Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2025 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review)

  • Authors:
    • Tao Wang
    • Junting Li
    • Jun Du
    • Wei Zhou
    • Guang Lu
  • View Affiliations

    Affiliations: Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China, Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China, Department of Ultrasonic Examination, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China, Department of Hematology, Shengli Oilfield Central Hospital, Dongying, Shandong 257000, P.R. China
  • Published online on: December 20, 2024     https://doi.org/10.3892/ol.2024.14856
  • Article Number: 110
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The FAT atypical cadherin 1 (FAT1) gene is the ortholog of the Drosophila fat gene and encodes the protocadherin FAT1. FAT1 belongs to the cadherin superfamily, a group of full‑length membrane proteins that contain cadherin‑like repeats. In various types of human cancer, FAT1 is one of the most commonly mutated genes, and is considered to be an emerging cancer biomarker and a potential target for novel therapies. However, the biological functions of FAT1 and the precise downstream signaling pathways that it mediates have remained to be fully elucidated. The present review discussed the current literature on FAT1, focusing on FAT1 mutations and expression levels, and their impact on signaling pathways and mechanisms in various types of cancer, including both solid tumors and hematological malignancies, such as esophageal squamous cell carcinoma, head and neck squamous cell carcinoma, lung squamous cell carcinoma, hepatocellular carcinoma, glioma, breast cancer, acute lymphoblastic leukemia, acute myeloid leukemia, lymphoma and myeloma. The present review aimed to provide further insights and research directions for future studies on FAT1 as an oncogenic factor or tumor suppressor.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Tanoue T and Takeichi M: New insights into Fat cadherins. J Cell Sci. 118:2347–2353. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Irshad K, Malik N, Arora M, Gupta Y, Sinha S and Chosdol K: The quest for ligands and binding partners of atypical cadherin FAT1. Transl Oncol. 14:1010972021. View Article : Google Scholar : PubMed/NCBI

3 

Dunne J, Hanby AM, Poulsom R, Jones TA, Sheer D, Chin WG, Da SM, Zhao Q, Beverley PC and Owen MJ: Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34-q35 and encodes a putative adhesion molecule. Genomics. 30:207–223. 1995. View Article : Google Scholar : PubMed/NCBI

4 

Sadeqzadeh E, de Bock CE, Zhang XD, Shipman KL, Scott NM, Song C, Yeadon T, Oliveira CS, Jin B, Hersey P, et al: Dual processing of FAT1 cadherin protein by human melanoma cells generates distinct protein products. J Biol Chem. 286:28181–28191. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Cao LL, Riascos-Bernal DF, Chinnasamy P, Dunaway CM, Hou R, Pujato MA, O'Rourke BP, Miskolci V, Guo L, Hodgson L, et al: Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 539:575–578. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Magg T, Schreiner D, Solis GP, Bade EG and Hofer HW: Processing of the human protocadherin Fat1 and translocation of its cytoplasmic domain to the nucleus. Exp Cell Res. 307:100–108. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Riascos-Bernal DF, Maira A and Sibinga NES: The atypical cadherin FAT1 limits mitochondrial respiration and proliferation of vascular smooth muscle cells. Front Cardiovasc Med. 9:9057172022. View Article : Google Scholar : PubMed/NCBI

8 

Hou R, Liu L, Anees S, Hiroyasu S and Sibinga NE: The Fat1 cadherin integrates vascular smooth muscle cell growth and migration signals. J Cell Biol. 173:417–429. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Riascos-Bernal DF, Ressa G, Korrapati A and Sibinga NES: The FAT1 cadherin drives vascular smooth muscle cell migration. Cells. 12:16212023. View Article : Google Scholar : PubMed/NCBI

10 

Tanoue T and Takeichi M: Mammalian Fat1 cadherin regulates actin dynamics and cell-cell contact. J Cell Biol. 165:517–528. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Saburi S, Hester I, Goodrich L and McNeil H: Functional interactions between Fat family cadherins in tissue morphogenesis and planar polarity. Development. 139:1806–1820. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Ahmed AF, de Bock CE, Sontag E, Hondermarck H, Lincz LF and Thorne R: FAT1 cadherin controls neuritogenesis during NTera2 cell differentiation. Biochem Biophys Res Commun. 514:625–631. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Braun GS, Kuszka A, Dau C, Kriz W and Moeller MJ: Interaction of atypical cadherin Fat1 with SoHo adaptor proteins CAP/ponsin and ArgBP2. Biochem Biophys Res Commun. 472:88–94. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Peng Z, Gong Y and Liang X: Role of FAT1 in health and disease. Oncol Lett. 21:3982021. View Article : Google Scholar : PubMed/NCBI

15 

Li M, Zhong Y and Wang M: Fat1 suppresses the tumor-initiating ability of nonsmall cell lung cancer cells by promoting Yes-associated protein 1 nuclear-cytoplasmic translocation. Environ Toxicol. 36:2333–2341. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Katoh M: Function and cancer genomics of FAT family genes (review). Int J Oncol. 41:1913–1918. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Morris LG, Ramaswami D and Chan TA: The FAT epidemic: A gene family frequently mutated across multiple human cancer types. Cell Cycle. 12:1011–1012. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Morris LG, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan Ş, Eng S, Kannan K, Zou Y, Peng L, et al: Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet. 45:253–261. 2013. View Article : Google Scholar : PubMed/NCBI

