|
1
|
Kelley PM and Njus D: Cytochrome b561
spectral changes associated with electron transfer in
chromaffin-vesicle ghosts. J Biol Chem. 261:6429–6432. 1986.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Srivastava M: Xenopus cytochrome b561:
Molecular confirmation of a general five transmembrane structure
and developmental regulation at the gastrula stage. DNA Cell Biol.
15:1075–1080. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Asard H, Horemans N and Caubergs RJ:
Transmembrane electron transport in ascorbate-loaded plasma
membrane vesicles from higher plants involves a b-type cytochrome.
FEBS Lett. 306:143–146. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Flatmark T, Terland O and Helle KB:
Electron carriers of the bovine adrenal chromaffin granules.
Biochim. Biophys. Acta. 226:9–19. 1971.
|
|
5
|
Venter JC, Adams MD, Myers EW, Li PW,
Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al:
The sequence of the human genome. Science. 291:1304–1351. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mouse Genome Sequencing Consortium, .
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal
P, Agarwala R, Ainscough R, Alexandersson M, et al: Initial
sequencing and comparative analysis of the mouse genome. Nature.
420:520–562. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Adams MD, Celniker SE, Holt RA, Evans CA,
Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF,
et al: The genome sequence of Drosophila melanogaster.
Science. 287:2185–2195. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Holt RA, Subramanian GM, Halpern A, Sutton
GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides
R, et al: The genome sequence of the malaria mosquito Anopheles
gambiae. Science. 298:129–149. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
C. elegans Sequencing Consortium, . Genome
sequence of the nematode C. elegans: A platform for investigating
biology. Science. 282:2012–2018. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Asada A, Kusakawa T, Orii H, Agata K,
Watanabe K and Tsubaki M: Planarian cytochrome b561: Conservation
of a six transmembrane structure and localization along the central
and peripheral nervous system. J Biochem. 131:175–182. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Arabidopsis Genome Initiative, . Analysis
of the genome sequence of the flowering plant Arabidopsis thaliana.
Nature. 408:796–815. 2004.
|
|
12
|
Goff SA, Ricke D, Lan TH, Presting G, Wang
R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, et al: A
draft sequence of the rice genome (Oryza sativa L. ssp.
japonica). Science. 296:92–100. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lu P, Ma D, Yan C, Gong X, Du M and Shi Y:
Structure and mechanism of a eukaryotic transmembrane
ascorbate-dependent oxidoreductase. Proc Natl Acad Sci USA.
111:1813–1818. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tsubaki M, Takeuchi F and Nakanishi N:
Cytochrome b561 protein family: Expanding roles and versatile
transmembrane electron transfer abilities as predicted by a new
classification system and protein sequence motif analyses. Biochim
Biophys Acta. 1753:174–190. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Silsand T and Flatmark T: Purification of
cytochrome b-561: An integral heme protein of the adrenal
chromaffin granule membrane. Biochim Biophys Acta. 359:257–266.
1974. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bérczi A and Zimányi L: The trans-membrane
cytochrome b561 proteins: Structural information and biological
function. Curr Protein Pept Sci. 15:745–760. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
McKie AT, Barrow D, Latunde-Dada GO, Rolfs
A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A,
et al: An iron-regulated ferric reductase associated with the
absorption of dietary iron. Science. 291:1755–1759. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Abbate V and Hider R: Iron in biology.
Metallomics. 9:1467–1469. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Galy B, Conrad M and Muckenthaler M:
Mechanisms controlling cellular and systemic iron homeostasis. Nat
Rev Mol Cell Biol. 25:133–155. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kawabata H: Transferrin and transferrin
receptors update. Free Radic Biol Med. 133:46–54. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Srai SK and Sharp P: Proteins of Iron
Homeostasis. Iron Physiology and Pathophysiology in Humans.
