|
1
|
Ryan PG and Moloney CL: Marine litter
keeps increasing. Nature. 361:231993. View
Article : Google Scholar
|
|
2
|
Thompson RC, Olsen Y, Mitchell RP, Davis
A, Rowland SJ, John AW, McGonigle D and Russell AE: Lost at sea:
Where is all the plastic? Science. 304:8382004. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Geyer R, Jambeck JR and Law KL:
Production, use, and fate of all plastics ever made. Sci Adv.
3:e17007822017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kooi M, Besseling E, Kroeze C, van Wezel
AP and Koelmans AA: Modeling the fate and transport of plastic
debris in freshwaters: Review and guidance. Freshwater
Microplastics: Emerging Environmental Contaminants? Wagner M and
Lambert S: Springer International Publishing; Cham: pp. 125–152.
2018, View Article : Google Scholar
|
|
5
|
Faure F, Demars C, Wieser O, Kunz M and de
Alencastro L: Plastic pollution in Swiss surface waters: Nature and
concentrations, interaction with pollutants. Environmental
Chemistry. 12:582–591. 2015. View
Article : Google Scholar
|
|
6
|
Lebreton L, Slat B, Ferrari F, Sainte-Rose
B, Aitken J, Marthouse R, Hajbane S, Cunsolo S, Schwarz A, Levivier
A, et al: Evidence that the great pacific garbage patch is rapidly
accumulating plastic. Sci Rep. 8:46662018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Laskar N and Kumar U: Plastics and
microplastics: A threat to environment. Environmental Technology
& Innovation. 14:1003522019. View Article : Google Scholar
|
|
8
|
Fendall LS and Sewell MA: Contributing to
marine pollution by washing your face: Microplastics in facial
cleansers. Mar Pollut Bull. 58:1225–1228. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Aueviriyavit S, Phummiratch D and
Maniratanachote R: Mechanistic study on the biological effects of
silver and gold nanoparticles in Caco-2 cells-induction of the
Nrf2/HO-1 pathway by high concentrations of silver nanoparticles.
Toxicol Lett. 224:73–83. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Efimova I, Bagaeva M, Bagaev A, Kileso A
and Chubarenko IP: Secondary microplastics generation in the sea
swash zone with coarse bottom sediments: Laboratory experiments.
Front Mar Sci. 5:3132018. View Article : Google Scholar
|
|
11
|
Xiang Y, Jiang L, Zhou Y, Luo Z, Zhi D,
Yang J and Lam SS: Microplastics and environmental pollutants: Key
interaction and toxicology in aquatic and soil environments. J
Hazard Mater. 422:1268432022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Domenech J and Marcos R: Pathways of human
exposure to microplastics, and estimation of the total burden. Curr
Opin Food Sci. 39:144–151. 2021. View Article : Google Scholar
|
|
13
|
Santillo D, Miller K and Johnston P:
Microplastics as contaminants in commercially important seafood
species. Integr Environ Assess Manag. 13:516–521. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Karami A, Golieskardi A, Choo CK, Larat V,
Galloway TS and Salamatinia B: The presence of microplastics in
commercial salts from different countries. Sci Rep. 7:461732017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kosuth M, Mason SA and Wattenberg EV:
Anthropogenic contamination of tap water, beer, and sea salt. PLoS
One. 13:e01949702018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Schwabl P, Köppel S, Königshofer P,
Bucsics T, Trauner M, Reiberger T and Liebmann B: Detection of
various microplastics in human stool: A prospective case series.
Ann Intern Med. 171:453–457. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Deng Y, Zhang Y, Lemos B and Ren H: Tissue
accumulation of microplastics in mice and biomarker responses
suggest widespread health risks of exposure. Sci Rep. 7:466872017.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Qiao R, Deng Y, Zhang S, Wolosker MB, Zhu
Q, Ren H and Zhang Y: Accumulation of different shapes of
microplastics initiates intestinal injury and gut microbiota
dysbiosis in the gut of zebrafish. Chemosphere. 236:1243342019.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kumar R, Manna C, Padha S, Verma A, Sharma
P, Dhar A, Ghosh A and Bhattacharya P: Micro(nano)plastics
pollution and human health: How plastics can induce carcinogenesis
to humans? Chemosphere. 298:1342672022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
O'Brien S, Okoffo ED, O'Brien JW, Ribeiro
F, Wang X, Wright SL, Samanipour S, Rauert C, Toapanta TYA,
Albarracin R and Thomas KV: Airborne emissions of microplastic
fibres from domestic laundry dryers. Sci Total Environ.
