|
1
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kovacs T, Miko E, Ujlaki G, Yousef H,
Csontos V, Uray K and Bai P: The involvement of oncobiosis and
bacterial metabolite signaling in metastasis formation in breast
cancer. Cancer Metastasis Rev. 40:1223–1249. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mikó E, Vida A and Bai P: Translational
aspects of the microbiome-to be exploited. Cell Biol Toxicol.
32:153–156. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mikó E, Kovács T, Sebő É, Tóth J, Csonka
T, Ujlaki G, Sipos A, Szabó J, Méhes G and Bai P:
Microbiome-microbial metabolome-cancer cell interactions in breast
cancer-familiar, but unexplored. Cells. 8:2932019. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kiss B, Mikó E, Sebő É, Toth J, Ujlaki G,
Szabó J, Uray K, Bai P and Árkosy P: Oncobiosis and microbial
metabolite signaling in pancreatic adenocarcinoma. Cancers.
12:10682020. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kuo WT, Lee TC and Yu LC: Eritoran
suppresses colon cancer by altering a functional balance in
toll-like receptors that bind lipopolysaccharide. Cancer Res.
76:4684–4695. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chen MC, Chen YL, Wang TW, Hsu HP and Lai
MD: Membrane bile acid receptor TGR5 predicts good prognosis in
ampullary adenocarcinoma patients with hyperbilirubinemia. Oncol
Rep. 36:1997–2008. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
McKee AM, Kirkup BM, Madgwick M, Fowler
WJ, Price CA, Dreger SA, Ansorge R, Makin KA, Caim S, Le Gall G, et
al: Antibiotic-induced disturbances of the gut microbiota result in
accelerated breast tumor growth. iScience. 24:1030122021.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jones GS, Feigelson HS, Falk RT, Hua X,
Ravel J, Yu G, Flores R, Gail MH, Shi J, Xu X and Goedert JJ:
Mammographic breast density and its association with urinary
estrogens and the fecal microbiota in postmenopausal women. PLoS
One. 14:e02161142019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wu AH, Tseng C, Vigen C, Yu Y, Cozen W,
Garcia AA and Spicer D: Gut microbiome associations with breast
cancer risk factors and tumor characteristics: A pilot study.
Breast Cancer Res Treat. 182:451–463. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Frugé AD, Van Der Pol W, Rogers LQ, Morrow
CD, Tsuruta Y and Demark-Wahnefried W: Fecal Akkermansia
muciniphila is associated with body composition and microbiota
diversity in overweight and obese women with breast cancer
participating in a presurgical weight loss trial. J Acad Nutr Diet.
120:650–659. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang X, Yang Y, Su J, Zheng X, Wang C,
Chen S, Liu J, Lv Y, Fan S, Zhao A, et al: Age-related
compositional changes and correlations of gut microbiome, serum
metabolome, and immune factor in rats. Geroscience. 43:709–725.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Rahman S, O'Connor AL, Becker SL, Patel
RK, Martindale RG and Tsikitis VL: Gut microbial metabolites and
its impact on human health. Ann Gastroenterol. 36:360–368.
2023.PubMed/NCBI
|
|
14
|
Neagoe CX, Ionica M, Neagoe OC and Trifa
AP: The Influence of microbiota on breast cancer: A review.
Cancers. 16:34682024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Banerjee S, Tian T, Wei Z, Shih N, Feldman
MD, Peck KN, DeMichele AM, Alwine JC and Robertson ES: Distinct
microbial signatures associated with different breast cancer types.
