Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
March-2025 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 29 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of the human cytochrome b561 family in iron metabolism and tumors (Review)

  • Authors:
    • Xiaofeng Zhou
    • Zheng An
    • Hao Lei
    • Hongyuan Liao
    • Xinjian Guo
  • View Affiliations / Copyright

    Affiliations: Pathology Department, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, P.R. China, Pathology Department, Qinghai Women and Children's Hospital, Xining, Qinghai 810007, P.R. China, Graduate School, Qinghai University, Xining, Qinghai 810001, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 111
    |
    Published online on: December 23, 2024
       https://doi.org/10.3892/ol.2024.14857
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The human cytochrome b561 (hCytb561) family consists of electron transfer transmembrane proteins characterized by six conserved α‑helical transmembrane domains and two β‑type heme cofactors. These proteins contribute to the regulation of iron metabolism and numerous different physiological and pathological processes by recycling ascorbic acid and maintaining iron reductase activity. Key members of this family include cytochrome b561 (CYB561), duodenal CYB561 (Dcytb), lysosomal CYB561 (LCytb), stromal cell‑derived receptor 2 (SDR2) and 101F6, which are widely expressed in human tissues and participate in the pathogenesis of several diseases and tumors. They are associated with the promotion or inhibition of tumor growth and progression in various malignancies and are potential therapeutic targets for malignant tumors. The present review summarizes the existing literature regarding the structure of the Cytb561 family, the basic functional characteristics of hCytb561 family members, and the roles of the CYB561, Dcytb, LCytb, SDR2 and 101F6 in various diseases and tumors.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Kelley PM and Njus D: Cytochrome b561 spectral changes associated with electron transfer in chromaffin-vesicle ghosts. J Biol Chem. 261:6429–6432. 1986. View Article : Google Scholar : PubMed/NCBI

2 

Srivastava M: Xenopus cytochrome b561: Molecular confirmation of a general five transmembrane structure and developmental regulation at the gastrula stage. DNA Cell Biol. 15:1075–1080. 1986. View Article : Google Scholar : PubMed/NCBI

3 

Asard H, Horemans N and Caubergs RJ: Transmembrane electron transport in ascorbate-loaded plasma membrane vesicles from higher plants involves a b-type cytochrome. FEBS Lett. 306:143–146. 1992. View Article : Google Scholar : PubMed/NCBI

4 

Flatmark T, Terland O and Helle KB: Electron carriers of the bovine adrenal chromaffin granules. Biochim. Biophys. Acta. 226:9–19. 1971.

5 

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al: The sequence of the human genome. Science. 291:1304–1351. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Mouse Genome Sequencing Consortium, . Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, et al: Initial sequencing and comparative analysis of the mouse genome. Nature. 420:520–562. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al: The genome sequence of Drosophila melanogaster. Science. 287:2185–2195. 2000. View Article : Google Scholar : PubMed/NCBI

8 

Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, et al: The genome sequence of the malaria mosquito Anopheles gambiae. Science. 298:129–149. 2002. View Article : Google Scholar : PubMed/NCBI

9 

C. elegans Sequencing Consortium, . Genome sequence of the nematode C. elegans: A platform for investigating biology. Science. 282:2012–2018. 1998. View Article : Google Scholar : PubMed/NCBI

10 

Asada A, Kusakawa T, Orii H, Agata K, Watanabe K and Tsubaki M: Planarian cytochrome b561: Conservation of a six transmembrane structure and localization along the central and peripheral nervous system. J Biochem. 131:175–182. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Arabidopsis Genome Initiative, . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408:796–815. 2004.