19 

He Z, Li R and Jiang H: Mutations and copy number abnormalities of hippo pathway components in human cancers. Front Cell Dev Biol. 9:6617182021. View Article : Google Scholar : PubMed/NCBI

20 

Faraji F, Ramirez SI, Quiroz PY, Mendez-Molina AN and Gutkind JS: Genomic hippo pathway alterations and persistent YAP/TAZ activation: New hallmarks in head and neck cancer. Cells. 11:13702022. View Article : Google Scholar : PubMed/NCBI

21 

Chen M, Sun X, Wang Y, Ling K, Chen C, Cai X, Liang X and Liang Z: FAT1 inhibits the proliferation and metastasis of cervical cancer cells by binding β-catenin. Int J Clin Exp Pathol. 12:3807–3818. 2019.PubMed/NCBI

22 

Ma W, Niu Z, Han D, Wang B and Wang X: Circ-FAT1 up-regulates FOSL2 expression by sponging miR-619-5p to facilitate colorectal cancer progression. Biochem Genet. 60:1362–1379. 2022. View Article : Google Scholar : PubMed/NCBI

23 

Jia L, Wang Y and Wang CY: circFAT1 promotes cancer stemness and immune evasion by promoting STAT3 activation. Adv Sci (Weinh). 8:20033762021. View Article : Google Scholar : PubMed/NCBI

24 

Wang TL, Miao XJ, Shuai YR, Sun HP, Wang X, Yang M and Zhang N: FAT1 inhibits the proliferation of DLBCL cells via increasing the m(6)A modification of YAP1 mRNA. Sci Rep. 14:118362024. View Article : Google Scholar : PubMed/NCBI

25 

Pastushenko I, Mauri F, Song Y, de Cock F, Meeusen B, Swedlund B, Impens F, Van Haver D, Opitz M, Thery M, et al: Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature. 589:448–455. 2021. View Article : Google Scholar : PubMed/NCBI

26 

Zhang X, Liu J, Liang X, Chen J, Hong J, Li L, He Q and Cai X: History and progression of Fat cadherins in health and disease. Onco Targets Ther. 9:7337–7343. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Katoh Y and Katoh M: Comparative integromics on FAT1, FAT2, FAT3 and FAT4. Int J Mol Med. 18:523–528. 2006.PubMed/NCBI

28 

Chen ZG, Saba NF and Teng Y: The diverse functions of FAT1 in cancer progression: Good, bad, or ugly? J Exp Clin Cancer Res. 41:2482022. View Article : Google Scholar : PubMed/NCBI

29 

Wang Z, Lin K and Xiao H: A pan-cancer analysis of the FAT1 in human tumors. Sci Rep. 12:215982022. View Article : Google Scholar : PubMed/NCBI

30 

Zhu W, Yang L, Gao Y, Zhou Y, Shi Y, Liu K, Yu R, Shao Y, Zhang W, Wu G and He J: Clinical value of FAT1 mutations to indicate the immune response in colorectal cancer patients. Genomics. 116:1108082024. View Article : Google Scholar : PubMed/NCBI

31 

Ding C, Huang H, Wu D, Chen C, Hua Y, Liu J, Li Y, Liu H and Chen J: Pan-cancer analysis predict that FAT1 is a therapeutic target and immunotherapy biomarker for multiple cancer types including non-small cell lung cancer. Front Immunol. 15:13690732024. View Article : Google Scholar : PubMed/NCBI

32 

Valletta D, Czech B, Spruss T, Ikenberg K, Wild P, Hartmann A, Weiss TS, Oefner PJ, Müller M, Bosserhoff AK and Hellerbrand C: Regulation and function of the atypical cadherin FAT1 in hepatocellular carcinoma. Carcinogenesis. 35:1407–1415. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Pennathur A, Gibson MK, Jobe BA and Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Song Y, Li L, Ou Y, Gao Z, Li E, Li X, Zhang W, Wang J, Xu L, Zhou Y, et al: Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 509:91–95. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun ZM, Zhang F, Zhao ZR, Li ZT, Liu ZY, et al: Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 46:1097–1102. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Cui Y, Chen H, Xi R, Cui H, Zhao Y, Xu E, Yan T, Lu X, Huang F, Kong P, et al: Whole-genome sequencing of 508 patients identifies key molecular features associated with poor prognosis in esophageal squamous cell carcinoma. Cell Res. 30:902–913. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Zhang N, Shi J, Shi X, Chen W and Liu J: Mutational characterization and potential prognostic biomarkers of Chinese patients with esophageal squamous cell carcinoma. Onco Targets Ther. 13:12797–12809. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Zhang L, Zhou Y, Cheng C, Cui H, Cheng L, Kong P, Wang J, Li Y, Chen W, Song B, et al: Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am J Hum Genet. 107:3752020. View Article : Google Scholar : PubMed/NCBI

39 

Hu X, Zhai Y, Shi R, Qian Y, Cui H, Yang J, Bi Y, Yan T, Yang J, Ma Y, et al: FAT1 inhibits cell migration and invasion by affecting cellular mechanical properties in esophageal squamous cell carcinoma. Oncol Rep. 39:2136–2146. 2018.PubMed/NCBI

