Yoon SO: Genetic
characteristics of advanced oral tongue squamous cell carcinoma in
young patients. Oral Oncol. 144:1064662023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Su SC, Lin CW, Liu YF, Fan WL, Chen MK, Yu
CP, Yang WE, Su CW, Chuang CY, Li WH, et al: Exome sequencing of
oral squamous cell carcinoma reveals molecular subgroups and novel
therapeutic opportunities. Theranostics. 7:1088–1099. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chai AWY, Lim KP and Cheong SC:
Translational genomics and recent advances in oral squamous cell
carcinoma. Semin Cancer Biol. 61:71–83. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kim KT, Kim BS and Kim JH: Association
between FAT1 mutation and overall survival in patients with human
papillomavirus-negative head and neck squamous cell carcinoma. Head
Neck. 38 (Suppl 1):E2021–E2029. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Xi Y, Negrao MV, Akagi K, Xiao W, Jiang B,
Warner SC, Dunn JD, Wang J, Symer DE and Gillison ML: Noninvasive
genomic profiling of somatic mutations in oral cavity cancers. Oral
Oncol. 140:1063722023. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Inchanalkar M, Srivatsa S, Ambatipudi S,
Bhosale PG, Patil A, Schäffer AA, Beerenwinkel N and Mahimkar MB:
Genome-wide DNA methylation profiling of HPV-negative leukoplakia
and gingivobuccal complex cancers. Clin Epigenetics. 15:932023.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chaudhary S, Dam V, Ganguly K, Sharma S,
Atri P, Chirravuri-Venkata R, Cox JL, Sayed Z, Jones DT, Ganti AK,
et al: Differential mutation spectrum and immune landscape in
African Americans versus Whites: A possible determinant to health
disparity in head and neck cancer. Cancer Lett. 492:44–53. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Santos-de-Frutos K, Segrelles C and Lorz
C: Hippo pathway and yap signaling alterations in squamous cancer
of the head and neck. J Clin Med. 8:21312019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Martin D, Degese MS, Vitale-Cross L,
Iglesias-Bartolome R, Valera JLC, Wang Z, Feng X, Yeerna H, Vadmal
V, Moroishi T, et al: Assembly and activation of the Hippo
signalome by FAT1 tumor suppressor. Nat Commun. 9:23722018.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen N, Golczer G, Ghose S, Lin B,
Langenbucher A, Webb J, Bhanot H, Abt NB, Lin D, Varvares M, et al:
YAP1 maintains active chromatin state in head and neck squamous
cell carcinomas that promotes tumorigenesis through cooperation
with BRD4. Cell Rep. 39:1109702022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Alonso-Juarranz M, Sen O, Pérez P,
González-Corchón MA, Cabezas-Camarero S, Saiz-Pardo M, Viñas-Lopez
J, Recio-Poveda L, Botella LM and Falahat F: The distinctive
features behind the aggressiveness of oral and cutaneous squamous
cell carcinomas. Cancers (Basel). 15:32272023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lin SC, Lin LH, Yu SY, Kao SY, Chang KW,
Cheng HW and Liu CJ: FAT1 somatic mutations in head and neck
carcinoma are associated with tumor progression and survival.