12 

Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, et al: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 296:92–100. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Lu P, Ma D, Yan C, Gong X, Du M and Shi Y: Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase. Proc Natl Acad Sci USA. 111:1813–1818. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Tsubaki M, Takeuchi F and Nakanishi N: Cytochrome b561 protein family: Expanding roles and versatile transmembrane electron transfer abilities as predicted by a new classification system and protein sequence motif analyses. Biochim Biophys Acta. 1753:174–190. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Silsand T and Flatmark T: Purification of cytochrome b-561: An integral heme protein of the adrenal chromaffin granule membrane. Biochim Biophys Acta. 359:257–266. 1974. View Article : Google Scholar : PubMed/NCBI

16 

Bérczi A and Zimányi L: The trans-membrane cytochrome b561 proteins: Structural information and biological function. Curr Protein Pept Sci. 15:745–760. 2014. View Article : Google Scholar : PubMed/NCBI

17 

McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, et al: An iron-regulated ferric reductase associated with the absorption of dietary iron. Science. 291:1755–1759. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Abbate V and Hider R: Iron in biology. Metallomics. 9:1467–1469. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Galy B, Conrad M and Muckenthaler M: Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 25:133–155. 2024. View Article : Google Scholar : PubMed/NCBI

20 

Kawabata H: Transferrin and transferrin receptors update. Free Radic Biol Med. 133:46–54. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Srai SK and Sharp P: Proteins of Iron Homeostasis. Iron Physiology and Pathophysiology in Humans. Anderson GJ and McLaren GD: Humana Press; Totowa NJ, USA: pp. pp3–25. 2012, ISBN 978-1-60327-484-5. View Article : Google Scholar

22 

Hubert N and Hentze MW: Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function. Proc Natl Acad Sci USA. 99:12345–12350. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Lemler DJ, Lynch ML, Tesfay L, Deng Z, Paul BT, Wang X, Hegde P, Manz DH, Torti SV and Torti FM: DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res. 19:252017. View Article : Google Scholar : PubMed/NCBI

24 

Menniti FS, Knoth J and Diliberto EJ Jr: Role of ascorbic acid in dopamine beta-hydroxylation. The endogenous enzyme cofactor and putative electron donor for cofactor regeneration. J Biol Chem. 261:16901–16908. 1986. View Article : Google Scholar : PubMed/NCBI

25 

Kent UM and Fleming PJ: Purified cytochrome b561 catalyzes transmembrane electron transfer for dopamine beta-hydroxylase and peptidyl glycine alpha-amidating monooxygenase activities in reconstituted systems. J Biol Chem. 262:8174–8178. 1987. View Article : Google Scholar : PubMed/NCBI

26 

Lane DJ and Richardson DR: The active role of vitamin C in mammalian iron metabolism:. Much more than just enhanced iron absorption! = Free Radic Biol Med. 75:69–83. 2014.PubMed/NCBI

27 

Atanassova BD and Tzatchev KN: Ascorbic acid-important for iron metabolism. Folia Med (Plovdiv). 50:11–16. 2008.PubMed/NCBI

28 

Lane DJR and Lawen A: Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells. J Biol Chem. 283:12701–12708. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Lane DJ, Robinson SR, Czerwinska H, Bishop GM and Lawen A: Two routes of iron accumulation in astrocytes: Ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron. Biochem J. 432:123–132. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Lane DJ, Chikhani S, Richardson V and Richardson DR: Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism. Biochim Biophys Acta. 1833:1527–1541. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Toth I, Rogers JT, McPhee JA, Elliott SM, Abramson SL and Bridges KR: Ascorbic acid enhances iron-induced ferritin translation in human leukemia and hepatoma cells. J Biol Chem. 270:2846–2852. 1995. View Article : Google Scholar : PubMed/NCBI

32 

Toth I and Bridges KR: Ascorbic acid enhances ferritin mRNA translation by an IRP/aconitase switch. J Biol Chem. 270:19540–19544. 1995. View Article : Google Scholar : PubMed/NCBI

33 

Bridges KR: Ascorbic acid inhibits lysosomal autophagy of ferritin. J Biol Chem. 262:14773–1478. 1987. View Article : Google Scholar : PubMed/NCBI