40 

Mishra R, Nikoo MZ, Veeraballi S and Singh A: Venetoclax and hypomethylating agent combination in myeloid malignancies: Mechanisms of synergy and challenges of resistance. Int J Mol Sci. 25:4842023. View Article : Google Scholar : PubMed/NCBI

41 

Wang Y, Wang G, Ma Y, Teng J, Wang Y, Cui Y, Dong Y, Shao S, Zhan Q and Liu X: FAT1, a direct transcriptional target of E2F1, suppresses cell proliferation, migration and invasion in esophageal squamous cell carcinoma. Chin J Cancer Res. 31:609–619. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Hu X, Zhai Y, Kong P, Cui H, Yan T, Yang J, Qian Y, Ma Y, Wang F, Li H, et al: FAT1 prevents epithelial mesenchymal transition (EMT) via MAPK/ERK signaling pathway in esophageal squamous cell cancer. Cancer Lett. 397:83–93. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T and Sethi G: Association of the epithelial-mesenchymal transition (EMT) with cisplatin resistance. Int J Mol Sci. 21:40022020. View Article : Google Scholar : PubMed/NCBI

44 

Hu X, Zhai Y, Kong P, Cui H, Yan T, Yang J, Qian Y, Ma Y, Wang F, Li H, et al: Corrigendum to ‘FAT1 prevents epithelial mesenchymal transition (EMT) via MAPK/ERK signaling pathway in esophageal squamous cell cancer’ [(Canc. Lett. 397 (2017) 83–93)]. Cancer Lett. 494:1–2. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Zhai Y, Shan C, Zhang H, Kong P, Zhang L, Wang Y, Hu X and Cheng X: FAT1 downregulation enhances stemness and cisplatin resistance in esophageal squamous cell carcinoma. Mol Cell Biochem. 477:2689–2702. 2022. View Article : Google Scholar : PubMed/NCBI

46 

Mai Z, Yuan J, Yang H, Fang S, Xie X, Wang X, Xie J, Wen J and Fu J: Inactivation of Hippo pathway characterizes a poor-prognosis subtype of esophageal cancer. JCI Insight. 7:e1552182022. View Article : Google Scholar : PubMed/NCBI

47 

Lu Y, Wang Z, Zhou L, Ma Z, Zhang J, Wu Y, Shao Y and Yang Y: FAT1 and PTPN14 regulate the malignant progression and chemotherapy resistance of esophageal cancer through the hippo signaling pathway. Anal Cell Pathol (Amst). 2021:92903722021.PubMed/NCBI

48 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Cramer JD, Burtness B, Le QT and Ferris R: The changing therapeutic landscape of head and neck cancer. Nat Rev Clin Oncol. 16:669–683. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Leemans CR, Snijders PJF and Brakenhoff RH: The molecular landscape of head and neck cancer. Nat Rev Cancer. 18:269–282. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Cancer Genome Atlas Network, . Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 517:576–582. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Campbell JD, Yau C, Bowlby R, Liu Y, Brennan K, Fan H, Taylor AM, Wang C, Walter V, Akbani R, et al: Genomic, pathway network, and immunologic features distinguishing squamous carcinomas. Cell Rep. 23:194–212.e6. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Alamoud KA and Kukuruzinska MA: Emerging insights into Wnt/β-catenin signaling in head and neck cancer. J Dent Res. 97:665–673. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Zwirner K, Hilke FJ, Demidov G, Fernandez JS, Ossowski S, Gani C, Thorwarth D, Riess O, Zips D, Schroeder C and Welz S: Radiogenomics in head and neck cancer: Correlation of radiomic heterogeneity and somatic mutations in TP53, FAT1 and KMT2D. Strahlenther Onkol. 195:771–779. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Moreira A, Poulet A, Masliah-Planchon J, Lecerf C, Vacher S, Chérif LL, Dupain C, Marret G, Girard E, Syx L, et al: Prognostic value of tumor mutational burden in patients with oral cavity squamous cell carcinoma treated with upfront surgery. ESMO Open. 6:1001782021. View Article : Google Scholar : PubMed/NCBI

56 

Kim S, Lee C, Kim H and Yoon SO: Genetic characteristics of advanced oral tongue squamous cell carcinoma in young patients. Oral Oncol. 144:1064662023. View Article : Google Scholar : PubMed/NCBI

57 

Su SC, Lin CW, Liu YF, Fan WL, Chen MK, Yu CP, Yang WE, Su CW, Chuang CY, Li WH, et al: Exome sequencing of oral squamous cell carcinoma reveals molecular subgroups and novel therapeutic opportunities. Theranostics. 7:1088–1099. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Chai AWY, Lim KP and Cheong SC: Translational genomics and recent advances in oral squamous cell carcinoma. Semin Cancer Biol. 61:71–83. 2020. View Article : Google Scholar : PubMed/NCBI

59 

Kim KT, Kim BS and Kim JH: Association between FAT1 mutation and overall survival in patients with human papillomavirus-negative head and neck squamous cell carcinoma. Head Neck. 38 (Suppl 1):E2021–E2029. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Xi Y, Negrao MV, Akagi K, Xiao W, Jiang B, Warner SC, Dunn JD, Wang J, Symer DE and Gillison ML: Noninvasive genomic profiling of somatic mutations in oral cavity cancers. Oral Oncol. 140:1063722023. View Article : Google Scholar : PubMed/NCBI

