|
1
|
Zhang P, Yu S, Li H, Liu C, Li J, Lin W,
Gao A, Wang L, Gao W and Sun Y: ILT4 drives B7-H3 expression via
PI3K/AKT/mTOR signalling and ILT4/B7-H3 co-expression correlates
with poor prognosis in non-small cell lung cancer. FEBS Lett.
589:2248–2256. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gao A, Sun Y and Peng G: ILT4 functions as
a potential checkpoint molecule for tumor immunotherapy. Biochim
Biophys Acta Rev Cancer. 1869:278–285. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yue J, Zhang C, Shi X, Wei Y, Liu L, Liu S
and Yang H: Activation of leukocyte immunoglobulin-like receptor B2
signaling pathway in cortical lesions of pediatric patients with
focal cortical dysplasia type IIb and tuberous sclerosis complex.
Brain Dev. 41:829–838. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Borges L and Cosman D: LIRs/ILTs/MIRs,
inhibitory and stimulatory Ig-superfamily receptors expressed in
myeloid and lymphoid cells. Cytokine Growth Factor Rev. 11:209–217.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yue J, Li W, Liang C, Chen B, Chen X, Wang
L, Zang Z, Yu S, Liu S, Li S and Yang H: Activation of LILRB2
signal pathway in temporal lobe epilepsy patients and in a
pilocarpine induced epilepsy model. Exp Neurol. 285:51–60. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Deng M, Lu Z, Zheng J, Wan X, Chen X,
Hirayasu K, Sun H, Lam Y, Chen L, Wang Q, et al: A motif in LILRB2
critical for Angptl2 binding and activation. Blood. 124:924–935.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Liu J, Wang L, Gao W, Li L, Cui X, Yang H,
Lin W, Dang Q, Zhang N and Sun Y: Inhibitory receptor
immunoglobulin-like transcript 4 was highly expressed in primary
ductal and lobular breast cancer and significantly correlated with
IL-10. Diagn Pathol. 9:852014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Carosella ED, Gregori S and Tronik-Le Roux
D: HLA-G/LILRBs: A cancer immunotherapy challenge. Trends Cancer.
7:389–392. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zheng J, Umikawa M, Cui C, Li J, Chen X,
Zhang C, Huynh H, Kang X, Silvany R, Wan X, et al: Inhibitory
receptors bind ANGPTLs and support blood stem cells and leukaemia
development. Nature. 485:656–660. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Shao H, Ma L, Jin F, Zhou Y, Tao M and
Teng Y: Immune inhibitory receptor LILRB2 is critical for the
endometrial cancer progression. Biochem Biophys Res Commun.
506:243–250. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Sun Y, Liu J, Gao P, Wang Y and Liu C:
Expression of Ig-like transcript 4 inhibitory receptor in human
non-small cell lung cancer. Chest. 134:783–788. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Liu X, Yu X, Xie J, Zhan M, Yu Z, Xie L,
Zeng H, Zhang F, Chen G, Yi X and Zheng J: ANGPTL2/LILRB2 signaling
promotes the propagation of lung cancer cells. Oncotarget.
6:21004–21015. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Li Q, Li J, Wang S, Wang J, Chen X, Zhou
D, Fang Y, Gao A and Sun Y: Overexpressed immunoglobulin-like
transcript (ILT) 4 in lung adenocarcinoma is correlated with
immunosuppressive T cell subset infiltration and poor patient
outcomes. Biomark Res. 8:112020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Li X, Wei X, Xu H, Sha Z, Gao A, Sun Y, Li
J and Xu L: Expression of leukocyte immunoglobulin-like receptor B2
in hepatocellular carcinoma and its clinical significance. J Cancer
Res Ther. 14:1655–1659. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
He J, Xu J, Yu X, Zhu H, Zeng Y, Fan D and
Yi X: Overexpression of ANGPTL2 and LILRB2 as predictive and
therapeutic biomarkers for metastasis and prognosis in colorectal
cancer. Int J Clin Exp Pathol. 11:2281–2294. 2018.PubMed/NCBI
|
|
16
|
Kun L, Yunyan P, Xiangshan Y, Hongxin N
and Junyuan Y: Relationship between HPV 16/18 infection in ovarian
cancer patients and expression of ILT4. Chin J Nosocomiol.