Carcinogenesis. 39:1320–1330. 2018.PubMed/NCBI
|
|
68
|
Wu MH, Lu RY, Yu SJ, Tsai YZ, Lin YC, Bai
ZY, Liao RY, Hsu YC, Chen CC and Cai BH: PTC124 rescues nonsense
mutation of two tumor suppressor genes NOTCH1 and FAT1 to repress
HNSCC cell proliferation. Biomedicines. 10:29482022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lan T, Ge Q, Zheng K, Huang L, Yan Y,
Zheng L, Lu Y and Zheng D: FAT1 Upregulates in oral squamous cell
carcinoma and promotes cell proliferation via cell cycle and DNA
repair. Front Oncol. 12:8700552022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kim SI, Woo SR, Noh JK, Lee MK, Lee YC,
Lee JW, Ko SG and Eun YG: Clinical significance of FAT1 gene
mutation and mRNA expression in patients with head and neck
squamous cell carcinoma. Mol Oncol. 16:1661–1679. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hsu TN, Huang CM, Huang CS, Huang MS, Yeh
CT, Chao TY and Bamodu OA: Targeting FAT1 inhibits carcinogenesis,
induces oxidative stress and enhances cisplatin sensitivity through
deregulation of LRP5/WNT2/GSS signaling axis in oral squamous cell
carcinoma. Cancers (Basel). 11:18832019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chen Z, Zhang C, Chen J, Wang D, Tu J, Van
Waes C, Saba NF, Chen ZG and Chen Z: The proteomic landscape of
growth factor signaling networks associated with FAT1 mutations in
head and neck cancers. Cancer Res. 81:4402–4416. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Xu F, Cui WQ, Liu C, Feng F, Liu R, Zhang
J and Sun CG: Prognostic biomarkers correlated with immune
infiltration in non-small cell lung cancer. FEBS Open Bio.
13:72–88. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu Q, Zhang J, Guo C, Wang M, Wang C, Yan
Y, Sun L, Wang D, Zhang L, Yu H, et al: Proteogenomic
characterization of small cell lung cancer identifies biological
insights and subtype-specific therapeutic strategies. Cell.
187:184–203.e28. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Peng J, Xiao L, Zou D and Han L: A somatic
mutation signature predicts the best overall response to
anti-programmed cell death protein-1 treatment in epidermal growth
factor receptor/anaplastic lymphoma kinase-negative non-squamous
non-small cell lung cancer. Front Med (Lausanne). 9:8083782022.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hao F, Ma Q and Zhong D: Potential
predictive value of comutant LRP1B and FAT for immune response in
non-small cell lung cancer: LRP1B and FAT comutation enhance immune
response. Transl Oncol. 24:1014932022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Fang W, Ma Y, Yin JC, Hong S, Zhou H, Wang
A, Wang F, Bao H, Wu X, Yang Y, et al: comprehensive genomic
profiling identifies novel genetic predictors of response to
anti-PD-(L)1 therapies in non-small cell lung cancer. Clin Cancer
Res. 25:5015–5026. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang W, Tang Y, Guo Y, Kong Y, Shi F,
Sheng C, Wang S and Wang Q: Favorable immune checkpoint inhibitor
outcome of patients with melanoma and NSCLC harboring FAT1
mutations. NPJ Precis Oncol. 6:462022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang L, Wang Y, Wang L, Wang M, Li S, He
J, Ji J, Li K and Cao L: Identifying survival of pan-cancer
patients under immunotherapy using genomic mutation signature with
large sample cohorts. J Mol Med (Berl). 102:69–79. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fu Y, Yang Z, Hu Z, Yang Z, Pan Y, Chen J,
Wang J, Hu D, Zhou Z, Xu L, et al: Preoperative serum ctDNA
predicts early hepatocellular carcinoma recurrence and response to
systemic therapies. Hepatol Int. 16:868–878. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhu HY, Cao GY, Wang SP, Chen Y, Liu GD,
Gao YJ and Hu JP: POU2F1 promotes growth and metastasis of
hepatocellular carcinoma through the FAT1 signaling pathway. Am J
Cancer Res. 7:1665–1679. 2017.PubMed/NCBI
|
|
82
|
Xu J, Wang B, Liu ZT, Lai MC, Zhang ML and
Zheng SS: miR-223-3p regulating the occurrence and development of
liver cancer cells by targeting FAT1 gene. Math Biosci Eng.