Front Microbiol. 9:9512018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bhatt AP, Redinbo MR and Bultman SJ: The
role of the microbiome in cancer development and therapy. CA Cancer
J Clin. 67:326–344. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fernandes MR, Aggarwal P, Costa RGF, Cole
AM and Trinchieri G: Targeting the gut microbiota for cancer
therapy. Nat Rev Cancer. 22:703–722. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yang L, Li A, Wang Y and Zhang Y:
Intratumoral microbiota: Roles in cancer initiation, development
and therapeutic efficacy. Signal Transduct Target Ther. 8:352023.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cullin N, Antunes CA, Straussman R,
Stein-Thoeringer CK and Elinav E: Microbiome and cancer. Cancer
Cell. 39:1317–1341. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Rao Malla R, Marni R, Kumari S,
Chakraborty A and Lalitha P: Microbiome assisted tumor
microenvironment: Emerging target of breast cancer. Clin Breast
Cancer. 22:200–211. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kovtonyuk LV and McCoy KD: Microbial
metabolites and immunotherapy: Basic rationale and clinical
indications. Semin Immunol. 67:1017552023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Han J, Zhang S, Xu Y, Pang Y, Zhang X, Hu
Y, Chen H, Chen W, Zhang J and He W: Beneficial effect of
antibiotics and microbial metabolites on expanded Vδ2Vγ9 T cells in
hepatocellular carcinoma immunotherapy. Front Immunol. 11:13802020.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin
Q, Gu X, Jiang C and Wu J: The impact of the gut microbiome on
tumor immunotherapy: From mechanism to application strategies. Cell
Biosci. 13:1882023. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Vitorino M, Baptista de Almeida S, Alpuim
Costa D, Faria A, Calhau C and Azambuja Braga S: Human microbiota
and immunotherapy in breast cancer-a review of recent developments.
Front Oncol. 11:8157722021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Jia W, Xie G and Jia W: Bile
acid-microbiota crosstalk in gastrointestinal inflammation and
carcinogenesis. Nat Rev Gastroenterol Hepatol. 15:111–128. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ridlon JM, Kang DJ, Hylemon PB and Bajaj
JS: Bile acids and the gut microbiome. Curr Opin Gastroenterol.
30:332–338. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tang W, Putluri V, Ambati CR, Dorsey TH,
Putluri N and Ambs S: Liver- and microbiome-derived bile acids
accumulate in human breast tumors and inhibit growth and improve
patient survival. Clin Cancer Res. 25:5972–5983. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhu Q, Zai H, Zhang K, Zhang X, Luo N, Li
X, Hu Y and Wu Y: L-norvaline affects the proliferation of breast
cancer cells based on the microbiome and metabolome analysis. J
Appl Microbiol. 133:1014–1026. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tsvetikova SA and Koshel EI: Microbiota
and cancer: Host cellular mechanisms activated by gut microbial
metabolites. Int J Med Microbiol. 310:1514252020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Di Modica M, Arlotta V, Sfondrini L,
Tagliabue E and Triulzi T: The link between the microbiota and
HER2+ breast cancer: The new challenge of precision medicine. Front
Oncol. 12:9471882022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jaye K, Li CG, Chang D and Bhuyan DJ: The
role of key gut microbial metabolites in the development and
treatment of cancer. Gut Microbes. 14:20388652022. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Krishnamurthy K, Wang G, Rokhfeld D and
Bieberich E: Deoxycholate promotes survival of breast cancer cells
by reducing the level of pro-apoptotic ceramide. Breast Cancer Res.
10:R1062008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gándola YB, Fontana C, Bojorge MA,
Luschnat TT, Moretton MA, Chiapetta DA, Verstraeten SV and González
L: Concentration-dependent effects of sodium cholate and
deoxycholate bile salts on breast cancer cells proliferation and
survival. Mol Biol Rep. 47:3521–3539. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cong J, Liu P, Han Z, Ying W, Li C, Yang
Y, Wang S, Yang J, Cao F, Shen J, et al: Bile acids modified by the
intestinal microbiota promote colorectal cancer growth by
suppressing CD8+ T cell effector functions. Immunity. 57:876–889.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mikó E, Vida A, Kovács T, Ujlaki G,
Trencsényi G, Márton J, Sári Z, Kovács P, Boratkó A, Hujber Z, et
al: Lithocholic acid, a bacterial metabolite reduces breast cancer
cell proliferation and aggressiveness. Biochim Biophys Acta
Bioenerg. 1859:958–974. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Tang X, Lin CC, Spasojevic I, Iversen ES,
Chi JT and Marks JR: A joint analysis of metabolomics and genetics
of breast cancer. Breast Cancer Res. 16:4152014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sampsell K, Hao D and Reimer RA: The gut
microbiota: A potential gateway to improved health outcomes in
breast cancer treatment and survivorship. Int J Mol Sci.
21:92392020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Luu TH, Bard JM, Carbonnelle D, Chaillou
C, Huvelin JM, Bobin-Dubigeon C and Nazih H: Lithocholic bile acid
inhibits lipogenesis and induces apoptosis in breast cancer cells.
