|
1
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen R, Manochakian R, James L, Azzouqa
AG, Shi H, Zhang Y, Zhao Y, Zhou K and Lou Y: Emerging therapeutic
agents for advanced non-small cell lung cancer. J Hematol Oncol.
13:582020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Osmani L, Askin F, Gabrielson E and Li QK:
Current WHO guidelines and the critical role of immunohistochemical
markers in the subclassification of non-small cell lung carcinoma
(NSCLC): Moving from targeted therapy to immunotherapy. Semin
Cancer Biol. 52:103–109. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Cheng C, Wang P, Yang Y, Du X, Xia H, Liu
J, Lu L, Wu H and Liu Q: Smoking-induced M2-TAMs, via circEML4 in
EVs, promote the progression of NSCLC through ALKBH5-regulated m6A
modification of SOCS2 in NSCLC cells. Adv Sci (Weinh).
10:e23009532023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li Y, Liu T, Wang X, Jia Y and Cui H:
Autophagy and glycometabolic reprograming in the malignant
progression of lung cancer: A review. Technol Cancer Res Treat.
22:153303382311905452023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ
and Wang WT: New insight into circRNAs: Characterization,
strategies, and biomedical applications. Exp Hematol Oncol.
12:912023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Alkhathami AG, Sahib AS, Al Fayi MS,
Fadhil AA, Jawad MA, Shafik SA, Sultan SJ, Almulla AF and Shen M:
Glycolysis in human cancers: Emphasis circRNA/glycolysis axis and
nanoparticles in glycolysis regulation in cancer therapy. Environ
Res. 234:1160072023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kim J: Circular RNAs: Novel players in
cancer mechanisms and therapeutic strategies. Int J Mol Sci.
25:101212024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Du Z: CircNRIP1: An emerging star in
multiple cancers. Pathol Res Pract. 241:1542812023. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yang J, Hu Z, Ru X, He M, Hu Z, Qin X,
Xiao S, Liu D, Huang H and Wei Q: Hsa_circ_0002005 aggravates
osteosarcoma by increasing cell proliferation, migration, and
invasion. Gene. 942:1492212025. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hu Y, Cai ZR, Huang RZ, Wang DS, Ju HQ and
Chen DL: Circular RNA circPHLPP2 promotes tumor growth and
anti-PD-1 resistance through binding ILF3 to regulate IL36γ
transcription in colorectal cancer. Mol Cancer. 23:2722024.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen X, Gu J, Huang J, Wen K, Zhang G,
Chen Z and Wang Z: Characterization of circRNAs in established
osimertinib-resistant non-small cell lung cancer cell lines. Int J
Mol Med. 52:1022023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kamali MJ, Salehi M, Mostafavi M,
Morovatshoar R, Akbari M, Latifi N, Barzegari O, Ghadimi F and
Daraei A: Hijacking and rewiring of host CircRNA/miRNA/mRNA
competitive endogenous RNA (ceRNA) regulatory networks by
oncoviruses during development of viral cancers. Rev Med Virol.
34:e25302024. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang MH, Liu ZH, Zhang HX, Liu HC and Ma
LH: Hsa_circRNA_000166 accelerates breast cancer progression via
the regulation of the miR-326/ELK1 and miR-330-5p/ELK1 axes. Ann
Med. 56:24245152024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li X, Wang Y, Cheng J, Qiu L, Wang R,
Zhang Y and Wang H: METTL3 -mediated m6A modification of
circ_0000620 regulates cisplatin sensitivity and apoptosis in lung
adenocarcinoma via the MiR-216b-5p/KRAS axis. Cell Signal.
123:1113492024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lu H, Han X, Ren J, Ren K, Li Z and Sun Z:
Circular RNA HIPK3 induces cell proliferation and inhibits
apoptosis in non-small cell lung cancer through sponging miR-149.
Cancer Biol Ther. 21:113–121. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Gadaleta E, Thorn GJ, Ross-Adams H, Jones
LJ and Chelala C: Field cancerization in breast cancer. J Pathol.
257:561–574. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bi W, Huang J, Nie C, Liu B, He G, Han J,
Pang R, Ding Z, Xu J and Zhang J: CircRNA circRNA_102171 promotes
papillary thyroid cancer progression through modulating
CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin
Cancer Res. 37:2752018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yu S, Su S, Wang P, Li J, Chen C, Xin H,
Gong Y, Wang H, Ye X, Mao L, et al: Tumor-associated
macrophage-induced circMRCKα encodes a peptide to promote
glycolysis and progression in hepatocellular carcinoma. Cancer
Lett. 591:2168722024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Sun X, Zhao X, Xu Y, Yan Y, Han L, Wei M
and He M: Potential therapeutic strategy for cancer:
Multi-dimensional cross-talk between circRNAs and parental genes.