24:3901–3903. 2014.
|
|
17
|
García M, Palma MB, Verine J, Miriuka S,
Inda AM, Errecalde AL, Desgrandchamps F, Carosella ED and Tronik-Le
Roux D: The immune-checkpoint HLA-G/ILT4 is involved in the
regulation of VEGF expression in clear cell renal cell carcinoma.
BMC Cancer. 20:6242020. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Gao A, Liu X, Lin W, Wang J, Wang S, Si F,
Huang L, Zhao Y, Sun Y and Peng G: Tumor-derived ILT4 induces T
cell senescence and suppresses tumor immunity. J Immunother Cancer.
9:e0015362021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li Y, Deng G, Qi Y, Zhang H, Gao L, Jiang
H, Ye Z, Liu B and Chen Q: Bioinformatic profiling of
Prognosis-related genes in malignant glioma microenvironment. Med
Sci Monit. 26:e9240542020.PubMed/NCBI
|
|
20
|
Chalbatani GM, Momeni SA, Mohammadi Hadloo
MH, Karimi Z, Hadizadeh M, Jalali SA, Miri SR, Memari F and Hamblin
MR: Comprehensive analysis of ceRNA networks to determine genes
related to prognosis, overall survival, and immune infiltration in
clear cell renal carcinoma. Comput Biol Med. 141:1050432022.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Warnecke-Eberz U, Metzger R, Hölscher AH,
Drebber U and Bollschweiler E: Diagnostic marker signature for
esophageal cancer from transcriptome analysis. Tumour Biol.
37:6349–6358. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang Z, Gao A, Shi W, Wang J, Zhang X, Xu
Z, Xu T, Zheng Y, Sun Y and Yang F: ILT4 in colorectal cancer cells
induces suppressive T cell contexture and disease progression. Onco
Targets Ther. 14:4239–4254. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang P, Guo X, Li J, Yu S, Wang L, Jiang
G, Yang D, Wei Z, Zhang N, Liu J and Sun Y: Immunoglobulin-like
transcript 4 promotes tumor progression and metastasis and
up-regulates VEGF-C expression via ERK signaling pathway in
non-small cell lung cancer. Oncotarget. 6:13550–13563. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cai Z, Wang L, Han Y, Gao W, Wei X, Gong
R, Zhu M, Sun Y and Yu S: Immunoglobulin-like transcript 4 and
human leukocyte antigen-G interaction promotes the progression of
human colorectal cancer. Int J Oncol. 54:1943–1954. 2019.PubMed/NCBI
|
|
25
|
Shao H, Ma L, Jin F, Zhou Y, Tao M and
Teng Y: Immune inhibitory receptor LILRB2 is critical for the
endometrial cancer progression. Biochem Biophys Res Commun.
506:243–250. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen HM, van der Touw W, Wang YS, Kang K,
Mai S, Zhang J, Alsina-Beauchamp D, Duty JA, Mungamuri SK, Zhang B,
et al: Blocking immunoinhibitory receptor LILRB2 reprograms
tumor-associated myeloid cells and promotes antitumor immunity. J
Clin Invest. 128:5647–5662. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Fan J, Han J, Li J, Gu A, Yin D, Song F,
Wang L and Yi Y: The expression and function of immunoglobulin-like
transcript 4 in dendritic cells from patients with hepatocellular
carcinoma. Hum Immunol. 81:714–725. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cho EC, Mitton B and Sakamoto KM: CREB and
leukemogenesis. Crit Rev Oncog. 16:37–46. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu JF, Li J, Yan P, Gong WJ and Sun YP:
Silencing of ILT4 suppresses migration and invasion of non-small
cell lung cancer cells by inhibiting MMP-2. Int J Clin Exp Med.
12:5306–5314. 2019.
|
|
30
|
Cabral-Pacheco GA, Garza-Veloz I,
Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA,
Guerrero-Rodriguez JF, Martinez-Avila N and Martinez-Fierro ML: The
roles of matrix metalloproteinases and their inhibitors in human
diseases. Int J Mol Sci. 21:97392020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang Y, Zhao J, Qiu L, Zhang P, Li J,
Yang D, Wei X, Han Y, Nie S and Sun Y: Co-expression of ILT4/HLA-G
in human non-small cell lung cancer correlates with poor prognosis
and ILT4-HLA-G interaction activates ERK signaling. Tumour Biol.