61 

Inchanalkar M, Srivatsa S, Ambatipudi S, Bhosale PG, Patil A, Schäffer AA, Beerenwinkel N and Mahimkar MB: Genome-wide DNA methylation profiling of HPV-negative leukoplakia and gingivobuccal complex cancers. Clin Epigenetics. 15:932023. View Article : Google Scholar : PubMed/NCBI

62 

Chaudhary S, Dam V, Ganguly K, Sharma S, Atri P, Chirravuri-Venkata R, Cox JL, Sayed Z, Jones DT, Ganti AK, et al: Differential mutation spectrum and immune landscape in African Americans versus Whites: A possible determinant to health disparity in head and neck cancer. Cancer Lett. 492:44–53. 2020. View Article : Google Scholar : PubMed/NCBI

63 

Santos-de-Frutos K, Segrelles C and Lorz C: Hippo pathway and yap signaling alterations in squamous cancer of the head and neck. J Clin Med. 8:21312019. View Article : Google Scholar : PubMed/NCBI

64 

Martin D, Degese MS, Vitale-Cross L, Iglesias-Bartolome R, Valera JLC, Wang Z, Feng X, Yeerna H, Vadmal V, Moroishi T, et al: Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. Nat Commun. 9:23722018. View Article : Google Scholar : PubMed/NCBI

65 

Chen N, Golczer G, Ghose S, Lin B, Langenbucher A, Webb J, Bhanot H, Abt NB, Lin D, Varvares M, et al: YAP1 maintains active chromatin state in head and neck squamous cell carcinomas that promotes tumorigenesis through cooperation with BRD4. Cell Rep. 39:1109702022. View Article : Google Scholar : PubMed/NCBI

66 

Alonso-Juarranz M, Sen O, Pérez P, González-Corchón MA, Cabezas-Camarero S, Saiz-Pardo M, Viñas-Lopez J, Recio-Poveda L, Botella LM and Falahat F: The distinctive features behind the aggressiveness of oral and cutaneous squamous cell carcinomas. Cancers (Basel). 15:32272023. View Article : Google Scholar : PubMed/NCBI

67 

Lin SC, Lin LH, Yu SY, Kao SY, Chang KW, Cheng HW and Liu CJ: FAT1 somatic mutations in head and neck carcinoma are associated with tumor progression and survival. Carcinogenesis. 39:1320–1330. 2018.PubMed/NCBI

68 

Wu MH, Lu RY, Yu SJ, Tsai YZ, Lin YC, Bai ZY, Liao RY, Hsu YC, Chen CC and Cai BH: PTC124 rescues nonsense mutation of two tumor suppressor genes NOTCH1 and FAT1 to repress HNSCC cell proliferation. Biomedicines. 10:29482022. View Article : Google Scholar : PubMed/NCBI

69 

Lan T, Ge Q, Zheng K, Huang L, Yan Y, Zheng L, Lu Y and Zheng D: FAT1 Upregulates in oral squamous cell carcinoma and promotes cell proliferation via cell cycle and DNA repair. Front Oncol. 12:8700552022. View Article : Google Scholar : PubMed/NCBI

70 

Kim SI, Woo SR, Noh JK, Lee MK, Lee YC, Lee JW, Ko SG and Eun YG: Clinical significance of FAT1 gene mutation and mRNA expression in patients with head and neck squamous cell carcinoma. Mol Oncol. 16:1661–1679. 2022. View Article : Google Scholar : PubMed/NCBI

71 

Hsu TN, Huang CM, Huang CS, Huang MS, Yeh CT, Chao TY and Bamodu OA: Targeting FAT1 inhibits carcinogenesis, induces oxidative stress and enhances cisplatin sensitivity through deregulation of LRP5/WNT2/GSS signaling axis in oral squamous cell carcinoma. Cancers (Basel). 11:18832019. View Article : Google Scholar : PubMed/NCBI

72 

Chen Z, Zhang C, Chen J, Wang D, Tu J, Van Waes C, Saba NF, Chen ZG and Chen Z: The proteomic landscape of growth factor signaling networks associated with FAT1 mutations in head and neck cancers. Cancer Res. 81:4402–4416. 2021. View Article : Google Scholar : PubMed/NCBI

73 

Xu F, Cui WQ, Liu C, Feng F, Liu R, Zhang J and Sun CG: Prognostic biomarkers correlated with immune infiltration in non-small cell lung cancer. FEBS Open Bio. 13:72–88. 2023. View Article : Google Scholar : PubMed/NCBI

74 

Liu Q, Zhang J, Guo C, Wang M, Wang C, Yan Y, Sun L, Wang D, Zhang L, Yu H, et al: Proteogenomic characterization of small cell lung cancer identifies biological insights and subtype-specific therapeutic strategies. Cell. 187:184–203.e28. 2024. View Article : Google Scholar : PubMed/NCBI