747:1411752020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Prata JC: Airborne microplastics:
Consequences to human health? Environ Pollut. 234:115–126. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gasperi J, Wright SL, Dris R, Collard F,
Mandin C, Guerrouache M, Langlois V, Kelly FJ and Tassin B:
Microplastics in air: Are we breathing it in? Curr Opin Environ Sci
Health. 1:1–5. 2018. View Article : Google Scholar
|
|
23
|
Zhang J, Du J, Liu D, Zhuo J, Chu L, Li Y,
Gao L, Xu M, Chen W, Huang W, et al: Polystyrene microplastics
induce pulmonary fibrosis by promoting alveolar epithelial cell
ferroptosis through cGAS/STING signaling. Ecotoxicol Environ Saf.
277:1163572024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Milillo C, Aruffo E, Di Carlo P, Patruno
A, Gatta M, Bruno A, Dovizio M, Marinelli L, Dimmito MP, Giacomo
VD, et al: Polystyrene nanoplastics mediate oxidative stress,
senescence, and apoptosis in a human alveolar epithelial cell line.
Front Public Health. 12:13853872024. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Warheit DB, Hart GA, Hesterberg TW,
Collins JJ, Dyer WM, Swaen GM, Castranova V, Soiefer AI and Kennedy
GL Jr: Potential pulmonary effects of man-made organic fiber (MMOF)
dusts. Crit Rev Toxicol. 31:697–736. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wu P, Lin S, Cao G, Wu J, Jin H, Wang C,
Wong MH, Yang Z and Cai Z: Absorption, distribution, metabolism,
excretion and toxicity of microplastics in the human body and
health implications. J Hazard Mater. 437:1293612022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wu P, Zhang H, Singh N, Tang Y and Cai Z:
Intertidal zone effects on occurrence, fate and potential risks of
microplastics with perspectives under COVID-19 pandemic. Chemical
Engineering J. 429:1323512022. View Article : Google Scholar
|
|
28
|
Schneider M, Stracke F, Hansen S and
Schaefer UF: Nanoparticles and their interactions with the dermal
barrier. Dermatoendocrinol. 1:197–206. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Oliveira M, Ribeiro A, Hylland K and
Guilhermino L: Single and combined effects of microplastics and
pyrene on juveniles (0+ group) of the common goby Pomatoschistus
microps (Teleostei, Gobiidae). Ecological Indicators. 34:641–647.
2013. View Article : Google Scholar
|
|
30
|
Kleinteich J, Seidensticker S, Marggrander
N and Zarfl C: Microplastics reduce short-term effects of
environmental contaminants. Part II: Polyethylene particles
decrease the effect of polycyclic aromatic hydrocarbons on
microorganisms. Int J Environ Res Public Health. 15:2872018.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhou Y, Liu X and Wang J: Characterization
of microplastics and the association of heavy metals with
microplastics in suburban soil of central China. Sci Total Environ.
694:1337982019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ogata Y, Takada H, Mizukawa K, Hirai H,
Iwasa S, Endo S, Mato Y, Saha M, Okuda K, Nakashima A, et al:
International pellet watch: Global monitoring of persistent organic
pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs,
DDTs, and HCHs. Mar Pollut Bull. 58:1437–1446. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Brynzak-Schreiber E, Schögl E, Bapp C,
Cseh K, Kopatz V, Jakupec MA, Weber A, Lange T, Toca-Herrera JL,
Favero GD, et al: Microplastics role in cell migration and
distribution during cancer cell division. Chemosphere.
353:1414632024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shahzadi C, Di Serafino A, Aruffo E,
Mascitelli A and Di Carlo P: A549 as an in vitro model to evaluate
the impact of microplastics in the air. Biology (Basel).
12:12432023.PubMed/NCBI
|
|
35
|
Prata JC, da Costa JP, Lopes I, Duarte AC
and Rocha-Santos T: Environmental exposure to microplastics: An
overview on possible human health effects. Sci Total Environ.