37:11187–11198. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chen X, Gao A, Zhang F, Yang Z, Wang S,
Fang Y, Li J, Wang J, Shi W, Wang L, et al: ILT4 inhibition
prevents TAM- and dysfunctional T cell-mediated immunosuppression
and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR
activation. Theranostics. 11:3392–3416. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Carbone C, Piro G, Fassan M, Tamburrino A,
Mina MM, Zanotto M, Chiao PJ, Bassi C, Scarpa A, Tortora G and
Melisi D: An angiopoietin-like protein 2 autocrine signaling
promotes EMT during pancreatic ductal carcinogenesis. Oncotarget.
6:13822–13834. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shapouri-Moghaddam A, Mohammadian S,
Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi
A, Afshari JT and Sahebkar A: Macrophage plasticity, polarization,
and function in health and disease. J Cell Physiol. 233:6425–6440.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Martinez FO and Gordon S: The M1 and M2
paradigm of macrophage activation: Time for reassessment.
F1000Prime Rep. 6:132014. View
Article : Google Scholar : PubMed/NCBI
|
|
36
|
Gardner A, de Mingo Pulido Á and Ruffell
B: Dendritic cells and their role in immunotherapy. Front Immunol.
11:9242020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Manavalan JS, Rossi PC, Vlad G, Piazza F,
Yarilina A, Cortesini R, Mancini D and Suciu-Foca N: High
expression of ILT3 and ILT4 is a general feature of tolerogenic
dendritic cells. Transpl Immunol. 11:245–258. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Guerra-de Blas Pdel C, Villaseñor-Talavera
YS, Cruz-González Dde J, Baranda L, Doníz-Padilla L, Abud-Mendoza
C, González-Amaro R and Monsiváis-Urenda AE: Analysis of the
expression and function of Immunoglobulin-like transcript 4 (ILT4,
LILRB2) in dendritic cells from patients with systemic lupus
erythematosus. J Immunol Res. 2016:41630942016.PubMed/NCBI
|
|
39
|
Liang S, Ristich V, Arase H, Dausset J,
Carosella ED and Horuzsko A: Modulation of dendritic cell
differentiation by HLA-G and ILT4 requires the IL-6-STAT3 signaling
pathway. Proc Natl Acad Sci USA. 105:8357–8362. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Trojandt S, Bellinghausen I, Reske-Kunz AB
and Bros M: Tumor-derived immuno-modulators induce overlapping
pro-tolerogenic gene expression signatures in human dendritic
cells. Hum Immunol. 77:1223–1231. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Svajger U, Obermajer N and Jeras M:
IFN-γ-rich environment programs dendritic cells toward silencing of
cytotoxic immune responses. J Leukoc Biol. 95:33–46. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Brenk M, Scheler M, Koch S, Neumann J,
Takikawa O, Häcker G, Bieber T and von Bubnoff D: Tryptophan
deprivation induces inhibitory receptors ILT3 and ILT4 on dendritic
cells favoring the induction of human CD4+CD25+ Foxp3+ T regulatory
cells. J Immunol. 183:145–154. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gregori S, Magnani CF and Roncarolo MG:
Role of human leukocyte antigen-G in the induction of adaptive type
1 regulatory T cells. Hum Immunol. 70:966–969. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Imada M, Masuda K, Satoh R, Ito Y, Goto Y,
Matsuoka T, Endo S, Nakamura A, Kawamoto H and Takai T: Ectopically
expressed PIR-B on T cells constitutively binds to MHC class I and
attenuates T helper type 1 responses. Int Immunol. 21:1151–1161.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Patocka J, Nepovimova E, Kuca K and Wu W:
Cyclosporine A: Chemistry and Toxicity-A review. Curr Med Chem.
28:3925–3934. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Qadir M, O'Loughlin KL, Fricke SM,
Williamson NA, Greco WR, Minderman H and Baer MR: Cyclosporin A is
a broad-spectrum multidrug resistance modulator. Clin Cancer Res.
