|
1
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Nolan E, Lindeman GJ and Visvader JE:
Deciphering breast cancer: From biology to the clinic. Cell.
186:1708–1728. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gradishar WJ, Moran MS, Abraham J,
Abramson V, Aft R, Agnese D, Allison KH, Anderson B, Burstein HJ,
Chew H, et al: NCCN Guidelines® Insights: Breast cancer,
version 4.2023. J Natl Compr Canc Netw. 21:594–608. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhu Z, Shen H, Xu J, Fang Z, Wo G, Ma Y,
Yang K, Wang Y, Yu Q and Tang JH: GATA3 mediates doxorubicin
resistance by inhibiting CYB5R2-catalyzed iron reduction in breast
cancer cells. Drug Resist Updat. 69:1009742023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cancer Genome Atlas Network, .
Comprehensive molecular portraits of human breast tumours. Nature.
490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Liang Y, Zhang H, Song X and Yang Q:
Metastatic heterogeneity of breast cancer: Molecular mechanism and
potential therapeutic targets. Semin Cancer Biol. 60:14–27. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bai X, Ni J, Beretov J, Graham P and Li Y:
Cancer stem cell in breast cancer therapeutic resistance. Cancer
Treat Rev. 69:152–163. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang R, Lee YG, Dhandapani S, Baek NI, Kim
KP, Cho YE, Xu X and Kim YJ: 8-paradol from ginger exacerbates
PINK1/Parkin mediated mitophagy to induce apoptosis in human
gastric adenocarcinoma. Pharmacol Res. 187:1066102023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Chen YX, Gao QY, Zou TH, Wang BM, Liu SD,
Sheng JQ, Ren JL, Zou XP, Liu ZJ, Song YY, et al: Berberine versus
placebo for the prevention of recurrence of colorectal adenoma: A
multicentre, double-blinded, randomised controlled study. Lancet
Gastroenterol Hepatol. 5:267–275. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang Y, Chen Z, Luo J, Zhang J, Sang AM,
Cheng ZS and Li XY: Corrigendum to ‘Salidroside postconditioning
attenuates ferroptosis-mediated lung ischemia-reperfusion injury by
activating the Nrf2/SLC7A11 signaling axis’ [Int. Immunopharmacol.
115 (2023) 109731]. Int Immunopharmacol. 115:1097312023. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu C, Rokavec M, Huang Z and Hermeking H:
Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress
colorectal cancer metastasis. Cell Death Differ. 30:1771–1785.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Lu K, Xia Y, Cheng P, Li Y, He L, Tao L,
Wei Z and Lu Y: Synergistic potentiation of the anti-metastatic
effect of a Ginseng-Salvia miltiorrhiza herbal pair and its
biological ingredients via the suppression of CD62E-dependent
neutrophil infiltration and NETformation. J Adv Res. S2090–1232.
2024.
|
|
13
|
Newman DJ and Cragg GM: Natural products
as sources of new drugs over the nearly four decades from 01/1981
to 09/2019. J Nat Prod. 83:770–803. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang J, Sun J, Li C, Qiao H and Hussain
Z: Functionalization of curcumin nanomedicines: A recent promising
adaptation to maximize pharmacokinetic profile, specific cell
internalization and anticancer efficacy against breast cancer. J
Nanobiotechnology. 21:1062023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhang P, Liu W and Wang Y: The mechanisms
of tanshinone in the treatment of tumors. Front Pharmacol.
14:12822032023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Ni LJ, Zhang LG, Hou J, Shi WZ and Guo ML:
A strategy for evaluating antipyretic efficacy of Chinese herbal
medicines based on UV spectra fingerprints. J Ethnopharmacol.
124:79–86. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Feng Y, Gao X, Meng M, Xue H and Qin X:
Multi-omics reveals the mechanisms of antidepressant-like effects
of the low polarity fraction of Bupleuri Radix. J Ethnopharmacol.