34 

Hoffman KE, Yanelli K and Bridges KR: Ascorbic acid and iron metabolism: Alterations in lysosomal function. Am J Clin Nutr. 54 (6 Suppl):S1188S–S1192S. 1991. View Article : Google Scholar : PubMed/NCBI

35 

Richardson DR: Role of ceruloplasmin and ascorbate in cellular iron release. J Lab Clin Med. 134:454–465. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Crichton R: In Iron Metabolism: From Molecular Mechanisms to Cinical Consequences. pp. 17–58. John Wiley and Sons; 2009

37 

Sun H, Zhang C, Cao S, Sheng T, Dong N and Xu Y: Fenton reactions drive nucleotide and ATP syntheses in cancer. J Mol Cell Biol. 10:448–459. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Akatsuka S, Yamashita Y, Ohara H, Liu YT, Izumiya M, Abe K, Ochiai M, Jiang L, Nagai H, Okazaki Y, et al: Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer. PLoS One. 7:e434032012. View Article : Google Scholar : PubMed/NCBI

39 

Torti SV and Torti FM: Iron and cancer: 2020 vision. Cancer Res. 80:5435–5448. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Bian Z, Hann HW, Ye Z, Yin C, Wang Y, Fang W, Wan S, Wang C and Tao K: Ferritin level prospectively predicts hepatocarcinogenesis in patients with chronic hepatitis B virus infection. Oncol Lett. 16:3499–3508. 2018.PubMed/NCBI

41 

Song A, Eo W, Kim S, Shim B and Lee S: Significance of serum ferritin as a prognostic factor in advanced hepatobiliary cancer patients treated with Korean medicine: A retrospective cohort study. BMC Complement Altern Med. 18:1762018. View Article : Google Scholar : PubMed/NCBI

42 

Xue X, Ramakrishnan SK, Weisz K, Triner D, Xie L, Attili D, Pant A, Győrffy B, Zhan M, Carter-Su C, et al: Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab. 24:447–461. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Gray CP, Arosio P and Hersey P: Association of increased levels of heavy-chain ferritin with increased CD4+ CD25+ regulatory T-cell levels in patients with melanoma. Clin Cancer Res. 9:2551–2559. 2003.PubMed/NCBI

44 

Liu NQ, De Marchi T, Timmermans AM, Beekhof R, Trapman-Jansen AM, Foekens R, Look MP, van Deurzen CH, Span PN, Sweep FC, et al: Ferritin heavy chain in triple negative breast cancer: A favorable prognostic marker that relates to a cluster of differentiation 8 positive (CD8+) effector T-cell response. Mol Cell Proteomics. 13:1814–1827. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Lelièvre P, Sancey L, Coll JL, Deniaud A and Busser B: Iron dysregulation in human cancer: Altered metabolism, biomarkers for diagnosis, prognosis, monitoring and rationale for therapy. Cancers (Basel). 12:35242020. View Article : Google Scholar : PubMed/NCBI

46 

Wang Y, Yu L, Ding J and Chen Y: Iron metabolism in cancer. Int J Mol Sci. 20:952018. View Article : Google Scholar : PubMed/NCBI

47 

Habashy HO, Powe DG, Staka CM, Rakha EA, Ball G, Green AR, Aleskandarany M, Paish EC, Douglas Macmillan R, Nicholson RI, et al: Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat. 119:283–293. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Alkhateeb AA, Han B and Connor JR: Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages. Breast Cancer Res Treat. 137:733–744. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Pinnix ZK, Miller LD, Wang W, D'Agostino R Jr, Kute T, Willingham MC, Farris M, Petty WJ, de Hoyos A, Weaver KE and Wentworth S: Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med. 2:43ra562010. View Article : Google Scholar : PubMed/NCBI

50 

Morales M and Xue X: Targeting iron metabolism in cancer therapy. Theranostics. 11:8412–8429. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Bashtovyy D, Bérczi A, Asard H and Páli T: Structure prediction for the di-heme cytochrome b561 protein family. Protoplasma. 221:31–40. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Perin MS, Fried VA, Slaughter CA and Südhof TC: The structure of cytochrome b561, a secretory vesicle-specific electron transport protein. EMBO J. 7:2697–2703. 1988. View Article : Google Scholar : PubMed/NCBI