Cancer Lett. 588:2167942024. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li Z, Yin S, Yang K, Zhang B, Wu X, Zhang
M and Gao D: CircRNA regulation of t cells in cancer: Unraveling
potential targets. Int J Mol Sci. 25:63832024. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Huang M, Sun J, Jiang Q, Zhao X, Huang H,
Lei M, Jiang S, Yuan F and Liu Z: CircKIAA0182-YBX1 axis: A key
driver of lung cancer progression and chemoresistance. Cancer Lett.
612:2174942025. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jin J, Zhao Q, Wei Z, Chen K, Su Y, Hu X
and Peng X: Glycolysis-cholesterol metabolic axis in
immuno-oncology microenvironment: Emerging role in immune cells and
immunosuppressive signaling. Cell Biosci. 13:1892023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen X, Hao Y, Liu Y, Zhong S, You Y, Ao
K, Chong T, Luo X, Yin M, Ye M, et al: NAT10/ac4C/FOXP1 promotes
malignant progression and facilitates immunosuppression by
reprogramming glycolytic metabolism in cervical cancer. Adv Sci
(Weinh). 10:e23027052023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang Y, Sun S, Qi Y, Dai Y, Hao Y, Xin M,
Xu R, Chen H, Wu X, Liu Q, et al: Characterization of tumour
microenvironment reprogramming reveals invasion in epithelial
ovarian carcinoma. J Ovarian Res. 16:2002023. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li S, Peng M, Tan S, Oyang L, Lin J, Xia
L, Wang J, Wu N, Jiang X, Peng Q, et al: The roles and molecular
mechanisms of non-coding RNA in cancer metabolic reprogramming.
Cancer Cell Int. 24:372024. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS,
Ubaid M, Athab AH, Mirzaei R and Karampoor S: Exploring the impact
of circRNAs on cancer glycolysis: Insights into tumor progression
and therapeutic strategies. Noncoding RNA Res. 9:970–994. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Geng Y, Jiang J and Wu C: Function and
clinical significance of circRNAs in solid tumors. J Hematol Oncol.
11:982018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Jiang C, Zeng X, Shan R, Wen W, Li J, Tan
J, Li L and Wan R: The emerging picture of the roles of
CircRNA-CDR1as in cancer. Front Cell Dev Biol. 8:5904782020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yang Y, Yujiao W, Fang W, Linhui Y, Ziqi
G, Zhichen W, Zirui W and Shengwang W: The roles of miRNA, lncRNA
and circRNA in the development of osteoporosis. Biol Res.
53:402020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lin H, Conn VM and Conn SJ: Past, present,
and future strategies for detecting and quantifying circular RNA
variants. FEBS J. Feb 11–2025.(Epub ahead of print). View Article : Google Scholar
|
|
32
|
Yang X, Xia J, Peng C and Cai W:
Expression of plasma exosomal circLPAR1 in patients with gastric
cancer and its clinical application value. Am J Cancer Res.
13:4269–4276. 2023.PubMed/NCBI
|
|
33
|
Liang Y, Wang H, Chen B, Mao Q, Xia W,
Zhang T, Song X, Zhang Z, Xu L, Dong G and Jiang F: circDCUN1D4
suppresses tumor metastasis and glycolysis in lung adenocarcinoma
by stabilizing TXNIP expression. Mol Ther Nucleic Acids.
23:355–368. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang
Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of
circular RNAs driven by N6-methyladenosine. Cell Res.