256:1128062020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhang H, Zhang S, Hu M, Chen Y, Wang W,
Zhang K, Kuang H and Wang Q: An integrative metabolomics and
network pharmacology method for exploring the effect and mechanism
of Radix Bupleuri and Radix Paeoniae Alba on
anti-depression. J Pharm Biomed Anal. 189:1134352020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang X, Li S, Yu J, Wang W, Du Z, Gao S,
Ma Y, Tang R, Liu T, Ma S, et al: Saikosaponin B2 ameliorates
depression-induced microglia activation by inhibiting
ferroptosis-mediated neuroinflammation and ER stress. J
Ethnopharmacol. 316:1167292023. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang YX, Du Y, Liu XF, Yang FX, Wu X, Tan
L, Lu YH, Zhang JW, Zhou F and Wang GJ: A hepatoprotection study of
Radix Bupleuri on acetaminophen-induced liver injury based
on CYP450 inhibition. Chin J Nat Med. 17:517–524. 2019.PubMed/NCBI
|
|
21
|
Chen LL, Xia LY, Zhang JP, Wang Y, Chen
JY, Guo C and Xu WH: Saikosaponin D alleviates cancer cachexia by
directly inhibiting STAT3. Phytother Res. 37:809–819. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Jia R, Gu Z, He Q, Du J, Cao L, Jeney G,
Xu P and Yin G: Anti-oxidative, anti-inflammatory and
hepatoprotective effects of Radix Bupleuri extract against
oxidative damage in tilapia (Oreochromis niloticus) via Nrf2 and
TLRs signaling pathway. Fish Shellfish Immunol. 93:395–405. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kim SO, Park JY, Jeon SY, Yang CH and Kim
MR: Saikosaponin a, an active compound of Radix Bupleuri,
attenuates inflammation in hypertrophied 3T3-L1 adipocytes via
ERK/NF-κB signaling pathways. Int J Mol Med. 35:1126–1132. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ren M, McGowan E, Li Y, Zhu X, Lu X, Zhu
Z, Lin Y and He S: Saikosaponin-d Suppresses COX2 Through
p-STAT3/C/EBPβ signaling pathway in liver cancer: A novel mechanism
of action. Front Pharmacol. 10:6232019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhao X, Liu J, Ge S, Chen C, Li S, Wu X,
Feng X, Wang Y and Cai D: Saikosaponin A inhibits breast cancer by
regulating Th1/Th2 balance. Front Pharmacol. 10:6242019. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang Y, Zhao L, Han X, Wang Y, Mi J, Wang
C, Sun D, Fu Y, Zhao X, Guo H and Wang Q: Saikosaponin A inhibits
triple-negative breast cancer growth and metastasis through
downregulation of CXCR4. Front Oncol. 9:14872019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang X, Gan J, Han M, Wu Y, Liu L, Zhao Y
and Zhao R: Comparison of structure and the synergistic
anti-hepatocellular carcinoma effect of three polysaccharides from
vinegar-baked Radix Bupleuri. Int J Biol Macromol.
282:1367552024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cheng YL, Lee SC, Lin SZ, Chang WL, Chen
YL, Tsai NM, Liu YC, Tzao C, Yu DS and Harn HJ: Anti-proliferative
activity of Bupleurum scrozonerifolium in A549 human lung cancer
cells in vitro and in vivo. Cancer Lett. 222:183–193. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Witek Janusek L, Tell D and Mathews HL:
Mindfulness based stress reduction provides psychological benefit
and restores immune function of women newly diagnosed with breast
cancer: A randomized trial with active control. Brain Behav Immun.
80:358–373. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Cui B, Luo Y, Tian P, Peng F, Lu J, Yang
Y, Su Q, Liu B, Yu J, Luo X, et al: Stress-induced epinephrine
enhances lactate dehydrogenase A and promotes breast cancer
stem-like cells. J Clin Invest. 129:1030–1046. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang J, Wang N, Zheng Y, Yang B, Wang S,
Wang X, Pan B and Wang Z: Naringenin in Si-Ni-San formula inhibits
chronic psychological stress-induced breast cancer growth and
metastasis by modulating estrogen metabolism through FXR/EST
pathway. J Adv Res. 47:189–207. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kim S, Chen J, Cheng T, Gindulyte A, He J,
He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, et al: PubChem 2023
update. Nucleic Acids Res. 51:D1373–D1380. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yuan B, Yang R, Ma Y, Zhou S, Zhang X and
Liu Y: A systematic review of the active saikosaponins and extracts
isolated from Radix Bupleuri and their applications. Pharm
Biol. 55:620–635. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhao L, Jin L and Yang B: Saikosaponin A
alleviates Staphylococcus aureus-induced mastitis in mice by
inhibiting ferroptosis via SIRT1/Nrf2 pathway. J Cell Mol Med.