75 

Peng J, Xiao L, Zou D and Han L: A somatic mutation signature predicts the best overall response to anti-programmed cell death protein-1 treatment in epidermal growth factor receptor/anaplastic lymphoma kinase-negative non-squamous non-small cell lung cancer. Front Med (Lausanne). 9:8083782022. View Article : Google Scholar : PubMed/NCBI

76 

Hao F, Ma Q and Zhong D: Potential predictive value of comutant LRP1B and FAT for immune response in non-small cell lung cancer: LRP1B and FAT comutation enhance immune response. Transl Oncol. 24:1014932022. View Article : Google Scholar : PubMed/NCBI

77 

Fang W, Ma Y, Yin JC, Hong S, Zhou H, Wang A, Wang F, Bao H, Wu X, Yang Y, et al: comprehensive genomic profiling identifies novel genetic predictors of response to anti-PD-(L)1 therapies in non-small cell lung cancer. Clin Cancer Res. 25:5015–5026. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Zhang W, Tang Y, Guo Y, Kong Y, Shi F, Sheng C, Wang S and Wang Q: Favorable immune checkpoint inhibitor outcome of patients with melanoma and NSCLC harboring FAT1 mutations. NPJ Precis Oncol. 6:462022. View Article : Google Scholar : PubMed/NCBI

79 

Zhang L, Wang Y, Wang L, Wang M, Li S, He J, Ji J, Li K and Cao L: Identifying survival of pan-cancer patients under immunotherapy using genomic mutation signature with large sample cohorts. J Mol Med (Berl). 102:69–79. 2024. View Article : Google Scholar : PubMed/NCBI

80 

Fu Y, Yang Z, Hu Z, Yang Z, Pan Y, Chen J, Wang J, Hu D, Zhou Z, Xu L, et al: Preoperative serum ctDNA predicts early hepatocellular carcinoma recurrence and response to systemic therapies. Hepatol Int. 16:868–878. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Zhu HY, Cao GY, Wang SP, Chen Y, Liu GD, Gao YJ and Hu JP: POU2F1 promotes growth and metastasis of hepatocellular carcinoma through the FAT1 signaling pathway. Am J Cancer Res. 7:1665–1679. 2017.PubMed/NCBI

82 

Xu J, Wang B, Liu ZT, Lai MC, Zhang ML and Zheng SS: miR-223-3p regulating the occurrence and development of liver cancer cells by targeting FAT1 gene. Math Biosci Eng. 17:1534–1547. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Huang ZL, Zhang PB, Zhang JT, Li F, Li TT and Huang XY: Comprehensive genomic profiling identifies FAT1 as a negative regulator of EMT, CTCs, and metastasis of hepatocellular carcinoma. J Hepatocell Carcinoma. 10:369–382. 2023. View Article : Google Scholar : PubMed/NCBI

84 

Li X, Jiang J, Zhao X, Wang J, Han H, Zhao Y, Peng B, Zhong R, Ying W and Qian X: N-glycoproteome analysis of the secretome of human metastatic hepatocellular carcinoma cell lines combining hydrazide chemistry, HILIC enrichment and mass spectrometry. PLoS One. 8:e819212013. View Article : Google Scholar : PubMed/NCBI

85 

Meng P, Zhang YF, Zhang W, Chen X, Xu T, Hu S, Liang X, Feng M, Yang X and Ho M: Identification of the atypical cadherin FAT1 as a novel glypican-3 interacting protein in liver cancer cells. Sci Rep. 11:402021. View Article : Google Scholar : PubMed/NCBI

86 

Malik N, Kundu A, Gupta Y, Irshad K, Arora M, Goswami S, Mahajan S, Sarkar C, Suri V, Suri A, et al: Protumorigenic role of the atypical cadherin FAT1 by the suppression of PDCD10 via RelA/miR221-3p/222-3p axis in glioblastoma. Mol Carcinog. 62:1817–1831. 2023. View Article : Google Scholar : PubMed/NCBI

87 

Li LC, Zhang M, Feng YK and Wang XJ: IDH1-R132H suppresses glioblastoma malignancy through FAT1-ROS-HIF-1α signaling. Neurol India. 68:1050–1058. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Yu J, Gao H, Su Z, Yue F and Tian X: Effect of FAT1 gene expression on the prognosis of medulloblastoma in children: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 99:e230202020. View Article : Google Scholar : PubMed/NCBI

89 

Madan E, Dikshit B, Gowda SH, Srivastava C, Sarkar C, Chattopadhyay P, Sinha S and Chosdol K: FAT1 is a novel upstream regulator of HIF1α and invasion of high grade glioma. Int J Cancer. 139:2570–2582. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Srivastava C, Irshad K, Dikshit B, Chattopadhyay P, Sarkar C, Gupta DK, Sinha S and Chosdol K: FAT1 modulates EMT and stemness genes expression in hypoxic glioblastoma. Int J Cancer. 142:805–812. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Dikshit B, Irshad K, Madan E, Aggarwal N, Sarkar C, Chandra PS, Gupta DK, Chattopadhyay P, Sinha S and Chosdol K: FAT1 acts as an upstream regulator of oncogenic and inflammatory pathways, via PDCD4, in glioma cells. Oncogene. 32:3798–3808. 2013. View Article : Google Scholar : PubMed/NCBI