17:1534–1547. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Huang ZL, Zhang PB, Zhang JT, Li F, Li TT
and Huang XY: Comprehensive genomic profiling identifies FAT1 as a
negative regulator of EMT, CTCs, and metastasis of hepatocellular
carcinoma. J Hepatocell Carcinoma. 10:369–382. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li X, Jiang J, Zhao X, Wang J, Han H, Zhao
Y, Peng B, Zhong R, Ying W and Qian X: N-glycoproteome analysis of
the secretome of human metastatic hepatocellular carcinoma cell
lines combining hydrazide chemistry, HILIC enrichment and mass
spectrometry. PLoS One. 8:e819212013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Meng P, Zhang YF, Zhang W, Chen X, Xu T,
Hu S, Liang X, Feng M, Yang X and Ho M: Identification of the
atypical cadherin FAT1 as a novel glypican-3 interacting protein in
liver cancer cells. Sci Rep. 11:402021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Malik N, Kundu A, Gupta Y, Irshad K, Arora
M, Goswami S, Mahajan S, Sarkar C, Suri V, Suri A, et al:
Protumorigenic role of the atypical cadherin FAT1 by the
suppression of PDCD10 via RelA/miR221-3p/222-3p axis in
glioblastoma. Mol Carcinog. 62:1817–1831. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li LC, Zhang M, Feng YK and Wang XJ:
IDH1-R132H suppresses glioblastoma malignancy through
FAT1-ROS-HIF-1α signaling. Neurol India. 68:1050–1058. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yu J, Gao H, Su Z, Yue F and Tian X:
Effect of FAT1 gene expression on the prognosis of medulloblastoma
in children: A protocol for systematic review and meta-analysis.
Medicine (Baltimore). 99:e230202020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Madan E, Dikshit B, Gowda SH, Srivastava
C, Sarkar C, Chattopadhyay P, Sinha S and Chosdol K: FAT1 is a
novel upstream regulator of HIF1α and invasion of high grade
glioma. Int J Cancer. 139:2570–2582. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Srivastava C, Irshad K, Dikshit B,
Chattopadhyay P, Sarkar C, Gupta DK, Sinha S and Chosdol K: FAT1
modulates EMT and stemness genes expression in hypoxic
glioblastoma. Int J Cancer. 142:805–812. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dikshit B, Irshad K, Madan E, Aggarwal N,
Sarkar C, Chandra PS, Gupta DK, Chattopadhyay P, Sinha S and
Chosdol K: FAT1 acts as an upstream regulator of oncogenic and
inflammatory pathways, via PDCD4, in glioma cells. Oncogene.
32:3798–3808. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Irshad K, Srivastava C, Malik N, Arora M,
Gupta Y, Goswami S, Sarkar C, Suri V, Mahajan S, Gupta DK, et al:
Upregulation of atypical cadherin FAT1 promotes an
immunosuppressive tumor microenvironment via TGF-β. Front Immunol.
13:8138882022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Wang L, Lyu S, Wang S, Shen H, Niu F, Liu
X, Liu J and Niu Y: Loss of FAT1 during the progression from DCIS
to IDC and predict poor clinical outcome in breast cancer. Exp Mol
Pathol. 100:177–183. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhao F, Miyashita M, Hattori M, Yoshimatsu
T, Howard F, Kaneva K, Jones R, Bell JSK, Fleming GF, Jaskowiak N,
et al: Racial disparities in pathological complete response among
patients receiving neoadjuvant chemotherapy for early-stage breast
cancer. JAMA Netw Open. 6:e2333292023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Li Z, Razavi P, Li Q, Toy W, Liu B, Ping
C, Hsieh W, Sanchez-Vega F, Brown DN, Da Cruz Paula AF, et al: Loss
of the FAT1 tumor suppressor promotes resistance to CDK4/6
inhibitors via the hippo pathway. Cancer Cell. 34:893–905. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Xi J and Ma CX: Sequencing endocrine
therapy for metastatic breast cancer: What do we do after disease
progression on a CDK4/6 inhibitor? Curr Oncol Rep. 22:572020.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bu J, Zhang Y, Wu S, Li H, Sun L, Liu Y,
Zhu X, Qiao X, Ma Q, Liu C, et al: KK-LC-1 as a therapeutic target
to eliminate ALDH(+) stem cells in triple negative breast cancer.