702:1344552020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Rahman A, Sarkar A, Yadav OP, Achari G and
Slobodnik J: Potential human health risks due to environmental
exposure to nano- and microplastics and knowledge gaps: A scoping
review. Sci Total Environ. 757:1438722021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yang W, Jannatun N, Zeng Y, Liu T, Zhang
G, Chen C and Li Y: Impacts of microplastics on immunity. Front
Toxicol. 4:9568852022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Arneth B: Tumor microenvironment. Medicina
(Kaunas). 56:152019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen G, Shan H, Xiong S, Zhao Y, van
Gestel CAM, Qiu H and Wang Y: Polystyrene nanoparticle exposure
accelerates ovarian cancer development in mice by altering the
tumor microenvironment. Sci Total Environ. 906:1675922024.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Paget S: The distribution of secondary
growths in cancer of the breast. 1889. Cancer Metastasis Rev.
8:98–101. 1989.PubMed/NCBI
|
|
41
|
Ling C, Meyer-Hagen J and Castillo EF:
Ingested microplastics pose a potentially serious risk to the
gastrointestinal microenvironment. J Immunol. 204:83.21.
2020.PubMed/NCBI
|
|
42
|
Anderson NM and Simon MC: The tumor
microenvironment. Curr Biol. 30:R921–R925. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang Y, Xu X and Jiang G: Microplastics
exposure promotes the proliferation of skin cancer cells but
inhibits the growth of normal skin cells by regulating the
inflammatory process. Ecotoxicol Environ Saf. 267:1156362023.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Park JH, Hong S, Kim OH, Kim CH, Kim J,
Kim JW, Hong S and Lee HJ: Polypropylene microplastics promote
metastatic features in human breast cancer. Sci Rep. 13:62522023.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Schnee M and Dittmar T: Impact of
microplastic on mammary epithelial cells, breast-cancer-cells and
cell fusion. Oncology Research and Treatment. 47:402024.
|
|
46
|
Goodman KE, Hare JT, Khamis ZI, Hua T and
Sang QXA: Exposure of human lung cells to polystyrene microplastics
significantly retards cell proliferation and triggers morphological
changes. Chem Res Toxicol. 34:1069–1081. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Da Silva Brito WA, Singer D, Honnorat B,
Saadati F, Wende K and Bekeschus S: Laser-ablated polypropylene
microplastics and their biological responses in human cell lines.
Toxicol Lett. 368:S2982022. View Article : Google Scholar
|
|
48
|
Böckers M, Paul NW and Efferth T:
Bisphenolic compounds alter gene expression in MCF-7 cells through
interaction with estrogen receptor α. Toxicol Appl Pharmacol.
399:1150302020. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Böckers M, Paul NW and Efferth T:
Organophosphate ester tri-o-cresyl phosphate interacts with
estrogen receptor α in MCF-7 breast cancer cells promoting cancer
growth. Toxicol Appl Pharmacol. 395:1149772020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Noy R and Pollard JW: Tumor-associated
macrophages: From mechanisms to therapy. Immunity. 41:49–61. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yang Q, Dai H, Wang B, Xu J, Zhang Y, Chen
Y, Ma Q, Xu F, Cheng H, Sun D and Wang C: Nanoplastics shape
adaptive anticancer immunity in the colon in mice. Nano Lett.
23:3516–3523. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang X, Ren XM, He H, Li F, Liu K, Zhao F,
Hu H, Zhang P, Huang B and Pan X: Cytotoxicity and pro-inflammatory
effect of polystyrene nano-plastic and micro-plastic on RAW264.7
cells. Toxicology. 484:1533912023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Brammatti I, Antunes J, Carvalho C,
Martins M and Branco V: P17-25: Nanoplastics effect over
co-cultures of intestinal and immune cells. Toxicol Lett.
384:S2122023. View Article : Google Scholar
|
|
54
|
Merkley SD, Moss HC, Goodfellow SM, Ling
CL, Meyer-Hagen JL, Weaver J, Campen MJ and Castillo EF:
Polystyrene microplastics induce an immunometabolic active state in
macrophages. Cell Biol Toxicol. 38:31–41. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Collin-Faure V, Vitipon M, Torres A,
Tanyeres O, Dalzon B and Rabilloud T: The internal dose makes the
poison: Higher internalization of polystyrene particles induce
increased perturbation of macrophages. Front Immunol.
14:10927432023. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Koner S, Florance I, Mukherjee A and
Chandrasekaran N: Cellular response of THP-1 macrophages to
polystyrene microplastics exposure. Toxicology. 483:1533852023.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wolff CM, Singer D, Schmidt A and
Bekeschus S: Immune and inflammatory responses of human
macrophages, dendritic cells, and T-cells in presence of micro- and
nanoplastic of different types and sizes. J Hazard Mater.