27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao
F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7
circular RNA in repressing glioma tumorigenesis. J Natl Cancer
Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Jiang B, Zhang J, Sun X, Yang C, Cheng G,
Xu M, Li S and Wang L: Circulating exosomal hsa_circRNA_0039480 is
highly expressed in gestational diabetes mellitus and may be served
as a biomarker for early diagnosis of GDM. J Transl Med. 20:52022.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Safi A, Saberiyan M, Sanaei MJ, Adelian S,
Davarani Asl F, Zeinaly M, Shamsi M and Ahmadi R: The role of
noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol
Biol Lett. 28:372023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang C, Tan S, Liu WR, Lei Q, Qiao W, Wu
Y, Liu X, Cheng W, Wei YQ, Peng Y and Li W: RNA-Seq profiling of
circular RNA in human lung adenocarcinoma and squamous cell
carcinoma. Mol Cancer. 18:1342019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Huijbers A, Tollenaar RAEM, v Pelt GW,
Zeestraten ECM, Dutton S, McConkey CC, Domingo E, Smit VTHBM,
Midgley R, Warren BF, et al: The proportion of tumor-stroma as a
strong prognosticator for stage II and III colon cancer patients:
Validation in the VICTOR trial. Ann Oncol. 24:179–185. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhang T, Xu J, Shen H, Dong W, Ni Y and Du
J: Tumor-stroma ratio is an independent predictor for survival in
NSCLC. Int J Clin Exp Pathol. 8:11348–11355. 2015.PubMed/NCBI
|
|
41
|
Gujam FJA, Edwards J, Mohammed ZMA, Going
JJ and McMillan DC: The relationship between the tumour stroma
percentage, clinicopathological characteristics and outcome in
patients with operable ductal breast cancer. Br J Cancer.
111:157–165. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Riester M, Xu Q, Moreira A, Zheng J,
Michor F and Downey RJ: The Warburg effect: Persistence of
stem-cell metabolism in cancers as a failure of differentiation.
Ann Oncol. 29:264–270. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hanahan D: Hallmarks of cancer: New
dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cai ZR, Hu Y, Liao K, Li H, Chen DL and Ju
HQ: Circular RNAs: Emerging regulators of glucose metabolism in
cancer. Cancer Lett. 552:2159782023. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T
and Shu Y: CircRNAs in cancer metabolism: A review. J Hematol
Oncol. 12:902019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
San-Millan I, Sparagna GC, Chapman HL,
Warkins VL, Chatfield KC, Shuff SR, Martinez JL and Brooks GA:
Chronic lactate exposure decreases mitochondrial function by
inhibition of fatty acid uptake and cardiolipin alterations in
neonatal rat cardiomyocytes. Front Nutr. 9:8094852022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Brooks GA: Lactate as a fulcrum of
metabolism. Redox Biol. 35:1014542020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Qin R, Fan X, Huang Y, Chen S, Ding R, Yao
Y, Wu R, Duan Y, Li X, Khan HU, et al: Role of glucose metabolic
reprogramming in colorectal cancer progression and drug resistance.
Transl Oncol. 50:1021562024. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Watson MJ, Vignali PDA, Mullett SJ,
Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV,
Rittenhouse NL, DePeaux K, Whetstone RD, et al: Metabolic support
of tumour-infiltrating regulatory T cells by lactic acid. Nature.
591:645–651. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang Y, Zhou H, Liu Y, Zhao X, Wang S and
Lin Z: miR-485-5p/NQO1 axis drives colorectal cancer progression by
regulating apoptosis and aerobic glycolysis. Cancer Cell Int.
25:412025. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Liu X, Ren B, Ren J, Gu M, You L and Zhao
Y: The significant role of amino acid metabolic reprogramming in
cancer. Cell Commun Signal. 22:3802024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lin Q, Jiang H and Lin D: Circular RNA
ITCH downregulates GLUT1 and suppresses glucose uptake in melanoma
to inhibit cancer cell proliferation. J Dermatolog Treat.
32:231–235. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cao L, Wang M, Dong Y, Xu B, Chen J, Ding
Y, Qiu S, Li L, Karamfilova Zaharieva E, Zhou X and Xu Y: Circular
RNA circRNF20 promotes breast cancer tumorigenesis and Warburg
effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 11:1452020.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li Q, Pan X, Zhu D, Deng Z, Jiang R and
Wang X: Circular RNA MAT2B promotes glycolysis and malignancy of
hepatocellular carcinoma through the miR-338-3p/PKM2 axis under
hypoxic stress. Hepatology. 70:1298–1316. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yang B, Zhao F, Yao L, Zong Z and Xiao L:
CircRNA circ_0006677 inhibits the progression and glycolysis in
non-small-cell lung cancer by sponging miR-578 and Regulating SOCS2
expression. Front Pharmacol. 12:6570532021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
DeBerardinis RJ and Thompson CB: Cellular
metabolism and disease: What do metabolic outliers teach us? Cell.