Cell Oncol (Dordr). 41:13–24. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Eslami SZ, Majidzadeh AK, Halvaei S,
Babapirali F and Esmaeili R: Microbiome and breast cancer: New role
for an ancient population. Front Oncol. 10:1202020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hou H, Chen D, Zhang K, Zhang W, Liu T,
Wang S, Dai X, Wang B, Zhong W and Cao H: Gut microbiota-derived
short-chain fatty acids and colorectal cancer: Ready for clinical
translation? Cancer Lett. 526:225–235. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mirzaei R, Afaghi A, Babakhani S, Sohrabi
MR, Hosseini-Fard SR, Babolhavaeji K, Khani Ali Akbari S,
Yousefimashouf R and Karampoor S: Role of microbiota-derived
short-chain fatty acids in cancer development and prevention.
Biomed Pharmacother. 139:1116192021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Jaye K, Chang D, Li CG and Bhuyan DJ: Gut
metabolites and breast cancer: The continuum of dysbiosis, breast
cancer risk, and potential breast cancer therapy. Int J Mol Sci.
23:94902022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Liu P, Wang Y, Yang G, Zhang Q, Meng L,
Xin Y and Jiang X: The role of short-chain fatty acids in
intestinal barrier function, inflammation, oxidative stress, and
colonic carcinogenesis. Pharmacol Res. 165:1054202021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Thirunavukkarasan M, Wang C, Rao A, Hind
T, Teo YR, Siddiquee AA, Goghari MAI, Kumar AP and Herr DR:
Short-chain fatty acid receptors inhibit invasive phenotypes in
breast cancer cells. PLoS One. 12:e01863342017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Park HS, Han JH, Park JW, Lee DH, Jang KW,
Lee M, Heo KS and Myung CS: Sodium propionate exerts anticancer
effect in mice bearing breast cancer cell xenograft by regulating
JAK2/STAT3/ROS/p38 MAPK signaling. Acta Pharmacol Sin.
42:1311–1323. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Chen J, Zhao KN and Vitetta L: Effects of
intestinal microbial-elaborated butyrate on oncogenic signaling
pathways. Nutrients. 11:10262019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Wang Y, Hu PC, Ma YB, Fan R, Gao FF, Zhang
JW and Wei L: Sodium butyrate-induced apoptosis and ultrastructural
changes in MCF-7 breast cancer cells. Ultrastruct Pathol.
40:200–204. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mandal M and Kumar R: Bcl-2 expression
regulates sodium butyrate-induced apoptosis in human MCF-7 breast
cancer cells. Cell Growth Differ. 7:311–318. 1996.PubMed/NCBI
|
|
49
|
Chopin V, Toillon RA, Jouy N and Le
Bourhis X: Sodium butyrate induces P53-independent, Fas-mediated
apoptosis in MCF-7 human breast cancer cells. Br J Pharmacol.
135:79–86. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
He C, Liu Y, Ye S, Yin S and Gu J: Changes
of intestinal microflora of breast cancer in premenopausal women.
Eur J Clin Microbiol Infect Dis. 40:503–513. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dai ZL, Wu G and Zhu WY: Amino acid
metabolism in intestinal bacteria: Links between gut ecology and
host health. Front Biosci (Landmark Ed). 16:1768–1786. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Roager HM and Licht TR: Microbial
tryptophan catabolites in health and disease. Nat Commun.
9:32942018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Renga G, Nunzi E, Pariano M, Puccetti M,
Bellet MM, Pieraccini G, D'Onofrio F, Santarelli I, Stincardini C,
Aversa F, et al: Optimizing therapeutic outcomes of immune
checkpoint blockade by a microbial tryptophan metabolite. J
Immunother Cancer. 10:e0037252022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sári Z, Mikó E, Kovács T, Boratkó A,
Ujlaki G, Jankó L, Kiss B, Uray K and Bai P: Indoxylsulfate, a
metabolite of the microbiome, has cytostatic effects in breast
cancer via activation of AHR and PXR receptors and induction of
oxidative stress. Cancers. 12:29152020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sári Z, Mikó E, Kovács T, Jankó L, Csonka
T, Lente G, Sebő É, Tóth J, Tóth D, Árkosy P, et al:
Indolepropionic acid, a metabolite of the microbiome, has
cytostatic properties in breast cancer by activating AHR and PXR
receptors and inducing oxidative stress. Cancers (Basel).