Anderson GJ and McLaren GD: Humana Press; Totowa NJ, USA: pp.
pp3–25. 2012, ISBN 978-1-60327-484-5. View Article : Google Scholar
|
|
22
|
Hubert N and Hentze MW: Previously
uncharacterized isoforms of divalent metal transporter (DMT)-1:
Implications for regulation and cellular function. Proc Natl Acad
Sci USA. 99:12345–12350. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lemler DJ, Lynch ML, Tesfay L, Deng Z,
Paul BT, Wang X, Hegde P, Manz DH, Torti SV and Torti FM: DCYTB is
a predictor of outcome in breast cancer that functions via
iron-independent mechanisms. Breast Cancer Res. 19:252017.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Menniti FS, Knoth J and Diliberto EJ Jr:
Role of ascorbic acid in dopamine beta-hydroxylation. The
endogenous enzyme cofactor and putative electron donor for cofactor
regeneration. J Biol Chem. 261:16901–16908. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kent UM and Fleming PJ: Purified
cytochrome b561 catalyzes transmembrane electron transfer for
dopamine beta-hydroxylase and peptidyl glycine alpha-amidating
monooxygenase activities in reconstituted systems. J Biol Chem.
262:8174–8178. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lane DJ and Richardson DR: The active role
of vitamin C in mammalian iron metabolism:. Much more than just
enhanced iron absorption! = Free Radic Biol Med. 75:69–83.
2014.PubMed/NCBI
|
|
27
|
Atanassova BD and Tzatchev KN: Ascorbic
acid-important for iron metabolism. Folia Med (Plovdiv). 50:11–16.
2008.PubMed/NCBI
|
|
28
|
Lane DJR and Lawen A: Non-transferrin iron
reduction and uptake are regulated by transmembrane ascorbate
cycling in K562 cells. J Biol Chem. 283:12701–12708. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lane DJ, Robinson SR, Czerwinska H, Bishop
GM and Lawen A: Two routes of iron accumulation in astrocytes:
Ascorbate-dependent ferrous iron uptake via the divalent metal
transporter (DMT1) plus an independent route for ferric iron.
Biochem J. 432:123–132. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lane DJ, Chikhani S, Richardson V and
Richardson DR: Transferrin iron uptake is stimulated by ascorbate
via an intracellular reductive mechanism. Biochim Biophys Acta.
1833:1527–1541. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Toth I, Rogers JT, McPhee JA, Elliott SM,
Abramson SL and Bridges KR: Ascorbic acid enhances iron-induced
ferritin translation in human leukemia and hepatoma cells. J Biol
Chem. 270:2846–2852. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Toth I and Bridges KR: Ascorbic acid
enhances ferritin mRNA translation by an IRP/aconitase switch. J
Biol Chem. 270:19540–19544. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bridges KR: Ascorbic acid inhibits
lysosomal autophagy of ferritin. J Biol Chem. 262:14773–1478. 1987.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hoffman KE, Yanelli K and Bridges KR:
Ascorbic acid and iron metabolism: Alterations in lysosomal
function. Am J Clin Nutr. 54 (6 Suppl):S1188S–S1192S. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Richardson DR: Role of ceruloplasmin and
ascorbate in cellular iron release. J Lab Clin Med. 134:454–465.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Crichton R: In Iron Metabolism: From
Molecular Mechanisms to Cinical Consequences. pp. 17–58. John Wiley
and Sons; 2009
|
|
37
|
Sun H, Zhang C, Cao S, Sheng T, Dong N and
Xu Y: Fenton reactions drive nucleotide and ATP syntheses in
cancer. J Mol Cell Biol. 10:448–459. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Akatsuka S, Yamashita Y, Ohara H, Liu YT,
Izumiya M, Abe K, Ochiai M, Jiang L, Nagai H, Okazaki Y, et al:
Fenton reaction induced cancer in wild type rats recapitulates
genomic alterations observed in human cancer. PLoS One.