11:2320–2326. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Liu Z, Jiang L, Li Y, Xie B, Xie J, Wang
Z, Zhou X, Jiang H, Fang Y, Pan H and Han W: Cyclosporine A
sensitizes lung cancer cells to crizotinib through inhibition of
the Ca2+/calcineurin/Erk pathway. EBioMedicine. 42:326–339. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Si YQ, Bian XK, Lu N, Jia YF, Hou ZH and
Zhang Y: Cyclosporine induces up-regulation of immunoglobulin-like
transcripts 3 and 4 expression on and activity of NKL cells.
Transplant Proc. 44:1407–1411. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Malaguarnera L: Influence of resveratrol
on the immune response. Nutrients. 11:9462019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ko JH, Sethi G, Um JY, Shanmugam MK,
Arfuso F, Kumar AP, Bishayee A and Ahn KS: The role of resveratrol
in cancer therapy. Int J Mol Sci. 18:25892017. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ren B, Kwah MX, Liu C, Ma Z, Shanmugam MK,
Ding L, Xiang X, Ho PC, Wang L, Ong PS and Goh BC: Resveratrol for
cancer therapy: Challenges and future perspectives. Cancer Lett.
515:63–72. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Svajger U, Obermajer N and Jeras M:
Dendritic cells treated with resveratrol during differentiation
from monocytes gain substantial tolerogenic properties upon
activation. Immunology. 129:525–535. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Acebedo-Martínez FJ, Alarcón-Payer C,
Frontera A, Barbas R, Prohens R, Di Crisci M, Domínguez-Martín A,
Gómez-Morales J and Choquesillo-Lazarte D: Novel polymorphic
cocrystals of the Non-steroidal anti-inflammatory drug niflumic
acid: Expanding the pharmaceutical landscape. Pharmaceutics.
13:21402021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jin LH, Kim BH, Lee JH, Lee K, Kwack K and
Yim SV: Screening study for genetic polymorphisms affecting
pharmacokinetics of talniflumate. Transl Clin Pharmacol.
25:166–172. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Altay A, Caglar S and Caglar B: Silver(I)
complexes containing diclofenac and niflumic acid induce apoptosis
in human-derived cancer cell lines. Arch Physiol Biochem.
128:69–79. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Caglar S, Altay A, Kuzucu M and Caglar B:
In vitro anticancer activity of novel co(II) and Ni(II) complexes
of Non-steroidal Anti-inflammatory drug niflumic acid against human
breast adenocarcinoma MCF-7 cells. Cell Biochem Biophys.
79:729–746. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Svajger U, Vidmar A and Jeras M: Niflumic
acid renders dendritic cells tolerogenic and up-regulates
inhibitory molecules ILT3 and ILT4. Int Immunopharmacol.
8:997–1005. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Sakata D, Yao C and Narumiya S:
Prostaglandin E2, an immunoactivator. J Pharmacol Sci. 112:1–5.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Santiso A, Heinemann A and Kargl J:
Prostaglandin E2 in the tumor microenvironment, a convoluted affair
mediated by EP receptors 2 and 4. Pharmacol Rev. 76:388–413. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tomić S, Joksimović B, Bekić M, Vasiljević
M, Milanović M, Čolić M and Vučević D: Prostaglanin-E2 potentiates
the suppressive functions of human mononuclear Myeloid-derived
suppressor cells and increases their capacity to expand
IL-10-Producing regulatory T cell subsets. Front Immunol.
10:4752019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Dunn GP, Koebel CM and Schreiber RD:
Interferons, immunity and cancer immunoediting. Nat Rev Immunol.
6:836–848. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Saleiro D and Platanias LC: Interferon
signaling in cancer. Non-canonical pathways and control of
intracellular immune checkpoints. Semin Immunol. 43:1012992019.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Plesca I, Müller L, Böttcher JP, Medyouf
H, Wehner R and Schmitz M: Tumor-associated human dendritic cell
subsets: Phenotype, functional orientation, and clinical relevance.