53 

Asard H, Kapila J, Verelst W and Bérczi A: Higher-plant plasma membrane cytochrome b561: A protein in search of a function. Protoplasma. 217:77–93. 2001. View Article : Google Scholar : PubMed/NCBI

54 

Degli Esposti M, Kamensky YuA, Arutjunjan AM and Konstantinov AA: A model for the molecular organization of cytochrome beta-561 in chromaffin granule membranes. FEBS Lett. 254:74–78. 1989. View Article : Google Scholar : PubMed/NCBI

55 

Tsubaki M, Nakayama M, Okuyama E, Ichikawa Y and Hori H: Existence of two heme B centers in cytochrome b561 from bovine adrenal chromaffin vesicles as revealed by a new purification procedure and EPR spectroscopy. J Biol Chem. 272:23206–23210. 1997. View Article : Google Scholar : PubMed/NCBI

56 

Oakhill JS, Marritt SJ, Gareta EG, Cammack R and McKie AT: Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism. Biochim Biophys Acta. 1777:260–268. 2008. View Article : Google Scholar : PubMed/NCBI

57 

Bérczi A, Su D, Lakshminarasimhan M, Vargas A and Asard H: Heterologous expression and site-directed mutagenesis of an ascorbate-reducible cytochrome b561. Arch Biochem Biophys. 443:82–92. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Kamensky Y, Liu W, Tsai AL, Kulmacz RJ and Palmer G: Axial ligation and stoichiometry of heme centers in adrenal cytochrome b561. Biochemistry. 46:8647–8658. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Okuyama E, Yamamoto R, Ichikawa Y and Tsubaki M: Structural basis for the electron transfer across the chromaffin vesicle membranes catalyzed by cytochrome b561: Analyses of cDNA nucleotide sequences and visible absorption spectra. Biochim. Biophys. Acta. 1383:269–278. 1998.PubMed/NCBI

60 

Takeuchi F, Kobayashi K, Tagawa S and Tsubaki M: Ascorbate inhibits the carbethoxylation of two histidyl and one tyrosyl residues indispensable for the transmembrane electron transfer reaction of cytochrome b561. Biochemistry. 40:4067–4076. 2001. View Article : Google Scholar : PubMed/NCBI

61 

Aravind L: DOMON: An ancient extracellular domain in dopamine beta-monooxygenase and other proteins. Trends Biochem Sci. 26:524–526. 2001. View Article : Google Scholar : PubMed/NCBI

62 

Picco C, Scholz-Starke J, Naso A, Preger V, Sparla F, Trost P and Carpaneto A: How are cytochrome b561 electron currents controlled by membrane voltage and substrate availability? Antioxid Redox Signal. 21:384–391. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Srivastava M, Gibson KR, Pollard HB and Fleming PJ: Human cytochrome b561: A revised hypothesis for conformation in membranes which reconciles sequence and functional information. Biochem J. 303:915–921. 1994. View Article : Google Scholar : PubMed/NCBI

64 

Nakanishi N, Takeuchi F and Tsubaki M: Histidine cycle mechanism for the concerted proton/electron transfer from ascorbate to the cytosolic haem b centre of cytochrome b561: A unique machinery for the biological transmembrane electron transfer. J Biochem. 142:553–560. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Kipp BH, Kelley PM and Njus D: Evidence for an essential histidine residue in the ascorbate-binding site of cytochrome b561. Biochemistry. 40:3931–3937. 2001. View Article : Google Scholar : PubMed/NCBI