459:1321942023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Weber A, Schwiebs A, Solhaug H, Stenvik J,
Nilsen AM, Wagner M, Relja B and Radeke HH: Nanoplastics affect the
inflammatory cytokine release by primary human monocytes and
dendritic cells. Environ Int. 163:1071732022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Wei K, Nguyen HN and Brenner MB:
Fibroblast pathology in inflammatory diseases. J Clin Invest.
131:e1495382021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen Y, McAndrews KM and Kalluri R:
Clinical and therapeutic relevance of cancer-associated
fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang YL, Huang CC, Zheng CM, Liu WC, Lee
YH and Chiu HW: Polystyrene microplastic-induced extracellular
vesicles cause kidney-related effects in the crosstalk between
tubular cells and fibroblasts. Ecotoxicol Environ Saf.
273:1160982024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Martin L, Simpson K, Brzezinski M, Watt J
and Xu W: Cellular response of keratinocytes to the entry and
accumulation of nanoplastic particles. Part Fibre Toxicol.
21:222024. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Eom S, Shim W and Choi I:
Microplastic-induced inhibition of cell adhesion and toxicity
evaluation using human dermal fibroblast-derived spheroids. J
Hazard Mater. 465:1333592024. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Van Doren SR: Matrix metalloproteinase
interactions with collagen and elastin. Matrix Biol. 44-46:224–231.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bökel C and Brown NH: Integrins in
development: Moving on, responding to, and sticking to the
extracellular matrix. Dev Cell. 3:311–321. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sobierajska K, Ciszewski WM,
Sacewicz-Hofman I and Niewiarowska J: Endothelial cells in the
tumor microenvironment. Adv Exp Med Biol. 1234:71–86. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Vlacil AK, Trippel N, Bänfer S, Jacob R,
Schieffer B and Grote K: Microplastic particles induce endothelial
activation. Atherosclerosis. 355:5–6. 2022. View Article : Google Scholar
|
|
68
|
Mobayen G, Auyang E, Mitchell W,
Arachchillage D, Wright S and McKinnon T: The effects of
polystyrene microplastics on thrombosis. Research and Practice in
Thrombosis and Haemostasis. 7:1008272023. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang X, Jia Z, Zhou X, Su L, Wang M, Wang
T and Zhang H: Nanoplastic-induced vascular endothelial injury and
coagulation dysfunction in mice. Sci Total Environ. 865:1612712023.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Theocharis AD, Skandalis SS, Gialeli C and
Karamanos NK: Extracellular matrix structure. Adv Drug Deliv Rev.
97:4–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S,
Lin S and Qiao Y: Extracellular matrix and its therapeutic
potential for cancer treatment. Signal Transduct Target Ther.
6:1532021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Huang H, Hou J, Liao Y, Wei F and Xing B:
Polyethylene microplastics impede the innate immune response by
disrupting the extracellular matrix and signaling transduction.
iScience. 26:1073902023. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Tanveer M, Mansha N, Nimra A, Khawar MB,
Afzal A, Afzal H, Farooq M, Ehsan S, Rana R and Shahzaman S:
Microplastics: Unraveling the signaling pathways involved in
reproductive health. Environ Sci Pollut Res Int. 30:95077–95085.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
He Y, Li Z, Xu T, Luo D, Chi Q, Zhang Y
and Li S: Polystyrene nanoplastics deteriorate LPS-modulated
duodenal permeability and inflammation in mice via ROS
drived-NF-κB/NLRP3 pathway. Chemosphere. 307:1356622022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Antunes J, Sobral P, Martins M and Branco
V: Nanoplastics activate a TLR4/p38-mediated pro-inflammatory
response in human intestinal and mouse microglia cells. Environ
Toxicol Pharmacol. 104:1042982023. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Franchi L, Eigenbrod T, Muñoz-Planillo R
and Nuñez G: The inflammasome: A caspase-1-activation platform that
regulates immune responses and disease pathogenesis. Nat Immunol.