92 

Irshad K, Srivastava C, Malik N, Arora M, Gupta Y, Goswami S, Sarkar C, Suri V, Mahajan S, Gupta DK, et al: Upregulation of atypical cadherin FAT1 promotes an immunosuppressive tumor microenvironment via TGF-β. Front Immunol. 13:8138882022. View Article : Google Scholar : PubMed/NCBI

93 

Wang L, Lyu S, Wang S, Shen H, Niu F, Liu X, Liu J and Niu Y: Loss of FAT1 during the progression from DCIS to IDC and predict poor clinical outcome in breast cancer. Exp Mol Pathol. 100:177–183. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Zhao F, Miyashita M, Hattori M, Yoshimatsu T, Howard F, Kaneva K, Jones R, Bell JSK, Fleming GF, Jaskowiak N, et al: Racial disparities in pathological complete response among patients receiving neoadjuvant chemotherapy for early-stage breast cancer. JAMA Netw Open. 6:e2333292023. View Article : Google Scholar : PubMed/NCBI

95 

Li Z, Razavi P, Li Q, Toy W, Liu B, Ping C, Hsieh W, Sanchez-Vega F, Brown DN, Da Cruz Paula AF, et al: Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the hippo pathway. Cancer Cell. 34:893–905. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Xi J and Ma CX: Sequencing endocrine therapy for metastatic breast cancer: What do we do after disease progression on a CDK4/6 inhibitor? Curr Oncol Rep. 22:572020. View Article : Google Scholar : PubMed/NCBI

97 

Bu J, Zhang Y, Wu S, Li H, Sun L, Liu Y, Zhu X, Qiao X, Ma Q, Liu C, et al: KK-LC-1 as a therapeutic target to eliminate ALDH(+) stem cells in triple negative breast cancer. Nat Commun. 14:26022023. View Article : Google Scholar : PubMed/NCBI

98 

Wong K, Abascal F, Ludwig L, Aupperle-Lellbach H, Grassinger J, Wright CW, Allison SJ, Pinder E, Phillips RM, Romero LP, et al: Cross-species oncogenomics offers insight into human muscle-invasive bladder cancer. Genome Biol. 24:1912023. View Article : Google Scholar : PubMed/NCBI

99 

Wang F, Liu P, An H and Zhang Y: Sulforaphane suppresses the viability and metastasis, and promotes the apoptosis of bladder cancer cells by inhibiting the expression of FAT-1. Int J Mol Med. 46:1085–1095. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Cazier JB, Rao SR, McLean CM, Walker AK, Wright BJ, Jaeger EE, Kartsonaki C, Marsden L, Yau C, Camps C, et al: Whole-genome sequencing of bladder cancers reveals somatic CDKN1A mutations and clinicopathological associations with mutation burden. Nat Commun. 5:37562014. View Article : Google Scholar : PubMed/NCBI

101 

Jiang S, Zhu Y, Chen Z, Huang Z, Liu B, Xu Y, Li Z, Lin Z and Li M: S100A14 inhibits cell growth and epithelial-mesenchymal transition (EMT) in prostate cancer through FAT1-mediated Hippo signaling pathway. Hum Cell. 34:1215–1226. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Kang MH, Jeong GS, Smoot DT, Ashktorab H, Hwang CM, Kim BS, Kim HS and Park YY: Verteporfin inhibits gastric cancer cell growth by suppressing adhesion molecule FAT1. Oncotarget. 8:98887–98897. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Zhang W, Ji K, Min C, Zhang C, Yang L, Zhang Q, Tian Z, Zhang M, Wang X and Li X: Oncogenic LINC00857 recruits TFAP2C to elevate FAT1 expression in gastric cancer. Cancer Sci. 114:63–74. 2023. View Article : Google Scholar : PubMed/NCBI

104 

Holowatyj AN, Wen W, Gibbs T, Seagle HM, Keller SR, Edwards DRV, Washington MK, Eng C, Perea J, Zheng W and Guo X: Racial/Ethnic and sex differences in somatic cancer gene mutations among patients with early-onset colorectal cancer. Cancer Discov. 13:570–579. 2023. View Article : Google Scholar : PubMed/NCBI

105 

Li P, Meng Q, Xue Y, Teng Z, Chen H, Zhang J, Xu Y, Wang S, Yu R, Ou Q, et al: Comprehensive genomic profiling of colorectal cancer patients reveals differences in mutational landscapes among clinical and pathological subgroups. Front Oncol. 12:10001462022. View Article : Google Scholar : PubMed/NCBI

106 

Tang J, Peng W, Tian C, Zhang Y, Ji D, Wang L, Jin K, Wang F, Shao Y, Wang X and Sun Y: Molecular characteristics of early-onset compared with late-onset colorectal cancer: A case controlled study. Int J Surg. 110:4559–4570. 2024.PubMed/NCBI

107 

Jiang NN, Yue GGL, Li P, Ye YS, Gomes AJ, Kwok FHF, Lee JKM, Gao S, Lau CB and Xu G: Discovery of dearomatized isoprenylated acylphloroglucinols with colon tumor suppressive activities in mice via inhibiting NFκB-FAT1-PDCD4 signaling activation. Eur J Med Chem. 239:1145322022. View Article : Google Scholar : PubMed/NCBI