66 

Iliadi KG, Avivi A, Iliadi NN, Knight D, Korol AB, Nevo E, Taylor P, Moran MF, Kamyshev NG and Boulianne GL: Nemy encodes a cytochrome b561 that is required for Drosophila learning and memory. Proc Natl Acad Sci USA. 105:19986–19991. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Su D and Asard H: Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases. FEBS J. 273:3722–3734. 2006. View Article : Google Scholar : PubMed/NCBI

68 

VanDuijn MM, Tijssen K, VanSteveninck J, Van Den Broek PJ and Van Der Zee J: Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor. J Biol Chem. 275:27720–27725. 2000. View Article : Google Scholar : PubMed/NCBI

69 

Asard H, Venken M, Caubergs R, Reijnders W, Oltmann FL and De Greef JA: b-Type cytochromes in higher plant plasma membranes. Plant Physiol. 90:1077–1083. 1989. View Article : Google Scholar : PubMed/NCBI

70 

Askerlund P, Larsson C and Widell S: Cytochromes of plant plasma membranes. Characterization by absorbance difference spectroscopy and redox titration. Physiol Plant. 76:123–134. 1989. View Article : Google Scholar

71 

Vargas JD, Herpers B, McKie AT, Gledhill S, McDonnell J, van den Heuvel M, Davies KE and Ponting CP: Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys Acta. 1651:116–123. 2003. View Article : Google Scholar : PubMed/NCBI

72 

Herrmann T, Muckenthaler M, van der Hoeven F, Brennan K, Gehrke SG, Hubert N, Sergi C, Gröne HJ, Kaiser I, Gosch I, et al: Iron overload in adult Hfe-deficient mice independent of changes in the steady-state expression of the duodenal iron transporters DMT1 and Ireg1/ferroportin. J Mol Med. 82:39–48. 2004. View Article : Google Scholar : PubMed/NCBI

73 

Escriou V, Laporte F, Garin J, Brandolin G and Vignais PV: Purification and physical properties of a novel type of cytochrome b from rabbit peritoneal neutrophils. J Biol Chem. 269:14007–14014. 1994. View Article : Google Scholar : PubMed/NCBI

74 

Pruss RM and Shepard EA: Cytochrome b561 can be detected in many neuroendocrine tissues using a specific monoclonal antibody. Neuroscience. 22:149–157. 1987. View Article : Google Scholar : PubMed/NCBI

75 

Srivastava M: Genomic structure and expression of the human gene encoding cytochrome b561, an integral protein of the chromaffin granule membrane. J Biol Chem. 270:22714–22720. 1995. View Article : Google Scholar : PubMed/NCBI

76 

Njus D and Kelley PM: The secretory-vesicle ascorbate-regenerating system: A chain of concerted H+/e(−)-transfer reactions. Biochim Biophys Acta. 1144:235–248. 1993. View Article : Google Scholar : PubMed/NCBI

77 

Olak ME, Thirdborough SM, Ung CY, Elliott T, Healy E, Freeman TC and Ardern-Jones MR: Distinct molecular signature of human skin langerhans cells denotes critical differences in cutaneous dendritic cell immune regulation. J Invest Dermatol. 134:695–703. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Van den Berg MP, Almomani R, Biaggioni I, van Faassen M, van der Harst P, Silljé HHW, Mateo Leach I, Hemmelder MH, Navis G, Luijckx GJ, et al: Mutations in CYB561 causing a novel orthostatic hypotension syndrome. Circ Res. 122:846–854. 2018. View Article : Google Scholar : PubMed/NCBI

79 

Willis S, Villalobos VM, Gevaert O, Abramovitz M, Williams C, Sikic BI and Leyland-Jones B: Single gene prognostic biomarkers in ovarian cancer: A meta-analysis. PLoS One. 11:e01491832016. View Article : Google Scholar : PubMed/NCBI

80 

Olarte CK and Bagamasbad DP: SAT-132 the secretory vesicle membrane protein, CYB561, promotes the growth and metastatic potential of castration-resistant neuroendocrine prostate cancer. J Endocr Soc. 4 (Suppl 1):SAT–132. 2020. View Article : Google Scholar

