|
1
|
Shimony S, Stahl M and Stone RM: Acute
myeloid leukemia: 2023 Update on diagnosis, risk-stratification,
and management. Am J Hematol. 98:502–526. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Colmone A, Amorim M, Pontier AL, Wang S,
Jablonski E and Sipkins DA: Leukemic cells create bone marrow
niches that disrupt the behavior of normal hematopoietic progenitor
cells. Science. 322:1861–1865. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
De Kouchkovsky I and Abdul-Hay M: ‘Acute
myeloid leukemia: A comprehensive review and 2016 update’. Blood
Cancer J. 6:e4412016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Juliusson G, Antunovic P, Derolf A,
Lehmann S, Möllgård L, Stockelberg D, Tidefelt U, Wahlin A and
Höglund M: Age and acute myeloid leukemia: Real world data on
decision to treat and outcomes from the Swedish acute leukemia
registry. Blood. 113:4179–4187. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Döhner H, Estey E, Grimwade D, Amadori S,
Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA,
et al: Diagnosis and management of AML in adults: 2022 ELN
recommendations from an international expert panel. Blood.
129:424–447. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
National Institute of Health, .
Surveillance and Epidemiology, End Results (SEER) US county
populations 1969–2020. February;2022.Available from. www.seer.cancer.gov/popdataNovember 9–2022
|
|
7
|
DiNardo CD, Erba HP, Freeman SD and Wei
AH: Acute myeloid leukaemia. Lancet. 401:2073–2086. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ihle JN: The Stat family in cytokine
signaling. Curr Opin Cell Biol. 13:211–217. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Levy DE and Lee CK: What does Stat3 do? J
Clin Invest. 109:1143–1148. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Haura EB, Turkson J and Jove R: Mechanisms
of disease: Insights into the emerging role of signal transducers
and activators of transcription in cancer. Nat Clin Pract Oncol.
2:315–324. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Aigner P, Just V and Stoiber D: STAT3
isoforms: Alternative fates in cancer? Cytokine. 118:27–34. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang HX, Yang PL, Li EM and Xu LY:
STAT3beta, a distinct isoform from STAT3. Int J Biochem Cell Biol.
110:130–139. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hendry L and John S: Regulation of STAT
signaling by proteolytic processing. Eur J Biochem. 71:4613–4620.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Johnson DE, O'Keefe RA and Grandis JR:
Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev
Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Xia Z, Baer MR, Block AW, Baumann H and
Wetzler M: Expression of signal transducers and activators of
transcription proteins in acute myeloid leukemia blasts. Cancer
Res. 58:3173–3180. 1998.PubMed/NCBI
|
|
16
|
Benekli M, Xia Z, Donohue KA, Ford LA,
Pixley LA, Baer MR, Baumann H and Wetzler M: Constitutive activity
of signal transducer and activator of transcription 3 protein in
acute myeloid leukemia blasts is associated with short disease-free
survival. Blood. 99:252–257. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chen Y, Ji M, Zhang S, Xue N, Xu H, Lin S
and Chen X: Bt354 as a new STAT3 signaling pathway inhibitor
against triple negative breast cancer. J Drug Target. 26:920–930.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Geiger JL, Grandis JR and Bauman JE: The
STAT3 pathway as a therapeutic target in head and neck cancer:
Barriers and innovations. Oral Oncol. 56:84–92. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Bharadwaj U, Eckols TK, Xu X, Kasembeli
MM, Chen Y, Adachi M, Song Y, Mo Q, Lai SY and Tweardy DJ:
Small-molecule inhibition of STAT3 in radioresistant head and neck
squamous cell carcinoma. Oncotarget. 7:26307–26330. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Park JH, van Wyk H, McMillan DC, Quinn J,
Clark J, Roxburgh CSD, Horgan PG and Edwards J: Signal transduction
and activator of transcription-3 (STAT3) in patients with
colorectal cancer: Associations with the phenotypic features of the
tumor and host. Clin Cancer Res. 23:1698–1709. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Redell MS, Ruiz MJ, Alonzo TA, Gerbing RB
and Tweardy DJ: Stat3 signaling in acute myeloid leukemia:
Ligand-dependent and -independent activation and induction of
apoptosis by a novel small-molecule Stat3 inhibitor. Blood.