Nat Commun. 14:26022023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wong K, Abascal F, Ludwig L,
Aupperle-Lellbach H, Grassinger J, Wright CW, Allison SJ, Pinder E,
Phillips RM, Romero LP, et al: Cross-species oncogenomics offers
insight into human muscle-invasive bladder cancer. Genome Biol.
24:1912023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wang F, Liu P, An H and Zhang Y:
Sulforaphane suppresses the viability and metastasis, and promotes
the apoptosis of bladder cancer cells by inhibiting the expression
of FAT-1. Int J Mol Med. 46:1085–1095. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Cazier JB, Rao SR, McLean CM, Walker AK,
Wright BJ, Jaeger EE, Kartsonaki C, Marsden L, Yau C, Camps C, et
al: Whole-genome sequencing of bladder cancers reveals somatic
CDKN1A mutations and clinicopathological associations with mutation
burden. Nat Commun. 5:37562014. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Jiang S, Zhu Y, Chen Z, Huang Z, Liu B, Xu
Y, Li Z, Lin Z and Li M: S100A14 inhibits cell growth and
epithelial-mesenchymal transition (EMT) in prostate cancer through
FAT1-mediated Hippo signaling pathway. Hum Cell. 34:1215–1226.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Kang MH, Jeong GS, Smoot DT, Ashktorab H,
Hwang CM, Kim BS, Kim HS and Park YY: Verteporfin inhibits gastric
cancer cell growth by suppressing adhesion molecule FAT1.
Oncotarget. 8:98887–98897. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang W, Ji K, Min C, Zhang C, Yang L,
Zhang Q, Tian Z, Zhang M, Wang X and Li X: Oncogenic LINC00857
recruits TFAP2C to elevate FAT1 expression in gastric cancer.
Cancer Sci. 114:63–74. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Holowatyj AN, Wen W, Gibbs T, Seagle HM,
Keller SR, Edwards DRV, Washington MK, Eng C, Perea J, Zheng W and
Guo X: Racial/Ethnic and sex differences in somatic cancer gene
mutations among patients with early-onset colorectal cancer. Cancer
Discov. 13:570–579. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Li P, Meng Q, Xue Y, Teng Z, Chen H, Zhang
J, Xu Y, Wang S, Yu R, Ou Q, et al: Comprehensive genomic profiling
of colorectal cancer patients reveals differences in mutational
landscapes among clinical and pathological subgroups. Front Oncol.
12:10001462022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tang J, Peng W, Tian C, Zhang Y, Ji D,
Wang L, Jin K, Wang F, Shao Y, Wang X and Sun Y: Molecular
characteristics of early-onset compared with late-onset colorectal
cancer: A case controlled study. Int J Surg. 110:4559–4570.
2024.PubMed/NCBI
|
|
107
|
Jiang NN, Yue GGL, Li P, Ye YS, Gomes AJ,
Kwok FHF, Lee JKM, Gao S, Lau CB and Xu G: Discovery of
dearomatized isoprenylated acylphloroglucinols with colon tumor
suppressive activities in mice via inhibiting NFκB-FAT1-PDCD4
signaling activation. Eur J Med Chem. 239:1145322022. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yang J, Zhao S, Su J, Liu S, Wu Z, Ma W,
Tang M, Wu J, Mao E, Han L, et al: Comprehensive genomic profiling
reveals prognostic signatures and insights into the molecular
landscape of colorectal cancer. Front Oncol. 13:12855082023.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Grifantini R, Taranta M, Gherardini L,
Naldi I, Parri M, Grandi A, Giannetti A, Tombelli S, Lucarini G,
Ricotti L, et al: Magnetically driven drug delivery systems
improving targeted immunotherapy for colon-rectal cancer. J Control
Release. 280:76–86. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Ardjmand A, de Bock CE, Shahrokhi S, Lincz
LF, Boyd AW, Burns GF and Thorne RF: Fat1 cadherin provides a novel
minimal residual disease marker in acute lymphoblastic leukemia.