108 

Yang J, Zhao S, Su J, Liu S, Wu Z, Ma W, Tang M, Wu J, Mao E, Han L, et al: Comprehensive genomic profiling reveals prognostic signatures and insights into the molecular landscape of colorectal cancer. Front Oncol. 13:12855082023. View Article : Google Scholar : PubMed/NCBI

109 

Grifantini R, Taranta M, Gherardini L, Naldi I, Parri M, Grandi A, Giannetti A, Tombelli S, Lucarini G, Ricotti L, et al: Magnetically driven drug delivery systems improving targeted immunotherapy for colon-rectal cancer. J Control Release. 280:76–86. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Ardjmand A, de Bock CE, Shahrokhi S, Lincz LF, Boyd AW, Burns GF and Thorne RF: Fat1 cadherin provides a novel minimal residual disease marker in acute lymphoblastic leukemia. Hematology. 18:315–322. 2013. View Article : Google Scholar : PubMed/NCBI

111 

Zhou H, Xiao M, Zhou X, Hao Y, Xin C, Tang Y, Liang Y, Zhang Y and Li S: Aplastic anemia preceding acute lymphoblastic leukemia in an adult with FAT1 mutation. Minerva Med. 110:593–594. 2019.PubMed/NCBI

112 

Feng J, Li Y, Jia Y, Fang Q, Gong X, Dong X, Ru K, Li Q, Zhao X, Liu K, et al: Spectrum of somatic mutations detected by targeted next-generation sequencing and their prognostic significance in adult patients with acute lymphoblastic leukemia. J Hematol Oncol. 10:612017. View Article : Google Scholar : PubMed/NCBI

113 

Sun X, Liu X, Li Y, Shi X, Li Y, Tan R, Jiang Y, Sui X, Ge X, Xu H, et al: Characteristics of molecular genetic mutations and their correlation with prognosis in adolescent and adult patients with acute lymphoblastic leukemia. Oncology. 102:85–98. 2024. View Article : Google Scholar : PubMed/NCBI

114 

Chang YH, Yu CH, Jou ST, Lin CY, Lin KH, Lu MY, Wu KH, Chang HH, Lin DT, Lin SW, et al: Targeted sequencing to identify genetic alterations and prognostic markers in pediatric T-cell acute lymphoblastic leukemia. Sci Rep. 11:7692021. View Article : Google Scholar : PubMed/NCBI

115 

de Bock CE, Ardjmand A, Molloy TJ, Bone SM, Johnstone D, Campbell DM, Shipman KL, Yeadon TM, Holst J, Spanevello MD, et al: The Fat1 cadherin is overexpressed and an independent prognostic factor for survival in paired diagnosis-relapse samples of precursor B-cell acute lymphoblastic leukemia. Leukemia. 26:918–926. 2012. View Article : Google Scholar : PubMed/NCBI

116 

Neumann M, Seehawer M, Schlee C, Vosberg S, Heesch S, von der Heide EK, Graf A, Krebs S, Blum H, Gökbuget N, et al: FAT1 expression and mutations in adult acute lymphoblastic leukemia. Blood Cancer J. 4:e2242014. View Article : Google Scholar : PubMed/NCBI

117 

Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, et al: The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 49:1211–1218. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Liebig S, Neumann M, Silva P, Ortiz-Tanchez J, Schulze V, Isaakidis K, Schlee C, Schroeder MP, Beder T, Morris LGT, et al: FAT1 expression in T-cell acute lymphoblastic leukemia (T-ALL) modulates proliferation and WNT signaling. Sci Rep. 13:9722023. View Article : Google Scholar : PubMed/NCBI

119 

de Bock CE, Down M, Baidya K, Sweron B, Boyd AW, Fiers M, Burns GF, Molloy TJ, Lock RB, Soulier J, et al: T-cell acute lymphoblastic leukemias express a unique truncated FAT1 isoform that cooperates with NOTCH1 in leukemia development. Haematologica. 104:e204–e207. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Garg M, Nagata Y, Kanojia D, Mayakonda A, Yoshida K, Keloth SH, Zang ZJ, Okuno Y, Shiraishi Y, Chiba K, et al: Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood. 126:2491–2501. 2015. View Article : Google Scholar : PubMed/NCBI

121 

Sethi S, Madden B, Moura MC, Nasr SH, Klomjit N, Gross L, Negron V, Charlesworth MC, Alexander MP, Leung N, et al: Hematopoietic stem cell transplant-membranous nephropathy is associated with protocadherin FAT1. J Am Soc Nephrol. 33:1033–1044. 2022. View Article : Google Scholar : PubMed/NCBI

122 

Ahn JS, Kim HJ, Kim YK, Lee SS, Jung SH, Yang DH, Lee JJ, Kim NY, Choi SH, Jung CW, et al: DNMT3A R882 mutation with FLT3-ITD positivity is an extremely poor prognostic factor in patients with normal-karyotype acute myeloid leukemia after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 22:61–70. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Zeng X, Zhang Y, Zhao K, Zhou L, Zhou Y, Xuan L, Cao R, Xu J, Dai M and Liu Q: Somatic mutations predict prognosis in myelodysplastic syndrome patients with normal karyotypes. Signal Transduct Target Ther. 6:2742021. View Article : Google Scholar : PubMed/NCBI