27:3443–3450. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Fu Y, Hu X, Cao Y, Zhang Z and Zhang N:
Saikosaponin a inhibits lipopolysaccharide-oxidative stress and
inflammation in Human umbilical vein endothelial cells via
preventing TLR4 translocation into lipid rafts. Free Radic Biol
Med. 89:777–785. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Dong H, Han X, Hao M, Yang Q, Lyu Q, Tang
D, Shen Z, Wang K, Kuang H, Cao G, et al: Nanodrug rescues liver
fibrosis via synergistic therapy with H2O2 depletion and
Saikosaponin b1 sustained release. Commun Biol. 6:1842023.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sinha SK, Shakya A, Prasad SK, Singh S,
Gurav NS, Prasad RS and Gurav SS: An in-silico evaluation of
different Saikosaponins for their potency against SARS-CoV-2 using
NSP15 and fusion spike glycoprotein as targets. J Biomol Struct
Dyn. 39:3244–3255. 2021.PubMed/NCBI
|
|
38
|
Chiang LC, Ng LT, Liu LT, Shieh DE and Lin
CC: Cytotoxicity and anti-hepatitis B virus activities of
saikosaponins from Bupleurum species. Planta Med. 69:705–709. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhu Y and Lai Y: Pharmacological
properties and derivatives of saikosaponins-a review of recent
studies. J Pharm Pharmacol. 75:898–909. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wan H, Zhou L, Wu B, Han W, Sui C and Wei
J: Integrated metabolomics and transcriptomics analysis of roots of
Bupleurum chinense and B. scorzonerifolium, two sources of
medicinal Chaihu. Sci Rep. 12:223352022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Jiang P, Ji X, Xia J, Xu M, Hao F, Tong H
and Jiao L: Structure and potential anti-fatigue mechanism of
polysaccharides from Bupleurum Chinense DC. Carbohydr Polym.
306:1206082023. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang ZD, Li H, Wan F, Su XY, Lu Y, Chen
DF and Zhang YY: Polysaccharides extracted from the roots of
Bupleurum Chinense DC modulates macrophage functions. Chin J Nat
Med. 15:889–898. 2017.PubMed/NCBI
|
|
43
|
Tong H, Tian D, Li T, Wang B, Jiang G and
Sun X: Inhibition of inflammatory injure by polysaccharides from
Bupleurum Chinense through antagonizing P-selectin. Carbohydr
Polym. 105:20–25. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cheng XQ, Li H, Yue XL, Xie JY, Zhang YY,
Di HY and Chen DF: Macrophage immunomodulatory activity of the
polysaccharides from the roots of Bupleurum smithii var.
parvifolium. J Ethnopharmacol. 130:363–368. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xie JY, Di HY, Li H, Cheng XQ, Zhang YY
and Chen DF: Bupleurum chinense DC polysaccharides attenuates
lipopolysaccharide-induced acute lung injury in mice.
Phytomedicine. 19:130–137. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shi H, He J, Li X, Han J, Wu R, Wang D,
Yang F and Sun E: Isorhamnetin, the active constituent of a Chinese
herb Hippophae rhamnoides L, is a potent suppressor of
dendritic-cell maturation and trafficking. Int Immunopharmacol.
55:216–222. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
García-Mediavilla V, Crespo I, Collado PS,
Esteller A, Sánchez-Campos S, Tuñón MJ and González-Gallego J: The
anti-inflammatory flavones quercetin and kaempferol cause
inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and
reactive C-protein, and down-regulation of the nuclear factor
kappaB pathway in Chang Liver cells. Eur J Pharmacol. 557:221–229.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang X, Wang H, Shen C, Dong X, Li J and
Liu J: Effects of isorhamnetin on liver injury in heat
stroke-affected rats under dry-heat environments via oxidative
stress and inflammatory response. Sci Rep. 14:74762024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Haddouchi F, Chaouche TM, Ksouri R and
Larbat R: Leafy Stems of Phagnalon saxatile subsp. saxatile from
Algeriaas a Source of chlorogenic acids and flavonoids with
antioxidant activity: Characterization and quantification using
UPLC-DAD-ESI-MSn. Metabolites. 11:2802021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tao X, Hu X, Wu T, Zhou D, Yang D, Li X,
Fu Y, Zheng F, Yue H and Dai Y: Characterization and screening of
anti-melanogenesis and anti-photoaging activity of different
enzyme-assisted polysaccharide extracts from Portulaca
oleracea L. Phytomedicine. 116:1548792023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wang YF, An ZY, Lin DH and Jin WL:
Targeting cancer cachexia: Molecular mechanisms and clinical study.
MedComm (2020). 3:e1642022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zhang Y, Wu MJ, Lu WC, Li YC, Chang CJ and
Yang JY: Metabolic switch regulates lineage plasticity and induces
synthetic lethality in triple-negative breast cancer. Cell Metab.
36:193–208.e8. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Duan N, Hua Y, Yan X, He Y, Zeng T, Gong
J, Fu Z, Li W and Yin Y: Unveiling alterations of epigenetic
modifications and chromatin architecture leading to lipid metabolic
reprogramming during the evolutionary trastuzumab adaptation of
HER2-positive breast cancer. Adv Sci (Weinh). 11:e23094242024.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Garcia-Martinez L, Zhang Y, Nakata Y, Chan
HL and Morey L: Epigenetic mechanisms in breast cancer therapy and
resistance. Nat Commun. 12:17862021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yang F, Xiao Y, Ding JH, Jin X, Ma D, Li
DQ, Shi JX, Huang W, Wang YP, Jiang YZ and Shao ZM: Ferroptosis
heterogeneity in triple-negative breast cancer reveals an
innovative immunotherapy combination strategy. Cell Metab.