Hematology. 18:315–322. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zhou H, Xiao M, Zhou X, Hao Y, Xin C, Tang
Y, Liang Y, Zhang Y and Li S: Aplastic anemia preceding acute
lymphoblastic leukemia in an adult with FAT1 mutation. Minerva Med.
110:593–594. 2019.PubMed/NCBI
|
|
112
|
Feng J, Li Y, Jia Y, Fang Q, Gong X, Dong
X, Ru K, Li Q, Zhao X, Liu K, et al: Spectrum of somatic mutations
detected by targeted next-generation sequencing and their
prognostic significance in adult patients with acute lymphoblastic
leukemia. J Hematol Oncol. 10:612017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Sun X, Liu X, Li Y, Shi X, Li Y, Tan R,
Jiang Y, Sui X, Ge X, Xu H, et al: Characteristics of molecular
genetic mutations and their correlation with prognosis in
adolescent and adult patients with acute lymphoblastic leukemia.
Oncology. 102:85–98. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chang YH, Yu CH, Jou ST, Lin CY, Lin KH,
Lu MY, Wu KH, Chang HH, Lin DT, Lin SW, et al: Targeted sequencing
to identify genetic alterations and prognostic markers in pediatric
T-cell acute lymphoblastic leukemia. Sci Rep. 11:7692021.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
de Bock CE, Ardjmand A, Molloy TJ, Bone
SM, Johnstone D, Campbell DM, Shipman KL, Yeadon TM, Holst J,
Spanevello MD, et al: The Fat1 cadherin is overexpressed and an
independent prognostic factor for survival in paired
diagnosis-relapse samples of precursor B-cell acute lymphoblastic
leukemia. Leukemia. 26:918–926. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Neumann M, Seehawer M, Schlee C, Vosberg
S, Heesch S, von der Heide EK, Graf A, Krebs S, Blum H, Gökbuget N,
et al: FAT1 expression and mutations in adult acute lymphoblastic
leukemia. Blood Cancer J. 4:e2242014. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Liu Y, Easton J, Shao Y, Maciaszek J, Wang
Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, et al:
The genomic landscape of pediatric and young adult T-lineage acute
lymphoblastic leukemia. Nat Genet. 49:1211–1218. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Liebig S, Neumann M, Silva P,
Ortiz-Tanchez J, Schulze V, Isaakidis K, Schlee C, Schroeder MP,
Beder T, Morris LGT, et al: FAT1 expression in T-cell acute
lymphoblastic leukemia (T-ALL) modulates proliferation and WNT
signaling. Sci Rep. 13:9722023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
de Bock CE, Down M, Baidya K, Sweron B,
Boyd AW, Fiers M, Burns GF, Molloy TJ, Lock RB, Soulier J, et al:
T-cell acute lymphoblastic leukemias express a unique truncated
FAT1 isoform that cooperates with NOTCH1 in leukemia development.
Haematologica. 104:e204–e207. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Garg M, Nagata Y, Kanojia D, Mayakonda A,
Yoshida K, Keloth SH, Zang ZJ, Okuno Y, Shiraishi Y, Chiba K, et
al: Profiling of somatic mutations in acute myeloid leukemia with
FLT3-ITD at diagnosis and relapse. Blood. 126:2491–2501. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Sethi S, Madden B, Moura MC, Nasr SH,
Klomjit N, Gross L, Negron V, Charlesworth MC, Alexander MP, Leung
N, et al: Hematopoietic stem cell transplant-membranous nephropathy
is associated with protocadherin FAT1. J Am Soc Nephrol.