148:1132–1144. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Pascale RM, Calvisi DF, Simile MM, Feo CF
and Feo F: The Warburg effect 97 years after its discovery. Cancers
(Basel). 12:28192020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L
and Jiang F: PKM2 and cancer: The function of PKM2 beyond
glycolysis. Oncol Lett. 11:1980–1986. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fan C, Tang Y, Wang J, Xiong F, Guo C,
Wang Y, Zhang S, Gong Z, Wei F, Yang L, et al: Role of long
non-coding RNAs in glucose metabolism in cancer. Mol Cancer.
16:1302017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yadav D, Yadav A, Bhattacharya S, Dagar A,
Kumar V and Rani R: GLUT and HK: Two primary and essential key
players in tumor glycolysis. Semin Cancer Biol. 100:17–27. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wu W, Xi W, Li H, Yang M and Yao X:
Circular RNA circ-ACACA regulates proliferation, migration and
glycolysis in non-small-cell lung carcinoma via miR-1183 and
PI3K/PKB pathway. Int J Mol Med. 45:1814–1824. 2020.PubMed/NCBI
|
|
62
|
Zhou J, Zhang S, Chen Z, He Z, Xu Y and Li
Z: CircRNA-ENO1 promoted glycolysis and tumor progression in lung
adenocarcinoma through upregulating its host gene ENO1. Cell Death
Dis. 10:8852019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Xiong S, Li D, Wang D, Huang L, Liang G,
Wu Z, Long J, Yang D, Teng Y, Lei S and Li Y: Circular RNA MYLK
promotes glycolysis and proliferation of non-small cell lung cancer
cells by sponging miR-195-5p and increasing glucose transporter
member 3 expression. Cancer Manag Res. 12:5469–5478. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang W, Cai S, Qin L, Feng Y, Ding M, Luo
Z, Shan J and Di L: Alkaloids of aconiti lateralis radix praeparata
inhibit growth of non-small cell lung cancer by regulating
PI3K/Akt-mTOR signaling and glycolysis. Commun Biol. 7:11182024.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Starska K, Forma E, Jóźwiak P, Bryś M,
Lewy-Trenda I, Brzezińska-Błaszczyk E and Krześlak A: Gene and
protein expression of glucose transporter 1 and glucose transporter
3 in human laryngeal cancer-the relationship with regulatory
hypoxia-inducible factor-1α expression, tumor invasiveness, and
patient prognosis. Tumour Biol. 36:2309–2321. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gu F, Zhang J, Yan L and Li D:
CircHIPK3/miR-381-3p axis modulates proliferation, migration, and
glycolysis of lung cancer cells by regulating the AKT/mTOR
signaling pathway. Open Life Sci. 15:683–695. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lan T, Gao F, Cai Y, Lv Y, Zhu J, Liu H,
Xie S, Wan H, He H, Xie K, et al: The protein circPETH-147aa
regulates metabolic reprogramming in hepatocellular carcinoma cells
to remodel immunosuppressive microenvironment. Nat Commun.
16:3332025. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bian X, Liu R, Meng Y, Xing D, Xu D and Lu
Z: Lipid metabolism and cancer. J Exp Med. 218:e202016062021.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gómez de Cedrón M and Ramírez de Molina A:
Microtargeting cancer metabolism: Opening new therapeutic windows
based on lipid metabolism. J Lipid Res. 57:193–206. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Röhrig F and Schulze A: The multifaceted
roles of fatty acid synthesis in cancer. Nat Rev Cancer.
16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Khan F, Elsori D, Verma M, Pandey S,
Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M and Pandey P:
Unraveling the intricate relationship between lipid metabolism and
oncogenic signaling pathways. Front Cell Dev Biol. 12:13990652024.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu J, Shi Y, Wu M, Xu M, Zhang F, He Z
and Tang M: JAG1 promotes migration, invasion, and adhesion of
triple-negative breast cancer cells by promoting angiogenesis. Nan
Fang Yi Ke Da Xue Xue Bao. 42:1100–1108. 2022.(In Chinese).
PubMed/NCBI
|
|
73
|
Cheng X, Wang W, Zhang Z, Zhang H, Zhu P,
He R, Wu M, Zhou T, Jiang Y, Jiang L, et al: Distinctly altered
lipid components in hepatocellular carcinoma relate to impaired T
cell-dependent antitumor immunity. Hepatol Int. 18:582–594. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hong X, Li Q, Li J, Chen K, He Q, Zhao Y,
Liang Y, Zhao Y, Qiao H, Liu N, et al: CircIPO7 promotes
nasopharyngeal carcinoma metastasis and cisplatin chemoresistance
by facilitating YBX1 nuclear localization. Clin Cancer Res.