124 

Zhong WJ, Liu XD, Zhong LY, Li KB, Sun QX, Xu X, Wei T, Li QS and Zhu ZG: Comparison of gene mutation spectra in younger and older Chinese acute myeloid leukemia patients and its prognostic value. Gene. 770:1453442021. View Article : Google Scholar : PubMed/NCBI

125 

Huang X, Li Y, Zhang J, Yan L, Zhao H, Ding L, Bhatara S, Yang X, Yoshimura S, Yang W, et al: Single-cell systems pharmacology identifies development-driven drug response and combination therapy in B cell acute lymphoblastic leukemia. Cancer Cell. 42:552–567. 2024. View Article : Google Scholar : PubMed/NCBI

126 

Laginestra MA, Cascione L, Motta G, Fuligni F, Agostinelli C, Rossi M, Sapienza MR, Righi S, Broccoli A, Indio V, et al: Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified. Mod Pathol. 33:179–187. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Laginestra MA, Cascione L, Motta G, Fuligni F, Agostinelli C, Rossi M, Sapienza MR, Righi S, Broccoli A, Indio V, et al: Correction: Whole exome sequencing reveals mutations in FAT1 tumor suppressor gene clinically impacting on peripheral T-cell lymphoma not otherwise specified. Mod Pathol. 33:3192020. View Article : Google Scholar : PubMed/NCBI

128 

Zhang C, Mou B, Xu J, Wang J, Liu Q, Yang Y, Tang W, Zhong X and Xu C: Angioimmunoblastic T-cell lymphoma: Novel recurrent mutations and prognostic biomarkers by cell-free DNA profiling. Br J Haematol. 203:807–819. 2023. View Article : Google Scholar : PubMed/NCBI

129 

Hansen SV, Hansen MH, Cédile O, Møller MB, Haaber J, Abildgaard N and Nyvold CG: Detailed characterization of the transcriptome of single B cells in mantle cell lymphoma suggesting a potential use for SOX4. Sci Rep. 11:190922021. View Article : Google Scholar : PubMed/NCBI

130 

Zhao A, Wu F, Wang Y, Li J, Xu W and Liu H: Analysis of genetic alterations in ocular adnexal mucosa-associated lymphoid tissue lymphoma with whole-exome sequencing. Front Oncol. 12:8176352022. View Article : Google Scholar : PubMed/NCBI

131 

Yang P, Liu SZ, Li CY, Zhang WL, Wang J, Chen YT, Li S, Liu CL, Liu H, Cai QQ, et al: Genetic and prognostic analysis of blastoid and pleomorphic mantle cell lymphoma: A multicenter analysis in China. Ann Hematol. 103:2381–2391. 2024. View Article : Google Scholar : PubMed/NCBI

132 

Kortüm KM, Langer C, Monge J, Bruins L, Zhu YX, Shi CX, Jedlowski P, Egan JB, Ojha J, Bullinger L, et al: Longitudinal analysis of 25 sequential sample-pairs using a custom multiple myeloma mutation sequencing panel (M(3)P). Ann Hematol. 94:1205–1211. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Sethi S, Madden B, Moura MC, Nasr SH, Alexander MP, Debiec H, Torrel N, Gross L, Negron V, Specks U, et al: FAT1 is a target antigen in a subset of de novo allograft membranous nephropathy associated with antibody mediated rejection. Kidney Int. 106:985–990. 2024. View Article : Google Scholar : PubMed/NCBI

134 

Zhang Q, Li MK, Hu XY, Wu YX, Wang YY, Zhao PP, Cheng LN, Yu RH, Zhang XD, Chen S, et al: The tumor suppressor Fat1 is dispensable for normal murine hematopoiesis. J Leukoc Biol. 116:909–914. 2024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang T, Li J, Du J, Zhou W and Lu G: Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review). Oncol Lett 29: 110, 2025.
APA
Wang, T., Li, J., Du, J., Zhou, W., & Lu, G. (2025). Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review). Oncology Letters, 29, 110. https://doi.org/10.3892/ol.2024.14856
MLA
Wang, T., Li, J., Du, J., Zhou, W., Lu, G."Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review)". Oncology Letters 29.3 (2025): 110.
Chicago
Wang, T., Li, J., Du, J., Zhou, W., Lu, G."Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review)". Oncology Letters 29, no. 3 (2025): 110. https://doi.org/10.3892/ol.2024.14856
Copy and paste a formatted citation
x
Spandidos Publications style
Wang T, Li J, Du J, Zhou W and Lu G: Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review). Oncol Lett 29: 110, 2025.
APA
Wang, T., Li, J., Du, J., Zhou, W., & Lu, G. (2025). Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review). Oncology Letters, 29, 110. https://doi.org/10.3892/ol.2024.14856
MLA
Wang, T., Li, J., Du, J., Zhou, W., Lu, G."Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review)". Oncology Letters 29.3 (2025): 110.
Chicago
Wang, T., Li, J., Du, J., Zhou, W., Lu, G."Recent advances in the role of atypical cadherin FAT1 in tumorigenesis (Review)". Oncology Letters 29, no. 3 (2025): 110. https://doi.org/10.3892/ol.2024.14856
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team