33:1033–1044. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ahn JS, Kim HJ, Kim YK, Lee SS, Jung SH,
Yang DH, Lee JJ, Kim NY, Choi SH, Jung CW, et al: DNMT3A R882
mutation with FLT3-ITD positivity is an extremely poor prognostic
factor in patients with normal-karyotype acute myeloid leukemia
after allogeneic hematopoietic cell transplantation. Biol Blood
Marrow Transplant. 22:61–70. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zeng X, Zhang Y, Zhao K, Zhou L, Zhou Y,
Xuan L, Cao R, Xu J, Dai M and Liu Q: Somatic mutations predict
prognosis in myelodysplastic syndrome patients with normal
karyotypes. Signal Transduct Target Ther. 6:2742021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zhong WJ, Liu XD, Zhong LY, Li KB, Sun QX,
Xu X, Wei T, Li QS and Zhu ZG: Comparison of gene mutation spectra
in younger and older Chinese acute myeloid leukemia patients and
its prognostic value. Gene. 770:1453442021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Huang X, Li Y, Zhang J, Yan L, Zhao H,
Ding L, Bhatara S, Yang X, Yoshimura S, Yang W, et al: Single-cell
systems pharmacology identifies development-driven drug response
and combination therapy in B cell acute lymphoblastic leukemia.
Cancer Cell. 42:552–567. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Laginestra MA, Cascione L, Motta G,
Fuligni F, Agostinelli C, Rossi M, Sapienza MR, Righi S, Broccoli
A, Indio V, et al: Whole exome sequencing reveals mutations in FAT1
tumor suppressor gene clinically impacting on peripheral T-cell
lymphoma not otherwise specified. Mod Pathol. 33:179–187. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Laginestra MA, Cascione L, Motta G,
Fuligni F, Agostinelli C, Rossi M, Sapienza MR, Righi S, Broccoli
A, Indio V, et al: Correction: Whole exome sequencing reveals
mutations in FAT1 tumor suppressor gene clinically impacting on
peripheral T-cell lymphoma not otherwise specified. Mod Pathol.
33:3192020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhang C, Mou B, Xu J, Wang J, Liu Q, Yang
Y, Tang W, Zhong X and Xu C: Angioimmunoblastic T-cell lymphoma:
Novel recurrent mutations and prognostic biomarkers by cell-free
DNA profiling. Br J Haematol. 203:807–819. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Hansen SV, Hansen MH, Cédile O, Møller MB,
Haaber J, Abildgaard N and Nyvold CG: Detailed characterization of
the transcriptome of single B cells in mantle cell lymphoma
suggesting a potential use for SOX4. Sci Rep. 11:190922021.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Zhao A, Wu F, Wang Y, Li J, Xu W and Liu
H: Analysis of genetic alterations in ocular adnexal
mucosa-associated lymphoid tissue lymphoma with whole-exome
sequencing. Front Oncol. 12:8176352022. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Yang P, Liu SZ, Li CY, Zhang WL, Wang J,
Chen YT, Li S, Liu CL, Liu H, Cai QQ, et al: Genetic and prognostic
analysis of blastoid and pleomorphic mantle cell lymphoma: A
multicenter analysis in China. Ann Hematol. 103:2381–2391. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Kortüm KM, Langer C, Monge J, Bruins L,
Zhu YX, Shi CX, Jedlowski P, Egan JB, Ojha J, Bullinger L, et al:
Longitudinal analysis of 25 sequential sample-pairs using a custom
multiple myeloma mutation sequencing panel (M(3)P). Ann Hematol.
94:1205–1211. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Sethi S, Madden B, Moura MC, Nasr SH,
Alexander MP, Debiec H, Torrel N, Gross L, Negron V, Specks U, et
al: FAT1 is a target antigen in a subset of de novo allograft
membranous nephropathy associated with antibody mediated rejection.
Kidney Int. 106:985–990. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Zhang Q, Li MK, Hu XY, Wu YX, Wang YY,
Zhao PP, Cheng LN, Yu RH, Zhang XD, Chen S, et al: The tumor
suppressor Fat1 is dispensable for normal murine hematopoiesis. J
Leukoc Biol. 116:909–914. 2024. View Article : Google Scholar : PubMed/NCBI
|