7:e434032012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Torti SV and Torti FM: Iron and cancer:
2020 vision. Cancer Res. 80:5435–5448. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Bian Z, Hann HW, Ye Z, Yin C, Wang Y, Fang
W, Wan S, Wang C and Tao K: Ferritin level prospectively predicts
hepatocarcinogenesis in patients with chronic hepatitis B virus
infection. Oncol Lett. 16:3499–3508. 2018.PubMed/NCBI
|
|
41
|
Song A, Eo W, Kim S, Shim B and Lee S:
Significance of serum ferritin as a prognostic factor in advanced
hepatobiliary cancer patients treated with Korean medicine: A
retrospective cohort study. BMC Complement Altern Med. 18:1762018.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Xue X, Ramakrishnan SK, Weisz K, Triner D,
Xie L, Attili D, Pant A, Győrffy B, Zhan M, Carter-Su C, et al:
Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling
to promote colorectal tumorigenesis. Cell Metab. 24:447–461. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gray CP, Arosio P and Hersey P:
Association of increased levels of heavy-chain ferritin with
increased CD4+ CD25+ regulatory T-cell levels in patients with
melanoma. Clin Cancer Res. 9:2551–2559. 2003.PubMed/NCBI
|
|
44
|
Liu NQ, De Marchi T, Timmermans AM,
Beekhof R, Trapman-Jansen AM, Foekens R, Look MP, van Deurzen CH,
Span PN, Sweep FC, et al: Ferritin heavy chain in triple negative
breast cancer: A favorable prognostic marker that relates to a
cluster of differentiation 8 positive (CD8+) effector T-cell
response. Mol Cell Proteomics. 13:1814–1827. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lelièvre P, Sancey L, Coll JL, Deniaud A
and Busser B: Iron dysregulation in human cancer: Altered
metabolism, biomarkers for diagnosis, prognosis, monitoring and
rationale for therapy. Cancers (Basel). 12:35242020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang Y, Yu L, Ding J and Chen Y: Iron
metabolism in cancer. Int J Mol Sci. 20:952018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Habashy HO, Powe DG, Staka CM, Rakha EA,
Ball G, Green AR, Aleskandarany M, Paish EC, Douglas Macmillan R,
Nicholson RI, et al: Transferrin receptor (CD71) is a marker of
poor prognosis in breast cancer and can predict response to
tamoxifen. Breast Cancer Res Treat. 119:283–293. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Alkhateeb AA, Han B and Connor JR:
Ferritin stimulates breast cancer cells through an iron-independent
mechanism and is localized within tumor-associated macrophages.
Breast Cancer Res Treat. 137:733–744. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Pinnix ZK, Miller LD, Wang W, D'Agostino R
Jr, Kute T, Willingham MC, Farris M, Petty WJ, de Hoyos A, Weaver
KE and Wentworth S: Ferroportin and iron regulation in breast
cancer progression and prognosis. Sci Transl Med. 2:43ra562010.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Morales M and Xue X: Targeting iron
metabolism in cancer therapy. Theranostics. 11:8412–8429. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bashtovyy D, Bérczi A, Asard H and Páli T:
Structure prediction for the di-heme cytochrome b561 protein
family. Protoplasma. 221:31–40. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Perin MS, Fried VA, Slaughter CA and
Südhof TC: The structure of cytochrome b561, a secretory
vesicle-specific electron transport protein. EMBO J. 7:2697–2703.
1988. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Asard H, Kapila J, Verelst W and Bérczi A:
Higher-plant plasma membrane cytochrome b561: A protein in search
of a function. Protoplasma. 217:77–93. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Degli Esposti M, Kamensky YuA, Arutjunjan
AM and Konstantinov AA: A model for the molecular organization of
cytochrome beta-561 in chromaffin granule membranes. FEBS Lett.
254:74–78. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tsubaki M, Nakayama M, Okuyama E, Ichikawa
Y and Hori H: Existence of two heme B centers in cytochrome b561
from bovine adrenal chromaffin vesicles as revealed by a new
purification procedure and EPR spectroscopy. J Biol Chem.