81 

Zhou X, Shen G, Ren D, Guo X, Han J, Guo Q, Zhao F, Wang M, Dong Q, Li Z and Zhao J: Expression and clinical prognostic value of CYB561 in breast cancer. J Cancer Res Clin Oncol. 148:1879–1892. 2022. View Article : Google Scholar : PubMed/NCBI

82 

Yang X, Zhao Y, Shao Q and Jiang G: Cytochrome b561 serves as a potential prognostic biomarker and target for breast cancer. Int J Gen Med. 14:10447–10464. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Zhou X, Guo X, Han J, Wang M, Liu Z, Ren D, Zhao J and Li Z: Cytochrome b561 regulates iron metabolism by activating the Akt/mTOR pathway to promote Breast Cancer Cells proliferation. Exp Cell Res. 431:1137602023. View Article : Google Scholar : PubMed/NCBI

84 

Zhao T, Wang C, Zhao N, Qiao G, Hua J, Meng D, Liu L, Zhong B, Liu M, Wang Y, et al: CYB561 promotes HER2+ breast cancer proliferation by inhibiting H2AFY degradation. Cell Death Discov. 10:382024. View Article : Google Scholar : PubMed/NCBI

85 

Ganasen M, Togashi H, Takeda H, Asakura H, Tosha T, Yamashita K, Hirata K, Nariai Y, Urano T, Yuan X, et al: Structural basis for promotion of duodenal iron absorption by enteric ferric reductase with ascorbate. Commun Biol. 1:1202018. View Article : Google Scholar : PubMed/NCBI

86 

Su D, May JM, Koury MJ and Asard H: Human erythrocyte membranes contain a cytochrome b561 that may be involved in extracellular ascorbate recycling. J Biol Chem. 281:39852–39859. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Wyman S, Simpson RJ, McKie AT and Sharp PA: Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett. 582:1901–1906. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Asard H, Barbaro R, Trost P and Bérczi A: Cytochromes b561: Ascorbate-mediated trans-membrane electron transport. Antioxid Redox Signal. 19:1026–1035. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Choi J, Masaratana P, Latunde-Dada GO, Arno M, Simpson RJ and McKie AT: Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions. J Nutr. 142:1929–1934. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Xue X, Taylor M, Anderson E, Hao C, Qu A, Greenson JK, Zimmermann EM, Gonzalez FJ and Shah YM: Hypoxia-inducible factor-2α activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res. 72:2285–2293. 2012. View Article : Google Scholar : PubMed/NCBI

91 

Brookes MJ, Hughes S, Turner FE, Reynolds G, Sharma N, Ismail T, Berx G, McKie AT, Hotchin N, Anderson GJ, et al: Modulation of iron transport proteins in human colorectal carcinogenesis. Gut. 55:1449–1460. 2006. View Article : Google Scholar : PubMed/NCBI

92 

Chen R, Cao J, Jiang W, Wang S and Cheng J: Upregulated expression of CYBRD1 predicts poor prognosis of patients with ovarian cancer. J Oncol. 2021:75484062021.PubMed/NCBI

93 

Qing M, Zhou J, Chen W and Cheng L: Highly expressed CYBRD1 associated with glioma recurrence regulates the immune response of glioma cells to interferon. Evid Based Complement Alternat Med. 2021:27932222021. View Article : Google Scholar : PubMed/NCBI

94 

Boult J, Roberts K, Brookes MJ, Hughes S, Bury JP, Cross SS, Anderson GJ, Spychal R, Iqbal T and Tselepis C: Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin Cancer Res. 14:379–387. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Rychtarcikova Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, Zjablovskaja P, Alberich-Jorda M, Neuzil J and Truksa J: Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 8:6376–6398. 2017. View Article : Google Scholar : PubMed/NCBI