117:5701–5709. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Minus MB, Liu W, Vohidov F, Kasembeli MM,
Long X, Krueger MJ, Stevens A, Kolosov MI, Tweardy DJ, Sison EAR,
et al: Rhodium(II) proximity-labeling identifies a novel target
site on STAT3 for inhibitors with potent anti-leukemia activity.
Angew Chem Int Ed Engl. 54:13085–13089. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yu H, Lee H, Herrmann A, Buettner R and
Jove R: Revisiting STAT3 signalling in cancer: New and unexpected
biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Takeda K and Akira S: STAT family of
transcription factors in cytokine-mediated biological responses.
Cytokine Growth Factor Rev. 11:199–207. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Rane SG and Reddy EP: JAKs, STATs and Src
kinases in hematopoiesis. Oncogene. 21:3334–3358. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bruserud Ø, Nepstad I, Hauge M, Hatfield
KJ and Reikvam H: STAT3 as a possible therapeutic target in human
malignancies: Lessons from acute myeloid leukemia. Expert Rev
Hematol. 8:29–41. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sellier H, Rébillard A, Guette C, Barré B
and Coqueret O: How should we define STAT3 as an oncogene and as a
potential target for therapy? JAKSTAT. 2:e247162013.PubMed/NCBI
|
|
28
|
Frank DA: STAT3 as a central mediator of
neoplastic cellular transformation. Cancer Lett. 251:199–210. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bar-Natan M, Nelson EA, Xiang M and Frank
DA: STAT signaling in the pathogenesis and treatment of myeloid
malignancies. JAKSTAT. 1:55–64. 2012.PubMed/NCBI
|
|
30
|
Hutchins AP, Diez D and Miranda-Saavedra
D: Genomic and computational approaches to dissect the mechanisms
of STAT3′s universal and cell type-specific functions. JAKSTAT.
2:e250972013.PubMed/NCBI
|
|
31
|
Yu H and Jove R: The STATs of cancer-new
molecular targets come of age. Nat Rev Cancer. 4:97–105. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Spiekermann K, Biethahn S, Wilde S,
Hiddemann W and Alves F: Constitutive activation of STAT
transcription factors in acute myelogenous leukemia. Eur J
Haematol. 67:63–71. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Spiekermann K, Pau M, Schwab R, Schmieja
K, Franzrahe S and Hiddemann W: Constitutive activation of STAT3
and STAT5 is induced by leukemic fusion proteins with protein
tyrosine kinase activity and is sufficient for transformation of
hematopoietic precursor cells. Exp Hematol. 30:262–271. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hankey PA: Regulation of hematopoietic
cell development and function by Stat3. Front Biosci (Landmark Ed).
14:5273–5290. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
35
|
Aoki Y, Feldman GM and Tosato G:
Inhibition of STAT3 signaling induces apoptosis and decreases
survivin expression in primary effusion lymphoma. Blood.
101:1535–1542. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Koskela HLM, Eldfors S, Ellonen P, van
Adrichem AJ, Kuusanmäki H, Andersson EI, Lagström S, Clemente MJ,
Olson T, Jalkanen SE, et al: Somatic STAT3 mutations in large
granular lymphocytic leukemia. N Engl J Med. 366:1905–1913. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pilati C, Amessou M, Bihl MP, Balabaud C,
Nhieu JT, Paradis V, Nault JC, Izard T, Bioulac-Sage P, Couchy G,
et al: Somatic mutations activating STAT3 in human inflammatory
hepatocellular adenomas. J Exp Med. 208:1359–1366. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xia Z, Sait SN, Baer MR, Barcos M, Donohue
KA, Lawrence D, Ford LA, Block AM, Baumann H and Wetzler M:
Truncated STAT proteins are prevalent at relapse of acute myeloid
leukemia. Leuk Res. 25:473–482. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ and
Settleman J: Drug resistance via feedback activation of Stat3 in
oncogene-addicted cancer cells. Cancer Cell. 26:207–221. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Schust J, Sperl B, Hollis A, Mayer TU and
Berg T: Stattic: A small-molecule inhibitor of STAT3 activation and
dimerization. Chem Biol. 13:1235–1242. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Luo Y, Lu Y, Long B, Lin Y, Yang Y, Xu Y,
Zhang X and Zhang J: Blocking DNA damage repair may be involved in
stattic (STAT3 inhibitor)-induced FLT3-ITD AML cell apoptosis.