272:23206–23210. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Oakhill JS, Marritt SJ, Gareta EG, Cammack
R and McKie AT: Functional characterization of human duodenal
cytochrome b (Cybrd1): Redox properties in relation to iron and
ascorbate metabolism. Biochim Biophys Acta. 1777:260–268. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bérczi A, Su D, Lakshminarasimhan M,
Vargas A and Asard H: Heterologous expression and site-directed
mutagenesis of an ascorbate-reducible cytochrome b561. Arch Biochem
Biophys. 443:82–92. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kamensky Y, Liu W, Tsai AL, Kulmacz RJ and
Palmer G: Axial ligation and stoichiometry of heme centers in
adrenal cytochrome b561. Biochemistry. 46:8647–8658. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Okuyama E, Yamamoto R, Ichikawa Y and
Tsubaki M: Structural basis for the electron transfer across the
chromaffin vesicle membranes catalyzed by cytochrome b561: Analyses
of cDNA nucleotide sequences and visible absorption spectra.
Biochim. Biophys. Acta. 1383:269–278. 1998.PubMed/NCBI
|
|
60
|
Takeuchi F, Kobayashi K, Tagawa S and
Tsubaki M: Ascorbate inhibits the carbethoxylation of two histidyl
and one tyrosyl residues indispensable for the transmembrane
electron transfer reaction of cytochrome b561. Biochemistry.
40:4067–4076. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Aravind L: DOMON: An ancient extracellular
domain in dopamine beta-monooxygenase and other proteins. Trends
Biochem Sci. 26:524–526. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Picco C, Scholz-Starke J, Naso A, Preger
V, Sparla F, Trost P and Carpaneto A: How are cytochrome b561
electron currents controlled by membrane voltage and substrate
availability? Antioxid Redox Signal. 21:384–391. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Srivastava M, Gibson KR, Pollard HB and
Fleming PJ: Human cytochrome b561: A revised hypothesis for
conformation in membranes which reconciles sequence and functional
information. Biochem J. 303:915–921. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Nakanishi N, Takeuchi F and Tsubaki M:
Histidine cycle mechanism for the concerted proton/electron
transfer from ascorbate to the cytosolic haem b centre of
cytochrome b561: A unique machinery for the biological
transmembrane electron transfer. J Biochem. 142:553–560. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kipp BH, Kelley PM and Njus D: Evidence
for an essential histidine residue in the ascorbate-binding site of
cytochrome b561. Biochemistry. 40:3931–3937. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Iliadi KG, Avivi A, Iliadi NN, Knight D,
Korol AB, Nevo E, Taylor P, Moran MF, Kamyshev NG and Boulianne GL:
Nemy encodes a cytochrome b561 that is required for Drosophila
learning and memory. Proc Natl Acad Sci USA. 105:19986–19991. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Su D and Asard H: Three mammalian
cytochromes b561 are ascorbate-dependent ferrireductases. FEBS J.
273:3722–3734. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
VanDuijn MM, Tijssen K, VanSteveninck J,
Van Den Broek PJ and Van Der Zee J: Erythrocytes reduce
extracellular ascorbate free radicals using intracellular ascorbate
as an electron donor. J Biol Chem. 275:27720–27725. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Asard H, Venken M, Caubergs R, Reijnders
W, Oltmann FL and De Greef JA: b-Type cytochromes in higher plant
plasma membranes. Plant Physiol. 90:1077–1083. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Askerlund P, Larsson C and Widell S:
Cytochromes of plant plasma membranes. Characterization by
absorbance difference spectroscopy and redox titration. Physiol
Plant. 76:123–134. 1989. View Article : Google Scholar
|
|
71
|
Vargas JD, Herpers B, McKie AT, Gledhill
S, McDonnell J, van den Heuvel M, Davies KE and Ponting CP: Stromal
cell-derived receptor 2 and cytochrome b561 are functional ferric
reductases. Biochim Biophys Acta. 1651:116–123. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Herrmann T, Muckenthaler M, van der Hoeven
F, Brennan K, Gehrke SG, Hubert N, Sergi C, Gröne HJ, Kaiser I,
Gosch I, et al: Iron overload in adult Hfe-deficient mice
independent of changes in the steady-state expression of the
duodenal iron transporters DMT1 and Ireg1/ferroportin. J Mol Med.