96 

Lee HY, Li CC, Li WM, Hsu YL, Yeh HC, Ke HL, Yeh BW, Huang CN, Li CF, Kuo PL and Wu WJ: Identification of potential genes in upper tract urothelial carcinoma using next-generation sequencing with bioinformatics and in vitro analyses. PeerJ. 9:e113432021. View Article : Google Scholar : PubMed/NCBI

97 

Ma J, Huang W, Zhu C, Sun X, Zhang Q, Zhang L, Qi Q, Bai X, Feng Y and Wang C: miR-423-3p activates FAK signaling pathway to drive EMT process and tumor growth in lung adenocarcinoma through targeting CYBRD1. J Clin Lab Anal. 35:e240442021. View Article : Google Scholar : PubMed/NCBI

98 

Zhang J, Cheng Y, Duan M, Qi N and Liu J: Unveiling differentially expressed genes upon regulation of transcription factors in sepsis. Biotech. 7:462017.

99 

Al-Eitan LN, Tarkhan AH, Alghamdi MA, Al-Qarqaz FA and Al-Kofahi HS: Transcriptome analysis of HPV-induced warts and healthy skin in humans. BMC Med Genomics. 13:352020. View Article : Google Scholar : PubMed/NCBI

100 

Meng F, Fleming BA, Jia X, Rousek AA, Mulvey MA and Ward DM: Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases. Blood Adv. 6:1692–1707. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Wang Z, Guo R, Trudeau SJ, Wolinsky E, Ast T, Liang JH, Jiang C, Ma Y, Teng M, Mootha VK and Gewurz BE: CYB561A3 is the key lysosomal iron reductase required for Burkitt B-cell growth and survival. Blood. 138:2216–2230. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Lemonnier N, Melén E, Jiang Y, Joly S, Ménard C, Aguilar D, Acosta-Perez E, Bergström A, Boutaoui N, Bustamante M, et al: A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy. 75:3248–3260. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Liu H, Liu L, Liu Q, He F and Zhu H: LncRNA HOXD-AS1 affects proliferation and apoptosis of cervical cancer cells by promoting FRRS1 expression via transcription factor ELF1. Cell Cycle. 21:416–426. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Ponting CP: Domain homologues of dopamine b-hydroxylase and ferric reductase: Roles for iron metabolism in neurodegenerative disorders? Hum Mol Genet. 10:1853–1858. 2001. View Article : Google Scholar : PubMed/NCBI

105 

Binder J, Ursu O, Bologa C, Jiang S, Maphis N, Dadras S, Chisholm D, Weick J, Myers O, Kumar P, et al: Machine learning prediction and tau-based screening identifies potential Alzheimer's disease genes relevant to immunity. Commun Biol. 5:1252022. View Article : Google Scholar : PubMed/NCBI

106 

Linton KM, Hey Y, Saunders E, Jeziorska M, Denton J, Wilson CL, Swindell R, Dibben S, Miller CJ, Pepper SD, et al: Acquisition of biologically relevant gene expression data by Affymetrix microarray analysis of archival formalin-fixed paraffin-embedded tumours. Br J Cancer. 98:1403–1414. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Li S, Shi J, Gao H, Yuan Y, Chen Q, Zhao Z, Wang X, Li B, Ming L, Zhong J, et al: Identification of a gene signature associated with radiotherapy and prognosis in gliomas. Oncotarget. 8:88974–88987. 2017. View Article : Google Scholar : PubMed/NCBI

108 

El Behery M, Fujimura M, Kimura T and Tsubaki M: Direct measurements of ferric reductase activity of human 101F6 and its enhancement upon reconstitution into phospholipid bilayer nanodisc. Biochem Biophys Rep. 21:1007302020.PubMed/NCBI

109 

Mizutani A, Sanuki R, Kakimoto K, Kojo S and Taketani S: Involvement of 101F6, a homologue of cytochrome b561, in the reduction of ferric ions. J Biochem. 142:699–705. 2007. View Article : Google Scholar : PubMed/NCBI