35:84–100.e8. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Matthews HK, Bertoli C and de Bruin RAM:
Cell cycle control in cancer. Nat Rev Mol Cell Biol. 23:74–88.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Asghar U, Witkiewicz AK, Turner NC and
Knudsen ES: The history and future of targeting cyclin-dependent
kinases in cancer therapy. Nat Rev Drug Discov. 14:130–146. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Luo F, Yang J, Yang X, Mi J, Ye T, Li G
and Xie Y: Saikosaponin D potentiates the antineoplastic effects of
doxorubicin in drug-resistant breast cancer through perturbing
NQO1-mediated intracellular redox balance. Phytomedicine.
133:1559452024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hinz N and Jücker M: Distinct functions of
AKT isoforms in breast cancer: A comprehensive review. Cell Commun
Signal. 17:1542019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen JC, Chang NW, Chung JG and Chen KC:
Saikosaponin-A induces apoptotic mechanism in human breast
MDA-MB-231 and MCF-7 cancer cells. Am J Chin Med. 31:363–377. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Su M, Ren X, Du D, He H, Zhang D, Xie R,
Deng X, Zou C and Zou H: Curcumol β-cyclodextrin inclusion complex
enhances radiosensitivity of esophageal cancer under hypoxic and
normoxic condition. Jpn J Radiol. 41:1275–1289. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhu J, Ye L, Sun S, Yuan J, Huang J and
Zeng Z: Involvement of RFC3 in tamoxifen resistance in ER-positive
breast cancer through the cell cycle. Aging. 15:13738–13752. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yang T, Xiao Y, Liu S, Luo F, Tang D, Yu Y
and Xie Y: Isorhamnetin induces cell cycle arrest and apoptosis by
triggering DNA damage and regulating the AMPK/mTOR/p70S6K signaling
pathway in doxorubicin-resistant breast cancer. Phytomedicine.
114:1547802023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Su X, Esser AK, Amend SR, Xiang J, Xu Y,
Ross MH, Fox GC, Kobayashi T, Steri V, Roomp K, et al: Antagonizing
integrin β3 increases immunosuppression in cancer. Cancer Res.
76:3484–3495. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Murali B, Ren Q, Luo X, Faget DV, Wang C,
Johnson RM, Gruosso T, Flanagan KC, Fu Y, Leahy K, et al:
Inhibition of the stromal p38MAPK/MK2 pathway limits breast cancer
metastases and chemotherapy-induced bone loss. Cancer Res.
78:5618–5630. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Canovas B and Nebreda AR: Diversity and
versatility of p38 kinase signalling in health and disease. Nat Rev
Mol Cell Biol. 22:346–366. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fu R, Zhang L, Li Y, Li B, Ming Y, Li Z,
Xing H and Chen J: Saikosaponin D inhibits autophagosome-lysosome
fusion and induces autophagy-independent apoptosis in MDA-MB-231
breast cancer cells. Mol Med Rep. 22:1026–1034. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Han CC and Wan FS: New Insights into the
role of endoplasmic reticulum stress in breast cancer metastasis. J
Breast Cancer. 21:354–362. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Paskevicius T, Farraj RA, Michalak M and
Agellon LB: Calnexin, more than just a molecular chaperone. Cells.
12:4032023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Wong VK, Li T, Law BY, Ma ED, Yip NC,
Michelangeli F, Law CK, Zhang MM, Lam KY, Chan PL and Liu L:
Saikosaponin-d, a novel SERCA inhibitor, induces autophagic cell
death in apoptosis-defective cells. Cell Death Dis. 4:e7202013.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pohl SG, Brook N, Agostino M, Arfuso F,
Kumar AP and Dharmarajan A: Wnt signaling in triple-negative breast
cancer. Oncogenesis. 6:e3102017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wang J, Qi H, Zhang X, Si W, Xu F, Hou T,
Zhou H, Wang A, Li G, Liu Y, et al: Saikosaponin D from Radix
Bupleuri suppresses triple-negative breast cancer cell growth
by targeting β-catenin signaling. Biomed Pharmacother. 108:724–733.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Augimeri G, Gonzalez ME, Paolì A, Eido A,
Choi Y, Burman B, Djomehri S, Karthikeyan SK, Varambally S,
Buschhaus JM, et al: A hybrid breast cancer/mesenchymal stem cell
population enhances chemoresistance and metastasis. JCI Insight.