82:39–48. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Escriou V, Laporte F, Garin J, Brandolin G
and Vignais PV: Purification and physical properties of a novel
type of cytochrome b from rabbit peritoneal neutrophils. J Biol
Chem. 269:14007–14014. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pruss RM and Shepard EA: Cytochrome b561
can be detected in many neuroendocrine tissues using a specific
monoclonal antibody. Neuroscience. 22:149–157. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Srivastava M: Genomic structure and
expression of the human gene encoding cytochrome b561, an integral
protein of the chromaffin granule membrane. J Biol Chem.
270:22714–22720. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Njus D and Kelley PM: The
secretory-vesicle ascorbate-regenerating system: A chain of
concerted H+/e(−)-transfer reactions. Biochim Biophys Acta.
1144:235–248. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Olak ME, Thirdborough SM, Ung CY, Elliott
T, Healy E, Freeman TC and Ardern-Jones MR: Distinct molecular
signature of human skin langerhans cells denotes critical
differences in cutaneous dendritic cell immune regulation. J Invest
Dermatol. 134:695–703. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Van den Berg MP, Almomani R, Biaggioni I,
van Faassen M, van der Harst P, Silljé HHW, Mateo Leach I,
Hemmelder MH, Navis G, Luijckx GJ, et al: Mutations in CYB561
causing a novel orthostatic hypotension syndrome. Circ Res.
122:846–854. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Willis S, Villalobos VM, Gevaert O,
Abramovitz M, Williams C, Sikic BI and Leyland-Jones B: Single gene
prognostic biomarkers in ovarian cancer: A meta-analysis. PLoS One.
11:e01491832016. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Olarte CK and Bagamasbad DP: SAT-132 the
secretory vesicle membrane protein, CYB561, promotes the growth and
metastatic potential of castration-resistant neuroendocrine
prostate cancer. J Endocr Soc. 4 (Suppl 1):SAT–132. 2020.
View Article : Google Scholar
|
|
81
|
Zhou X, Shen G, Ren D, Guo X, Han J, Guo
Q, Zhao F, Wang M, Dong Q, Li Z and Zhao J: Expression and clinical
prognostic value of CYB561 in breast cancer. J Cancer Res Clin
Oncol. 148:1879–1892. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yang X, Zhao Y, Shao Q and Jiang G:
Cytochrome b561 serves as a potential prognostic biomarker and
target for breast cancer. Int J Gen Med. 14:10447–10464. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhou X, Guo X, Han J, Wang M, Liu Z, Ren
D, Zhao J and Li Z: Cytochrome b561 regulates iron metabolism by
activating the Akt/mTOR pathway to promote Breast Cancer Cells
proliferation. Exp Cell Res. 431:1137602023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhao T, Wang C, Zhao N, Qiao G, Hua J,
Meng D, Liu L, Zhong B, Liu M, Wang Y, et al: CYB561 promotes HER2+
breast cancer proliferation by inhibiting H2AFY degradation. Cell
Death Discov. 10:382024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ganasen M, Togashi H, Takeda H, Asakura H,
Tosha T, Yamashita K, Hirata K, Nariai Y, Urano T, Yuan X, et al:
Structural basis for promotion of duodenal iron absorption by
enteric ferric reductase with ascorbate. Commun Biol. 1:1202018.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Su D, May JM, Koury MJ and Asard H: Human
erythrocyte membranes contain a cytochrome b561 that may be
involved in extracellular ascorbate recycling. J Biol Chem.
281:39852–39859. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wyman S, Simpson RJ, McKie AT and Sharp
PA: Dcytb (Cybrd1) functions as both a ferric and a cupric
reductase in vitro. FEBS Lett. 582:1901–1906. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Asard H, Barbaro R, Trost P and Bérczi A:
Cytochromes b561: Ascorbate-mediated trans-membrane electron
transport. Antioxid Redox Signal. 19:1026–1035. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Choi J, Masaratana P, Latunde-Dada GO,
Arno M, Simpson RJ and McKie AT: Duodenal reductase activity and
spleen iron stores are reduced and erythropoiesis is abnormal in
Dcytb knockout mice exposed to hypoxic conditions. J Nutr.