Front Cell Dev Biol. 9:6370642021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Goldstein M and Kastan MB: The DNA damage
response: Implications for tumor responses to radiation and
chemotherapy. Annu Rev Med. 66:129–143. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Genini D, Brambilla L, Laurini E, Merulla
J, Civenni G, Pandit S, D'Antuono R, Perez L, Levy DE, Pricl S, et
al: Mitochondrial dysfunction induced by a SH2 domain-targeting
STAT3 inhibitor leads to metabolic synthetic lethality in cancer
cells. Proc Natl Acad Sci USA. 114:E4924–E4933. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ogura M, Uchida T, Terui Y, Hayakawa F,
Kobayashi Y, Taniwaki M, Takamatsu Y, Naoe T, Tobinai K, Munakata
W, et al: Phase I study of OPB-51602, an oral inhibitor of signal
transducer and activator of transcription 3, in patients with
relapsed/refractory hematological malignancies. Cancer Sci.
106:896–901. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hubbard JM and Grothey A: Napabucasin: An
update on the first-in-class cancer stemness inhibitor. Drugs.
77:1091–1103. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bi S, Chen K, Feng L, Fu G, Yang Q, Deng
M, Zhao H, Li Z, Yu L, Fang Z and Xu B: Napabucasin (BBI608)
eliminate AML cells in vitro and in vivo via inhibition of Stat3
pathway and induction of DNA damage. Eur J Pharmacol. 855:252–261.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhou H, Bai L, Xu R, Zhao Y, Chen J,
McEachern D, Chinnaswamy K, Wen B, Dai L, Kumar P, et al:
Structure-based discovery of SD-36 as a potent, selective, and
efficacious PROTAC degrader of STAT3 protein. J Med Chem.
62:11280–11300. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gadd MS, Testa A, Lucas X, Chan KH, Chen
W, Lamont DJ, Zengerle M and Ciulli A: Structural basis of PROTAC
cooperative recognition for selective protein degradation. Nat Chem
Biol. 13:514–521. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Dale B, Cheng M, Park KS, Kaniskan HÜ,
Xiong Y and Jin J: Advancing targeted protein degradation for
cancer therapy. Nat Rev Cancer. 21:638–654. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bai L, Zhou H, Xu R, Zhao Y, Chinnaswamy
K, McEachern D, Chen J, Yang CY, Liu Z, Wang M, et al: A potent and
selective small-molecule degrader of STAT3 achieves complete tumor
regression in vivo. Cancer Cell. 36:498–511.e17. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mo J, Deng L, Peng K, Ouyang S, Ding W,
Lou L, Lin Z, Zhu J, Li J, Zhang Q, et al: Targeting STAT3-VISTA
axis to suppress tumor aggression and burden in acute myeloid
leukemia. J Hematol Oncol. 16:152023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yuan L, Tatineni J, Mahoney KM and Freeman
GJ: VISTA: A mediator of quiescence and a promising target in
cancer immunotherapy. Trends Immunol. 42:209–227. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Deng L, Mo J, Zhang Y, Peng K, Li H,
Ouyang S, Feng Z, Fang W, Wei J, Rong D, et al: Boronic acid: A
novel pharmacophore targeting Src homology 2 (SH2) domain of STAT3.