8:e1642162023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
He J, Chen S, Yu T, Chen W, Huang J, Peng
C and Ding Y: Harmine suppresses breast cancer cell migration and
invasion by regulating TAZ-mediated epithelial-mesenchymal
transition. Am J Cancer Res. 12:2612–2626. 2022.PubMed/NCBI
|
|
75
|
Kwon KR, Alam MB, Park JH, Kim TH and Lee
SH: Attenuation of UVB-Induced photo-aging by polyphenolic-rich
spatholobus suberectus stem extract via modulation of
MAPK/AP-1/MMPs signaling in human keratinocytes. Nutrients.
11:13412019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Nakanishi M, Korechika A, Yamakawa H,
Kawabe N, Nakai K and Muragaki Y: Acidic microenvironment induction
of interleukin-8 expression and matrix metalloproteinase-2/-9
activation via acid-sensing ion channel 1 promotes breast cancer
cell progression. Oncol Rep. 45:1284–1294. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Qi Y, Wu H, Zhu T, Liu Z, Liu C, Yan C, Wu
Z, Xu Y, Bai Y, Yang L, et al: Acetyl-cinobufagin suppresses
triple-negative breast cancer progression by inhibiting the STAT3
pathway. Aging. 15:8258–8274. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li K, Zhang J, Tian Y, He Y, Xu X, Pan W,
Gao Y, Chen F and Wei L: The Wnt/β-catenin/VASP positive feedback
loop drives cell proliferation and migration in breast cancer.
Oncogene. 39:2258–2274. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Tian Y, Xu L, He Y, Xu X, Li K, Ma Y, Gao
Y, Wei D and Wei L: Knockdown of RAC1 and VASP gene expression
inhibits breast cancer cell migration. Oncol Lett. 16:2151–2160.
2018.PubMed/NCBI
|
|
80
|
Ma Q, Gao FF, He X, Li K, Gao Y, Xu XL,
Jiang NH, Ding L, Song WJ, He YQ, et al: Antitumor effects of
saikosaponin b2 on breast cancer cell proliferation and migration.
Mol Med Rep. 20:1943–1951. 2019.PubMed/NCBI
|
|
81
|
Miricescu D, Totan A, Stanescu S II,
Badoiu SC, Stefani C and Greabu M: PI3K/AKT/mTOR signaling pathway
in breast cancer: From molecular landscape to clinical aspects. Int
J Mol Sci. 22:1732020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang J, Chen J, Wo D, Yan H, Liu P, Ma E,
Li L, Zheng L, Chen D, Yu Z, et al: LRP6 ectodomain prevents
SDF-1/CXCR4-induced breast cancer metastasis to lung. Clin Cancer
Res. 25:4832–4845. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xin Y, Hu B, Li K, Hu G, Zhang C, Chen X,
Tang K, Du P and Tan Y: Circulating tumor cells with
metastasis-initiating competence survive fluid shear stress during
hematogenous dissemination through CXCR4-PI3K/AKT signaling. Cancer
Lett. 590:2168702024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Müller A, Homey B, Soto H, Ge N, Catron D,
Buchanan ME, McClanahan T, Murphy E, Yuan W, Wagner SN, et al:
Involvement of chemokine receptors in breast cancer metastasis.
Nature. 410:50–56. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Jankowski K, Kucia M, Wysoczynski M, Reca
R, Zhao D, Trzyna E, Trent J, Peiper S, Zembala M, Ratajczak J, et
al: Both hepatocyte growth factor (HGF) and stromal-derived
factor-1 regulate the metastatic behavior of human rhabdomyosarcoma
cells, but only HGF enhances their resistance to radiochemotherapy.
Cancer Res. 63:7926–7935. 2003.PubMed/NCBI
|
|
86
|
Gupta N, Mohan CD, Shanmugam MK, Jung YY,
Chinnathambi A, Alharbi SA, Ashrafizadeh M, Mahale M, Bender A,
Kumar AP, et al: CXCR4 expression is elevated in TNBC patient
derived samples and Z-guggulsterone abrogates tumor progression by
targeting CXCL12/CXCR4 signaling axis in preclinical breast cancer
model. Environ Res. 232:1163352023. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Schreier A, Zappasodi R, Serganova I,
Brown KA, Demaria S and Andreopoulou E: Facts and perspectives:
Implications of tumor glycolysis on immunotherapy response in
triple negative breast cancer. Front Oncol. 12:10617892022.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Pavlova NN, Zhu J and Thompson CB: The
hallmarks of cancer metabolism: Still emerging. Cell Meta.
34:355–377. 2022. View Article : Google Scholar
|
|
89
|
Arundhathi JRD, Mathur SR, Gogia A, Deo
SVS, Mohapatra P and Prasad CP: Metabolic changes in triple
negative breast cancer-focus on aerobic glycolysis. Mol Biol Rep.