10:241–247. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sun R, Liu M, Xiong F, Xu K, Huang J, Liu
J, Wang D and Pu Y: Polystyrene micro- and nanoplastics induce
gastric toxicity through ROS mediated oxidative stress and
P62/Keap1/Nrf2 pathway. Sci Total Environ. 912:1692282024.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Dominic A, Le NT and Takahashi M: Loop
between nlrp3 inflammasome and reactive oxygen species. Antioxid
Redox Signal. 36:784–796. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Gloire G and Piette J: Redox regulation of
nuclear post-translational modifications during NF-kappaB
activation. Antioxid Redox Signal. 11:2209–2222. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wen Y, Deng S, Wang B, Zhang F, Luo T,
Kuang H, Kuang X, Yuan Y, Huang J and Zhang D: Exposure to
polystyrene nanoplastics induces hepatotoxicity involving
NRF2-NLRP3 signaling pathway in mice. Ecotoxicol Environ Saf.
278:1164392024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhang Y, Yin K, Wang D, Wang Y, Lu H, Zhao
H and Xing M: Polystyrene microplastics-induced cardiotoxicity in
chickens via the ROS-driven NF-κB-NLRP3-GSDMD and AMPK-PGC-1α axes.
Sci Total Environ. 840:1567272022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li J, Yin K, Hou L, Zhang Y, Lu H, Ma C
and Xing M: Polystyrene microplastics mediate inflammatory
responses in the chicken thymus by Nrf2/NF-κB pathway and trigger
autophagy and apoptosis. Environ Toxicol Pharmacol. 100:1041362023.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Antunes JC, Branco V, Sobral P and Martins
M: P20-32 polystyrene nanoparticles interference in human colon
adenocarcinoma cell line HT29. Toxicol Lett. 350:S195–S196. 2021.
View Article : Google Scholar
|
|
85
|
Cuadrado A and Nebreda AR: Mechanisms and
functions of p38 MAPK signalling. Biochemical J. 429:403–417. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu T, Zhang L, Joo D and Sun SC: NF-κB
signaling in inflammation. Signal Transduct Target Ther.
2:170232017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Wang W, Weng J, Yu L, Huang Q, Jiang Y and
Guo X: Role of TLR4-p38 MAPK-Hsp27 signal pathway in LPS-induced
pulmonary epithelial hyperpermeability. BMC Pulm Med. 18:1782018.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Woo JH, Seo HJ, Lee JY, Lee I, Jeon K, Kim
B and Lee K: Polypropylene nanoplastic exposure leads to lung
inflammation through p38-mediated NF-κB pathway due to
mitochondrial damage. Part Fibre Toxicol. 20:22023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Danso IK, Woo JH, Baek SH, Kim K and Lee
K: Pulmonary toxicity assessment of polypropylene, polystyrene, and
polyethylene microplastic fragments in mice. Toxicol Res.
40:313–323. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Han W, Cui J, Sun G, Miao X, Pufang Z and
Nannan L: Nano-sized microplastics exposure induces skin cell
senescence via triggering the mitochondrial localization of GSDMD.
Environ Pollut. 349:1238742024. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zeng G, Li J, Wang Y, Su J, Lu Z, Zhang F
and Ding W: Polystyrene microplastic-induced oxidative stress
triggers intestinal barrier dysfunction via the
NF-κB/NLRP3/IL-1β/MCLK pathway. Environ Pollut. 345:1234732024.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang J, Zhao H, Lv K, Zhao W, Zhang N,
Yang F, Wen X, Jiang X, Tian J, Li X, et al: Pterostilbene
Ameliorates DSS-Induced intestinal epithelial barrier loss in mice
via suppression of the NF-κB-Mediated MLCK-MLC signaling pathway. J
Agric Food Chem. 69:3871–3878. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Shen Y, Zhou M, Yan J, Gong Z, Xiao Y,
Zhang C, Du P and Chen Y: miR-200b inhibits TNF-α-induced IL-8
secretion and tight junction disruption of intestinal epithelial
cells in vitro. Am J Physiol Gastrointest Liver Physiol.
312:G123–G132. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Vethaak AD and Legler J: Microplastics and
human health. Science. 371:672–674. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Kumar N, Lamba M, Pachar AK, Yadav S and
Acharya A: Microplastics-A growing concern as carcinogens in cancer
etiology: Emphasis on biochemical and molecular mechanisms. Cell
Biochem Biophys. 82:3109–3121. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Asil SM, Guerrero ED, Bugarini G, Cayme J,
De Avila N, Garcia J, Hernandez A, Mecado J, Madero Y, Moncayo F,
et al: Theranostic applications of multifunctional carbon
nanomaterials. View (Beijing). 4:202200562023.PubMed/NCBI
|