J Med Chem. 65:13094–13111. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hossain DMH, Dos Santos C, Zhang Q,
Kozlowska A, Liu H, Gao C, Moreira D, Swiderski P, Jozwiak A, Kline
J, et al: Leukemia cell-targeted STAT3 silencing and TLR9
triggering generate systemic antitumor immunity. Blood. 123:15–25.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Krieg AM: Toll-like receptor 9 (TLR9)
agonists in the treatment of cancer. Oncogene. 27:161–167. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang Q, Hossain DMS, Duttagupta P,
Moreira D, Zhao X, Won H, Buettner R, Nechaev S, Majka M, Zhang B,
et al: Serum-resistant CpG-STAT3 decoy for targeting survival and
immune checkpoint signaling in acute myeloid leukemia. Blood.
127:1687–1700. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hong D, Kurzrock R, Kim Y, Woessner R,
Younes A, Nemunaitis J, Fowler N, Zhou T, Schmidt J, Jo M, et al:
AZD9150, a next-generation antisense oligonucleotide inhibitor of
STAT3 with early evidence of clinical activity in lymphoma and lung
cancer. Sci Transl Med. 7:314ra1852015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shastri A, Choudhary G, Teixeira M,
Gordon-Mitchell S, Ramachandra N, Bernard L, Bhattacharyya S, Lopez
R, Pradhan K, Giricz O, et al: Antisense STAT3 inhibitor decreases
viability of myelodysplastic and leukemic stem cells. J Clin
Invest. 128:5479–5488. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chen X, Chen HY, Chen ZD, Gong JN and Chen
CYC: A novel artificial intelligence protocol for finding potential
inhibitors of acute myeloid leukemia. J Mater Chem B. 8:2063–2081.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen C, Wang L, Li L, Wang A, Huang T, Hu
J, Zhao M, Liu F, Qi S, Hu C, et al: Network-based analysis with
primary cells reveals drug response landscape of acute myeloid
leukemia. Exp Cell Res. 393:1120542020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Dai T, Zhang L, Dai X, Zhang X, Lu B,
Zheng Y, Shen D, Yan Y, Ji C, Yu J and Sun L: Multimode
participation of traditional Chinese medicine in the treatment of
COVID-19. Integr Med Res. 10 (Suppl 1):S1007812021. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chledzik S, Strawa J, Matuszek K and
Nazaruk J: Pharmacological effects of scutellarin, an active
component of genus scutellaria and erigeron: A systematic review.
Am J Chin Med. 46:319–337. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
You L, Zhu H, Wang C, Wang F, Li Y, Li Y,
Wang Y and He B: Scutellarin inhibits Hela cell growth and
glycolysis by inhibiting the activity of pyruvate kinase M2. Bioorg
Med Chem Lett. 27:5404–5408. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ke Y, Bao T, Wu X, Tang H, Wang Y, Ge J,
Fu B, Meng X, Chen L, Zhang C, et al: Scutellarin suppresses
migration and invasion of human hepatocellular carcinoma by
inhibiting the STAT3/Girdin/Akt activity. Biochem Biophys Res
Commun. 483:509–515. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen J, Cai YF, Shao M and Cong H: Effect
of scutellarin on proliferation of acute myeloid leukemia cells and
its related mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi.
31:358–363. 2023.(In Chinese). PubMed/NCBI
|
|
66
|
Khoury JD, Solary E, Abla O, Akkari Y,
Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, et
al: The 5th of the World Health Organization classifcation of
haematolymphoid tumours: Myeloid and histiocytic/dendritic
neoplasms. Leukemia. 36:1703–1719. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Arber DA, Orazi A, Hasserjian RP, Borowitz
MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S,
et al: International consensus classification of myeloid neoplasms
and acute leukemias: Integrating morphologic, clinical, and genomic
data. Blood. 140:1200–1228. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
DiNardo KW, LeBlanc TW and Chen H: Novel
agents and regimens in acute myeloid leukemia: Latest updates from
2022 ASH annual meeting. J Hematol Oncol. 16:172023. View Article : Google Scholar : PubMed/NCBI
|