48:4733–4745. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhang Y, Dai K, Xu D, Fan H, Ji N, Wang D,
Zhao Y and Liu R: Saikosaponin A alleviates glycolysis of breast
cancer cells through repression of Akt/STAT3 pathway. Chem Biol
Drug Des. 102:115–125. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhu Q, Han Y, He Y, Meng P, Fu Y, Yang H,
He G, Long M and Shi Y: Quercetin inhibits neuronal Ferroptosis and
promotes immune response by targeting lipid metabolism-related gene
PTGS2 to alleviate breast cancer-related depression. Phytomedicine.
130:1555602024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Luo K, Dai RJ, Zeng YB, Chang WJ, Deng YL
and Lv F: Triterpenoid saponins from Bupleurum marginatum and their
anti-liver fibrotic activities. J Asian Nat Prod Res. 26:858–864.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Fan J, Li X, Li P, Li N, Wang T, Shen H,
Siow Y, Choy P and Gong Y: Saikosaponin-d attenuates the
development of liver fibrosis by preventing hepatocyte injury.
Biochem Cell Biol. 85:189–195. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Chang GR, Lin WL, Lin TC, Liao HJ and Lu
YW: The ameliorative effects of saikosaponin in
Thioacetamide-induced liver injury and non-alcoholic fatty liver
disease in mice. Int J Mol Sci. 22:113832021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Decensi A, Dunn BK, Puntoni M, Gennari A
and Ford LG: Exemestane for breast cancer prevention: a critical
shift? Cancer Discov. 2:25–40. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Costedoat-Chalumeau N, Dunogué B, Leroux
G, Morel N, Jallouli M, Le Guern V, Piette JC, Brézin AP, Melles RB
and Marmor MF: A critical review of the effects of
hydroxychloroquine and chloroquine on the eye. Clin Rev Allergy
Immunol. 49:317–326. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zheng Q, Li X, Huang N, Li F, Ge J, Wang
D, Sun R and Liu R: Saikosaponins ameliorate hyperlipidemia in rats
by enhancing hepatic lipid and cholesterol metabolism. J
Ethnopharmacol. 305:1161102023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhang F and Liu S: Mechanistic insights of
adipocyte metabolism in regulating breast cancer progression.
Pharmacol Res. 155:1047412020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hoy AJ, Balaban S and Saunders DN:
Adipocyte-tumor cell metabolic crosstalk in breast cancer. Trends
Mol Med. 23:381–392. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liu L, Wu Y, Zhang C, Li Y, Zeng Y, Zhang
C, Li R, Luo D, Wang L, Zhang L, et al: Cancer-associated
adipocyte-derived G-CSF promotes breast cancer malignancy via Stat3
signaling. J Mol Cell Biol. 12:723–737. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Lim SH, Lee HS, Han HK and Choi CI:
Saikosaponin A and D inhibit Adipogenesis via the AMPK and MAPK
signaling pathways in 3T3-L1 adipocytes. Int J Mol Sci.
22:114092021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Boyle P, Boniol M, Koechlin A, Robertson
C, Valentini F, Coppens K, Fairley LL, Boniol M, Zheng T, Zhang Y,
et al: Diabetes and breast cancer risk: A meta-analysis. Br J
Cancer. 107:1608–1617. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhao P, Xia N, Zhang H and Deng T: The
metabolic syndrome is a risk factor for breast cancer: A systematic
review and Meta-analysis. Obes Facts. 13:384–396. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lee MS, Noh JW and Lee BC: Effects of
Saikosaponin-A on insulin resistance in obesity: Computational and
animal experimental study. Chem Pharm Bull (Tokyo). 72:365–373.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Mittal S, Brown NJ and Holen I: The breast
tumor microenvironment: Role in cancer development, progression and
response to therapy. Expert Rev Mol Diagn. 18:227–243. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Munir MT, Kay MK, Kang MH, Rahman MM,
Al-Harrasi A, Choudhury M, Moustaid-Moussa N, Hussain F and Rahman
SM: Tumor-associated macrophages as multifaceted regulators of
breast tumor growth. Int J Mol Sci. 22:56262021. View Article : Google Scholar
|
|
107
|
Yao RY, Zou YF and Chen XF: Traditional
use, pharmacology, toxicology, and quality control of species in
genus Bupleurum L. Chin Herb Med. 5:245–255. 2013.PubMed/NCBI
|
|
108
|
Virassamy B, Caramia F, Savas P, Sant S,
Wang J, Christo SN, Byrne A, Clarke K, Brown E, Teo ZL, et al:
Intratumoral CD8+ T cells with a tissue-resident memory
phenotype mediate local immunity and immune checkpoint responses in
breast cancer. Cancer Cell. 41:585–601.e8. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Xiao Y, Huang Y, Jiang J, Chen Y and Wei
C: Identification of the prognostic value of Th1/Th2 ratio and a
novel prognostic signature in basal-like breast cancer. Hereditas.