110 

Recuenco MC, Fujito M, Rahman MM, Sakamoto Y, Takeuchi F and Tsubaki M: Functional expression and characterization of human 101F6 protein, a homologue of cytochrome b561 and a candidate tumor suppressor gene product. Biofactors. 34:219–230. 2008. View Article : Google Scholar : PubMed/NCBI

111 

Recuenco MC, Rahman MM, Takeuchi F, Kobayashi K and Tsubaki M: Electron transfer reactions of candidate tumor suppressor 101F6 protein, a cytochrome b561 homologue, with ascorbate and monodehydroascorbate radical. Biochemistry. 52:3660–3668. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Ji L, Nishizaki M, Gao B, Burbee D, Kondo M, Kamibayashi C, Xu K, Yen N, Atkinson EN, Fang B, et al: Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res. 62:2715–2720. 2002.PubMed/NCBI

113 

Ji L, Minna JD and Roth JA: 3p21.3 tumor suppressor cluster: Prospects for translational applications. Future Oncol. 1:79–92. 2005. View Article : Google Scholar : PubMed/NCBI

114 

Lerman MI and Minna JD: The international lung cancer chromosome 3p21.3 tumor suppressor gene consortium. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: Identification and evaluation of the resident candidate tumor suppressor genes. Cancer Res. 60:6116–6133. 2000.PubMed/NCBI

115 

Zabarovsky ER, Lerman MI and Minna JD: Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene. 21:6915–6935. 2002. View Article : Google Scholar : PubMed/NCBI

116 

Ohtani S, Iwamaru A, Deng W, Ueda K, Wu G, Jayachandran G, Kondo S, Atkinson EN, Minna JD, Roth JA and Ji L: Tumor suppressor 101F6 and ascorbate synergistically and selectively inhibit non-small cell lung cancer growth by caspase-independent apoptosis and autophagy. Cancer Res. 67:6293–6303. 2007. View Article : Google Scholar : PubMed/NCBI

117 

Tao B, Shi J, Shuai S, Zhou H, Zhang H, Li B, Wang X, Li G, He H and Zhong J: CYB561D2 up-regulation activates STAT3 to induce immunosuppression and aggression in gliomas. J Transl Med. 19:3382021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou X, An Z, Lei H, Liao H and Guo X: Role of the human cytochrome b561 family in iron metabolism and tumors (Review). Oncol Lett 29: 111, 2025.
APA
Zhou, X., An, Z., Lei, H., Liao, H., & Guo, X. (2025). Role of the human cytochrome b561 family in iron metabolism and tumors (Review). Oncology Letters, 29, 111. https://doi.org/10.3892/ol.2024.14857
MLA
Zhou, X., An, Z., Lei, H., Liao, H., Guo, X."Role of the human cytochrome b561 family in iron metabolism and tumors (Review)". Oncology Letters 29.3 (2025): 111.
Chicago
Zhou, X., An, Z., Lei, H., Liao, H., Guo, X."Role of the human cytochrome b561 family in iron metabolism and tumors (Review)". Oncology Letters 29, no. 3 (2025): 111. https://doi.org/10.3892/ol.2024.14857
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou X, An Z, Lei H, Liao H and Guo X: Role of the human cytochrome b561 family in iron metabolism and tumors (Review). Oncol Lett 29: 111, 2025.
APA
Zhou, X., An, Z., Lei, H., Liao, H., & Guo, X. (2025). Role of the human cytochrome b561 family in iron metabolism and tumors (Review). Oncology Letters, 29, 111. https://doi.org/10.3892/ol.2024.14857
MLA
Zhou, X., An, Z., Lei, H., Liao, H., Guo, X."Role of the human cytochrome b561 family in iron metabolism and tumors (Review)". Oncology Letters 29.3 (2025): 111.
Chicago
Zhou, X., An, Z., Lei, H., Liao, H., Guo, X."Role of the human cytochrome b561 family in iron metabolism and tumors (Review)". Oncology Letters 29, no. 3 (2025): 111. https://doi.org/10.3892/ol.2024.14857
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team