142:1929–1934. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Xue X, Taylor M, Anderson E, Hao C, Qu A,
Greenson JK, Zimmermann EM, Gonzalez FJ and Shah YM:
Hypoxia-inducible factor-2α activation promotes colorectal cancer
progression by dysregulating iron homeostasis. Cancer Res.
72:2285–2293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Brookes MJ, Hughes S, Turner FE, Reynolds
G, Sharma N, Ismail T, Berx G, McKie AT, Hotchin N, Anderson GJ, et
al: Modulation of iron transport proteins in human colorectal
carcinogenesis. Gut. 55:1449–1460. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Chen R, Cao J, Jiang W, Wang S and Cheng
J: Upregulated expression of CYBRD1 predicts poor prognosis of
patients with ovarian cancer. J Oncol. 2021:75484062021.PubMed/NCBI
|
|
93
|
Qing M, Zhou J, Chen W and Cheng L: Highly
expressed CYBRD1 associated with glioma recurrence regulates the
immune response of glioma cells to interferon. Evid Based
Complement Alternat Med. 2021:27932222021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Boult J, Roberts K, Brookes MJ, Hughes S,
Bury JP, Cross SS, Anderson GJ, Spychal R, Iqbal T and Tselepis C:
Overexpression of cellular iron import proteins is associated with
malignant progression of esophageal adenocarcinoma. Clin Cancer
Res. 14:379–387. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Rychtarcikova Z, Lettlova S, Tomkova V,
Korenkova V, Langerova L, Simonova E, Zjablovskaja P,
Alberich-Jorda M, Neuzil J and Truksa J: Tumor-initiating cells of
breast and prostate origin show alterations in the expression of
genes related to iron metabolism. Oncotarget. 8:6376–6398. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Lee HY, Li CC, Li WM, Hsu YL, Yeh HC, Ke
HL, Yeh BW, Huang CN, Li CF, Kuo PL and Wu WJ: Identification of
potential genes in upper tract urothelial carcinoma using
next-generation sequencing with bioinformatics and in vitro
analyses. PeerJ. 9:e113432021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Ma J, Huang W, Zhu C, Sun X, Zhang Q,
Zhang L, Qi Q, Bai X, Feng Y and Wang C: miR-423-3p activates FAK
signaling pathway to drive EMT process and tumor growth in lung
adenocarcinoma through targeting CYBRD1. J Clin Lab Anal.
35:e240442021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhang J, Cheng Y, Duan M, Qi N and Liu J:
Unveiling differentially expressed genes upon regulation of
transcription factors in sepsis. Biotech. 7:462017.
|
|
99
|
Al-Eitan LN, Tarkhan AH, Alghamdi MA,
Al-Qarqaz FA and Al-Kofahi HS: Transcriptome analysis of
HPV-induced warts and healthy skin in humans. BMC Med Genomics.
13:352020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Meng F, Fleming BA, Jia X, Rousek AA,
Mulvey MA and Ward DM: Lysosomal iron recycling in mouse
macrophages is dependent upon both LcytB and Steap3 reductases.