160:22023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Talmadge JE and Fidler IJ: AACR centennial
series: The biology of cancer metastasis: historical perspective.
Cancer Res. 70:5649–5669. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Xu Z, Goel HL, Burkart C, Burman L, Chong
YE, Barber AG, Geng Y, Zhai L, Wang M, Kumar A, et al: Inhibition
of VEGF binding to neuropilin-2 enhances chemosensitivity and
inhibits metastasis in triple-negative breast cancer. Sci Transl
Med. 15:eadf11282023. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Claesson-Welsh L and Welsh M: VEGFA and
tumour angiogenesis. J Intern Med. 273:114–127. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Srivastava N, Usmani SS, Subbarayan R,
Saini R and Pandey PK: Hypoxia: Syndicating triple negative breast
cancer against various therapeutic regimens. Front Oncol.
13:11991052023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Al Kawas H, Saaid I, Jank P, Westhoff CC,
Denkert C, Pross T, Weiler KBS and Karsten MM: How VEGF-A and its
splice variants affect breast cancer development-clinical
implications. Cell Oncol (Dordr). 45:227–239. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Zhang P, Lai X, Zhu MH, Long M, Liu XL,
Wang ZX, Zhang Y, Guo RJ, Dong J, Lu Q, et al: Saikosaponin A, a
triterpene saponin, suppresses angiogenesis and tumor growth by
blocking VEGFR2-mediated signaling pathway. Front Pharmacol.
12:7132002021. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Nanda A, Hu J, Hodgkinson S, Ali S,
Rainsbury R and Roy PG: Oncoplastic breast-conserving surgery for
women with primary breast cancer. Cochrane Database Syst Rev.
10:Cd0136582021.PubMed/NCBI
|
|
117
|
Williams LJ, Kunkler IH, Taylor KJ, Dunlop
J, Piper T, Caldwell J, Jack W, Loane JF, Elder K, Bartlett JMS, et
al: Postoperative radiotherapy in women with early operable breast
cancer (Scottish Breast Conservation Trial): 30-year update of a
randomised, controlled, phase 3 trial. Lancet Oncol. 25:1213–1221.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Li J, Wang S, Wang N, Zheng Y, Yang B,
Wang X, Zhang J, Pan B and Wang Z: Aiduqing formula inhibits breast
cancer metastasis by suppressing TAM/CXCL1-induced Treg
differentiation and infiltration. Cell Commun Signal. 19:892021.
View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wu TN, Chen HM and Shyur LF: Current
advancements of Plant-derived agents for Triple-negative breast
cancer therapy through deregulating cancer cell functions and
reprogramming tumor microenvironment. Int J Mol Sci. 22:135712021.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Li W, Zhang H, Assaraf YG, Zhao K, Xu X,
Xie J, Yang DH and Chen ZS: Overcoming ABC transporter-mediated
multidrug resistance: Molecular mechanisms and novel therapeutic
drug strategies. Drug Resist Updat. 27:14–29. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Li C, Guan X, Xue H, Wang P, Wang M and
Gai X: Reversal of P-glycoprotein-mediated multidrug resistance is
induced by saikosaponin D in breast cancer MCF-7/adriamycin cells.
Pathol Res Pract. 213:848–853. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ye RP and Chen ZD: Saikosaponin A, an
active glycoside from Radix Bupleuri, reverses
P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cells and
HepG2/ADM cells. Xenobiotica. 47:176–184. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Yuan Z, Yu F, Zhang D and Wang H:
Profiling of the assembly of RecA nucleofilaments implies a
potential target for environmental factors to disturb DNA repair. J
Environ Sci (China). 102:283–290. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Xu J, Bi G, Luo Q, Liu Y, Liu T, Li L,
Zeng Q, Wang Q, Wang Y, Yu J and Yi P: PHLDA1 modulates the
endoplasmic reticulum stress response and is required for
resistance to oxidative Stress-induced cell death in human ovarian
cancer cells. J Cancer. 12:5486–5493. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Zhang Y, Wang F, Shi L, Lu M, Lee KJ,
Ditty MM, Xing Y, He HZ, Ren X and Zheng SY: Nanoscale coordination
polymers enabling antioxidants inhibition for enhanced chemodynamic
therapy. J Control Release. 354:196–206. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Roy NJ, Save SN and Sharma VK, Lim SL,
Baskar N and Sharma VK: NAD(P)H:Quinone acceptor oxidoreductase 1
(NQO1) activatable Salicylamide H+/Cl transporters. Chemistry.
29:e2023014122023. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Liu C, Cheng B, Zhao G and Yuan H: Process
analysis of anthracycline adverse reactions in breast cancer
patients with postoperative chemotherapy. J Investig Med.