28:4521–4535. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li H, Luo F, Jiang X, Zhang W, Xiang T,
Pan Q, Cai L, Zhao J, Weng D, Li Y, et al: CircITGB6 promotes
ovarian cancer cisplatin resistance by resetting tumor-associated
macrophage polarization toward the M2 phenotype. J Immunother
Cancer. 10:e0040292022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wu YL, Li HF, Chen HH and Lin H: Emergent
roles of circular RNAs in metabolism and metabolic disorders. Int J
Mol Sci. 23:10322022. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Hang D, Zhou J, Qin N, Zhou W, Ma H, Jin
G, Hu Z, Dai J and Shen H: A novel plasma circular RNA circFARSA is
a potential biomarker for non-small cell lung cancer. Cancer Med.
7:2783–2791. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhang X, Xu Y, Ma L, Yu K, Niu Y, Xu X,
Shi Y, Guo S, Xue X, Wang Y, et al: Essential roles of exosome and
circRNA_101093 on ferroptosis desensitization in lung
adenocarcinoma. Cancer Commun (Lond). 42:287–313. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X
and Zhuang A: Amino acid metabolism reprogramming: Shedding new
light on T cell anti-tumor immunity. J Exp Clin Cancer Res.
42:2912023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lv H, Shi Z, Sui A, Zhang Y, Peng L, Wang
M and Zhang F: hsa_circ_0000518 facilitates non-small-cell lung
cancer progression via moderating miR-330-3p and positively
regulating SLC1A5. J Immunol Res. 2022:49969802022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Luo H, Peng J and Yuan Y: CircRNA OXCT1
promotes the malignant progression and glutamine metabolism of
non-small cell lung cancer by absorbing miR-516b-5p and
upregulating SLC1A5. Cell Cycle. 22:1182–1195. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Feng Y, Pathria G, Heynen-Genel S, Jackson
M, James B, Yin J, Scott DA and Ronai ZA: Identification and
characterization of IMD-0354 as a glutamine carrier protein
inhibitor in melanoma. Mol Cancer Ther. 20:816–832. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Amelio I, Cutruzzolá F, Antonov A,
Agostini M and Melino G: Serine and glycine metabolism in cancer.
Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Qiu W, Zhang S, Yu W, Liu J and Wu H:
Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable
indicators and potential oncogenic mechanism. Comput Biol Med.
180:1088672024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Luo J, Ng W, Liu Y, Wang L, Gong C, Zhou
Y, Fang C, Zhu S and Yao C: Rocaglamide promotes infiltration and
differentiation of T cells and coordinates with PD-1 inhibitor to
overcome checkpoint resistance in multiple tumor models. Cancer
Immunol Immunother. 73:1372024. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Faubert B, Solmonson A and DeBerardinis
RJ: Metabolic reprogramming and cancer progression. Science.
368:eaaw54732020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Yu X, Tong H, Chen J, Tang C, Wang S, Si
Y, Wang S and Tang Z: CircRNA MBOAT2 promotes intrahepatic
cholangiocarcinoma progression and lipid metabolism reprogramming
by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export.
Cell Death Dis. 14:202023. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang L, Wu C, Xu J, Gong Z, Cao X, Huang
J, Dong H, Zhu W, Huang F, Zhou C and Wang M: GC-MSC-derived
circ_0024107 promotes gastric cancer cell lymphatic metastasis via
fatty acid oxidation metabolic reprogramming mediated by the
miR-5572/6855-5p/CPT1A axis. Oncol Rep. 50:1382023. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gao X, Sun Z, Liu X, Luo J, Liang X, Wang
H, Zhou J, Yang C, Wang T and Li J: 127aa encoded by circSpdyA
promotes FA synthesis and NK cell repression in breast cancers.
Cell Death Differ. Oct 14–2024.(Epub ahead of print). View Article : Google Scholar
|
|
90
|
Sabit H, Arneth B, Pawlik TM, Abdel-Ghany
S, Ghazy A, Abdelazeem RM, Alqosaibi A, Al-Dhuayan IS, Almulhim J,
Alrabiah NA and Hashash A: Leveraging single-cell multi-omics to
decode tumor microenvironment diversity and therapeutic resistance.
Pharmaceuticals (Basel). 18:752025. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
DeSouza NR, Nielsen KJ, Jarboe T, Carnazza
M, Quaranto D, Kopec K, Suriano R, Islam HK, Tiwari RK and
Geliebter J: Dysregulated expression patterns of circular RNAs in
cancer: Uncovering molecular mechanisms and biomarker potential.