Blood Adv. 6:1692–1707. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang Z, Guo R, Trudeau SJ, Wolinsky E, Ast
T, Liang JH, Jiang C, Ma Y, Teng M, Mootha VK and Gewurz BE:
CYB561A3 is the key lysosomal iron reductase required for Burkitt
B-cell growth and survival. Blood. 138:2216–2230. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Lemonnier N, Melén E, Jiang Y, Joly S,
Ménard C, Aguilar D, Acosta-Perez E, Bergström A, Boutaoui N,
Bustamante M, et al: A novel whole blood gene expression signature
for asthma, dermatitis, and rhinitis multimorbidity in children and
adolescents. Allergy. 75:3248–3260. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Liu H, Liu L, Liu Q, He F and Zhu H:
LncRNA HOXD-AS1 affects proliferation and apoptosis of cervical
cancer cells by promoting FRRS1 expression via transcription factor
ELF1. Cell Cycle. 21:416–426. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ponting CP: Domain homologues of dopamine
b-hydroxylase and ferric reductase: Roles for iron metabolism in
neurodegenerative disorders? Hum Mol Genet. 10:1853–1858. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Binder J, Ursu O, Bologa C, Jiang S,
Maphis N, Dadras S, Chisholm D, Weick J, Myers O, Kumar P, et al:
Machine learning prediction and tau-based screening identifies
potential Alzheimer's disease genes relevant to immunity. Commun
Biol. 5:1252022. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Linton KM, Hey Y, Saunders E, Jeziorska M,
Denton J, Wilson CL, Swindell R, Dibben S, Miller CJ, Pepper SD, et
al: Acquisition of biologically relevant gene expression data by
Affymetrix microarray analysis of archival formalin-fixed
paraffin-embedded tumours. Br J Cancer. 98:1403–1414. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Li S, Shi J, Gao H, Yuan Y, Chen Q, Zhao
Z, Wang X, Li B, Ming L, Zhong J, et al: Identification of a gene
signature associated with radiotherapy and prognosis in gliomas.
Oncotarget. 8:88974–88987. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
El Behery M, Fujimura M, Kimura T and
Tsubaki M: Direct measurements of ferric reductase activity of
human 101F6 and its enhancement upon reconstitution into
phospholipid bilayer nanodisc. Biochem Biophys Rep.
21:1007302020.PubMed/NCBI
|
|
109
|
Mizutani A, Sanuki R, Kakimoto K, Kojo S
and Taketani S: Involvement of 101F6, a homologue of cytochrome
b561, in the reduction of ferric ions. J Biochem. 142:699–705.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Recuenco MC, Fujito M, Rahman MM, Sakamoto
Y, Takeuchi F and Tsubaki M: Functional expression and
characterization of human 101F6 protein, a homologue of cytochrome
b561 and a candidate tumor suppressor gene product. Biofactors.
34:219–230. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Recuenco MC, Rahman MM, Takeuchi F,
Kobayashi K and Tsubaki M: Electron transfer reactions of candidate
tumor suppressor 101F6 protein, a cytochrome b561 homologue, with
ascorbate and monodehydroascorbate radical. Biochemistry.
52:3660–3668. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ji L, Nishizaki M, Gao B, Burbee D, Kondo
M, Kamibayashi C, Xu K, Yen N, Atkinson EN, Fang B, et al:
Expression of several genes in the human chromosome 3p21.3
homozygous deletion region by an adenovirus vector results in tumor
suppressor activities in vitro and in vivo. Cancer Res.
62:2715–2720. 2002.PubMed/NCBI
|
|
113
|
Ji L, Minna JD and Roth JA: 3p21.3 tumor
suppressor cluster: Prospects for translational applications.
Future Oncol. 1:79–92. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lerman MI and Minna JD: The international
lung cancer chromosome 3p21.3 tumor suppressor gene consortium. The
630-kb lung cancer homozygous deletion region on human chromosome
3p21.3: Identification and evaluation of the resident candidate
tumor suppressor genes. Cancer Res. 60:6116–6133. 2000.PubMed/NCBI
|
|
115
|
Zabarovsky ER, Lerman MI and Minna JD:
Tumor suppressor genes on chromosome 3p involved in the
pathogenesis of lung and other cancers. Oncogene. 21:6915–6935.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Ohtani S, Iwamaru A, Deng W, Ueda K, Wu G,
Jayachandran G, Kondo S, Atkinson EN, Minna JD, Roth JA and Ji L:
Tumor suppressor 101F6 and ascorbate synergistically and
selectively inhibit non-small cell lung cancer growth by
caspase-independent apoptosis and autophagy. Cancer Res.
67:6293–6303. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Tao B, Shi J, Shuai S, Zhou H, Zhang H, Li
B, Wang X, Li G, He H and Zhong J: CYB561D2 up-regulation activates
STAT3 to induce immunosuppression and aggression in gliomas. J
Transl Med. 19:3382021. View Article : Google Scholar : PubMed/NCBI
|