70:1352–1357. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Zhao Y, Xu D, Wang J, Zhou D, Liu A, Sun
Y, Yuan Y, Li J and Guo W: The pharmacological mechanism of
chaihu-jia-longgu-muli-tang for treating depression: Integrated
meta-analysis and network pharmacology analysis. Front Pharmacol.
14:12576172023. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Hu H, Xu Q, Mo Z, Hu X, He Q, Zhang Z and
Xu Z: New anti-cancer explorations based on metal ions. J
Nanobiotechnology. 20:4572022. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Zhao B, Wei D, Long Q, Chen Q, Wang F,
Chen L, Li Z, Li T, Ma T, Liu W, et al: Altered synaptic currents,
mitophagy, mitochondrial dynamics in Alzheimer's disease models and
therapeutic potential of Dengzhan Shengmai capsules intervention. J
Pharm Anal. 14:348–370. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Begum HM and Shen K: Intracellular and
microenvironmental regulation of mitochondrial membrane potential
in cancer cells. WIREs Mech Dis. 15:e15952023. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Song IS, Jeong YJ, Jeong SH, Kim JE, Han
J, Kim TH and Jang SW: Modulation of mitochondrial ERβ expression
inhibits Triple-negative breast cancer tumor progression by
activating mitochondrial function. Cell Physiol Biochem.
52:468–485. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Wang P, Ren J, Tang J, Zhang D, Li B and
Li Y: Estrogen-like activities of saikosaponin-d in vitro: A pilot
study. Eur J Pharmacol. 626:159–165. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Zhong Y, Li J, Zhu X, Huang N, Liu R and
Sun R: A comprehensive review of bupleuri radix and its bioactive
components: With a major focus on treating chronic liver diseasess.
J Ethnopharmacol. 330:1182442024. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Lan T, Wang W, Zeng XX, Tong YH, Mao ZJ
and Wang SW: Saikosaponin A triggers cell ferroptosis in
hepatocellular carcinoma by inducing endoplasmic reticulum
stress-stimulated ATF3 expression. Biochem Biophys Res Commun.
674:10–18. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Shi C, Sun L, Fang R, Zheng S, Yu M and Li
Q: Saikosaponin-A exhibits antipancreatic cancer activity by
targeting the EGFR/PI3K/Akt pathway. Curr Pharm Biotechnol.
24:579–588. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Chen M, Hu C, Yang L, Guo Q, Liang Y and
Wang W: Saikosaponin-D induces the pyroptosis of lung cancer by
increasing ROS and activating the NF-κB/NLRP3/caspase-1/GSDMD
pathway. J Biochem Mol Toxicol. 37:e234442023. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
de Boniface J, Szulkin R and Johansson
ALV: Survival after breast conservation vs mastectomy adjusted for
comorbidity and socioeconomic status: A Swedish National 6-Year
Follow-up of 48 986 women. JAMA Surg. 156:628–637. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Qi F, Zhao L, Zhou A, Zhang B, Li A, Wang
Z and Han J: The advantages of using traditional Chinese medicine
as an adjunctive therapy in the whole course of cancer treatment
instead of only terminal stage of cancer. Biosci Trends. 9:16–34.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Song D, Chen M, Chen X, Xu J, Wu S, Lyu Y
and Zhao Q: Apoptosis induction and inhibition of invasion and
migration in gastric cancer cells by Isoorientin studied using
network pharmacology. BMC Complement Med Ther. 24:3092024.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Wei Y, Li S, Li Z, Wan Z and Lin J:
Interpretable-ADMET: A web service for ADMET prediction and
optimization based on deep neural representation. Bioinformatics.
38:2863–2871. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Cheng W, Wu S, Yuan Z, Hu W, Yu X, Kang N,
Wang Q, Zhu M, Xia K, Yang W, et al: Pharmacokinetics, tissue
distribution, and excretion characteristics of a radix polygoni
multiflori extract in rats. Front Pharmacol. 13:8276682022.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Yu X, Xia K, Wu S, Wang Q, Cheng W, Ji C,
Yang W, Kang C, Yuan Z and Li Y: Simultaneous determination and
pharmacokinetic study of six components in beagle dog plasma by
UPLC-MS/MS after oral administration of Astragalus Membranaceus
aqueous extract. Biomed Chromatogr. 36:e54882022. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Li X, Li X, Huang N, Liu R and Sun R: A
comprehensive review and perspectives on pharmacology and
toxicology of saikosaponins. Phytomedicine. 50:73–87. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Manoharan S, Deivendran B and Perumal E:
Chemotherapeutic potential of Saikosaponin D: Experimental
evidence. J Xenobiot. 12:378–405. 2022. View Article : Google Scholar : PubMed/NCBI
|