Biomolecules. 14:3842024. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Xie C, Hao X, Yuan H, Wang C, Sharif R and
Yu H: Crosstalk between circRNA and tumor microenvironment of
hepatocellular carcinoma: Mechanism, function and applications.
Onco Targets Ther. 17:7–26. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yin WB, Yan MG, Fang X, Guo JJ, Xiong W
and Zhang RP: Circulating circular RNA hsa_circ_0001785 acts as a
diagnostic biomarker for breast cancer detection. Clin Chim Acta.
487:363–368. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang C, Yu Q, Song T, Wang Z, Song L, Yang
Y, Shao J, Li J, Ni Y, Chao N, et al: The heterogeneous immune
landscape between lung adenocarcinoma and squamous carcinoma
revealed by single-cell RNA sequencing. Signal Transduct Target
Ther. 7:2892022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Nicot C: RNA-Seq reveal the circular RNAs
landscape of lung cancer. Mol Cancer. 18:1832019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y,
Wu Z, Tang H, Zhang X, Tian F, et al: Circular RNA vaccines against
SARS-CoV-2 and emerging variants. Cell. 185:1728–1744.e16. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Li H, Peng K, Yang K, Ma W, Qi S, Yu X, He
J, Lin X and Yu G: Circular RNA cancer vaccines drive immunity in
hard-to-treat malignancies. Theranostics. 12:6422–6436. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhang W, Xu C, Yang Z, Zhou J, Peng W,
Zhang X, Li H, Qu S and Tao K: Circular RNAs in tumor immunity and
immunotherapy. Mol Cancer. 23:1712024. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhou J, Xu H, Li X, Liu H, Sun Z, Li J,
Tang Y, Gao H, Zhao K, Ding C and Gao X: Targeting tumorous
Circ-E-Cadherinencoded C-E-Cad inhibits the recruitment and
function of breast cancer-associated myeloid-derived suppressor
cells. Pharmacol Res. 204:1072042024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Mu M, Niu W, Chu F, Dong Q, Hu S and Niu
C: CircSOBP suppresses the progression of glioma by disrupting
glycolysis and promoting the MDA5-mediated immune response.
iScience. 26:1078972023. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Cai J, Chen Z, Zhang Y, Wang J, Zhang Z,
Wu J, Mao J and Zuo X: CircRHBDD1 augments metabolic rewiring and
restricts immunotherapy efficacy via m6A modification in
hepatocellular carcinoma. Mol Ther Oncolytics. 24:755–771. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zang X, He XY, Xiao CM, Lin Q, Wang MY,
Liu CY, Kong LY, Chen Z and Xia YZ: Circular RNA-encoded oncogenic
PIAS1 variant blocks immunogenic ferroptosis by modulating the
balance between SUMOylation and phosphorylation of STAT1. Mol
Cancer. 23:2072024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Cai J, Qiu Z, Chi-Shing Cho W, Liu Z, Chen
S, Li H, Chen K, Li Y, Zuo C and Qiu M: Synthetic circRNA
therapeutics: Innovations, strategies, and future horizons. MedComm
(2020). 5:e7202024. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Dance A: Circular logic: Understanding
RNA's strangest form yet. Nature. 635:511–513. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Aquino-Jarquin G: CircRNA knockdown based
on antisense strategies. Drug Discov Today. 29:1040662024.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhao X, Zhong Y, Wang X, Shen J and An W:
Advances in circular RNA and its applications. Int J Med Sci.
19:975–985. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chen YG, Kim MV, Chen X, Batista PJ,
Aoyama S, Wilusz JE, Iwasaki A and Chang HY: Sensing self and
foreign circular RNAs by intron identity. Mol Cell. 67:228–238.e5.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Chen YG, Chen R, Ahmad S, Verma R, Kasturi
SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al:
N6-methyladenosine modification controls circular RNA immunity. Mol
Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Hashimoto K, Nishimura S and Akagi M: Lung
adenocarcinoma presenting as a soft tissue metastasis to the
shoulder: A case report. Medicina (Kaunas). 57:1812021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Cui YS, Zheng X, Wu YN, Yao YH, Wang J,
Liu ZQ and Sun GG: The RNA binding protein QKI can promote gastric
cancer by regulating cleavage of EMT-related gene transcripts to
form circRNAs. Chin Pharmacol Bull. 40:1462–1473. 2024.(In
Chinese).
|