Eur J Immunol. 52:1750–1758. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Baskar R, Lee KA, Yeo R and Yeoh KW:
Cancer and radiation therapy: Current advances and future
directions. Int J Med Sci. 9:193–199. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Alamilla-Presuel JC, Burgos-Molina AM,
González-Vidal A, Sendra-Portero F and Ruiz-Gómez MJ: Factors and
molecular mechanisms of radiation resistance in cancer cells. Int J
Radiat Biol. 98:1301–1315. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sun L, Zhou H, Wu C and Peng Y: Molecular
markers that predict response to combined radiotherapy and
immunotherapy in patients with lung adenocarcinoma: A
bioinformatics analysis. Transl Cancer Res. 12:2646–2659. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chen X, Wang M, Wu F, Lu J, Xiao C, Wu M,
Yu J and Chen D: Overcoming Radio-immunotherapy treatment
resistance through ILT4 blockade and reversal of HFRT induced
CXCL1-CXCR2 axis activation and Tumor-associated macrophage
immunosuppression. Int J Radiat Oncol Biol Phys. 117
(Suppl):S72–S73. 2023. View Article : Google Scholar
|
|
68
|
Chen X, Yuan M, Zhong T, Wang M, Wu F, Lu
J, Sun D, Xiao C, Sun Y, Hu Y, et al: LILRB2 inhibition enhances
radiation sensitivity in Non-small cell lung cancer by attenuating
Radiation-induced senescence. Cancer Lett. 593:2169302024.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Umiker B, Hashambhoy-Ramsay Y, Smith J,
Rahman T, Mueller A, Davidson R, Meyer C, Patankar G, Alam MM,
Jaffe S, et al: Inhibition of LILRB2 by a novel blocking antibody
designed to reprogram immunosuppressive macrophages to drive T-cell
activation in tumors. Mol Cancer Ther. 22:471–484. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Papadopoulos KP, Lakhani NJ, Yap TA,
Naumovski Al, Brown KS, Umiker B, McGrath L, Zhang W, Stack E,
Riley G, et al: Phase 1, first-in-human trial of JTX-8064, an
anti-LILRB2/ILT4 monoclonal antibody, as monotherapy and in
combination with anti-PD-1 in adult patients with advanced solid
tumors (INNATE). J Clin Oncol. 39:TPS26722021. View Article : Google Scholar
|
|
71
|
Hashambhoy-Ramsay Y, Spaulding V, Priess
M, O'Malley K, Gostissa M, Stack E, Smith J, Willer M, Umiker B and
Shaffer D: 217 Evaluating biomarkers of JTX-8064 (anti-LILRB2/ILT4
monoclonal antibody) in an ex vivo human tumor histoculture system
to inform clinical development. J Immunother Cancer. 82020.
|
|
72
|
Cohen H, Hashambhoy-Ramsay Y, Pepper LR,
Smith JY, Willer M, Guay K, Spaulding V, O'Malley K, Gostissa M,
Dhaneshwar A, et al: Preclinical evaluation of JTX-8064, an
anti-LILRB2 antagonist antibody, for reprogramming tumor-associated
macrophages. Cancer Res. 79:50072019. View Article : Google Scholar
|
|
73
|
Siu LL, Wang D, Hilton J, Geva R, Rasco D,
Abraham AK, Markensohn JF, Suttner L, Siddiqi S, Altura AR and
Maurice-Dror C: Initial results of a phase I study of MK-4830, a
first-in-class anti-immunoglobulin-like transcript 4 (ILT4)
myeloid-specific Antibody in patients (pts) with advanced solid
tumours. Ann Oncol. 31:S462. 2020. View Article : Google Scholar
|
|
74
|
Siu LL, Wang D, Hilton J, Geva R, Rasco D,
Perets R, Abraham AK, Wilson DC, Markensohn JF, Lunceford J, et al:
Correction: First-in-class Anti-immunoglobulin-like Transcript 4
Myeloid-Specific Antibody MK-4830 Abrogates a PD-1 Resistance
Mechanism in Patients with Advanced Solid Tumors. Clin Cancer Res.
28:17342022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Cho BC, Hilton J, Rodriguez CP, Bonomi M,
Siu LL, Gil-Martin M, Siddiqi S, Myer NM, Suttner L, Wilson D, et
al: Abstract CT114: Phase 1 study of the anti-immunoglobulin-like
transcript 4 (ILT4) monoclonal antibody MK-4830 plus pembrolizumab
in patients with previously untreated advanced head and neck
squamous cell carcinoma (HNSCC) or non-small cell lung cancer
(NSCLC). Cancer Res. 84:CT1142024. View Article : Google Scholar
|