12:24112020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kovács T, Mikó E, Vida A, Sebő É, Toth J,
Csonka T, Boratkó A, Ujlaki G, Lente G, Kovács P, et al:
Cadaverine, a metabolite of the microbiome, reduces breast cancer
aggressiveness through trace amino acid receptors. Sci Rep.
9:13002019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Nejman D, Livyatan I, Fuks G, Gavert N,
Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E,
et al: The human tumor microbiome is composed of tumor
type-specific intracellular bacteria. Science. 368:973–980. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shcheblyakov DV, Logunov DY, Tukhvatulin
AI, Shmarov MM, Naroditsky BS and Gintsburg AL: Toll-like receptors
(TLRs): The role in tumor progression. Acta Naturae. 2:21–29. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Li J, Yin J, Shen W, Gao R, Liu Y, Chen Y,
Li X, Liu C, Xiang R and Luo N: TLR4 promotes breast cancer
metastasis via Akt/GSK3β/β-catenin pathway upon LPS stimulation.
Anat Rec (Hoboken). 300:1219–1229. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Liao SJ, Zhou YH, Yuan Y, Li D, Wu FH,
Wang Q, Zhu JH, Yan B, Wei JJ, Zhang GM and Feng ZH: Triggering of
toll-like receptor 4 on metastatic breast cancer cells promotes
αvβ3-mediated adhesion and invasive migration. Breast Cancer Res
Treat. 133:853–863. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yang H, Wang B, Wang T, Xu L, He C, Wen H,
Yan J, Su H and Zhu X: Toll-like receptor 4 prompts human breast
cancer cells invasiveness via lipopolysaccharide stimulation and is
overexpressed in patients with lymph node metastasis. PLoS One.
9:e1099802014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Avand A, Akbari V and Shafizadegan S: In
vitro cytotoxic activity of a Lactococcus lactis antimicrobial
peptide against breast cancer cells. Iran J Biotechnol.
16:e18672018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Paiva AD, De Oliveira MD, De Paula SO,
Baracat-Pereira MC, Breukink E and Mantovani HC: Toxicity of
bovicin HC5 against mammalian cell lines and the role of
cholesterol in bacteriocin activity. Microbiology (Reading).
158:2851–2858. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kamarajan P, Hayami T, Matte B, Liu Y,
Danciu T, Ramamoorthy A, Worden F, Kapila S and Kapila Y: Nisin ZP,
a bacteriocin and food preservative, inhibits head and neck cancer
tumorigenesis and prolongs survival. PLoS One. 10:e01310082015.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ahmadi S, Ghollasi M and Hosseini HM: The
apoptotic impact of nisin as a potent bacteriocin on the colon
cancer cells. Microb Pathog. 111:193–197. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hall S, McDermott C, Anoopkumar-Dukie S,
McFarland AJ, Forbes A, Perkins AV, Davey AK, Chess-Williams R,
Kiefel MJ, Arora D and Grant GD: Cellular effects of pyocyanin, a
secreted virulence factor of Pseudomonas aeruginosa. Toxins
(Basel). 8:2362016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhao J, Wu Y, Alfred AT, Wei P and Yang S:
Anticancer effects of pyocyanin on HepG2 human hepatoma cells. Lett
Appl Microbiol. 58:541–548. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Moayedi A, Nowroozi J and Sepahy AA:
Cytotoxic effect of pyocyanin on human pancreatic cancer cell line
(Panc-1). Iran J Basic Med Sci. 21:794–799. 2018.PubMed/NCBI
|
|
69
|
Abdelaziz AA, Kamer AMA, Al-Monofy KB and
Al-Madboly LA: A purified and lyophilized Pseudomonas
aeruginosa derived pyocyanin induces promising apoptotic and
necrotic activities against MCF-7 human breast adenocarcinoma.
Microb Cell Fact. 21:2622022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Geng HW, Yin FY, Zhang ZF, Gong X and Yang
Y: Butyrate suppresses glucose metabolism of colorectal cancer
cells via GPR109a-AKT signaling pathway and enhances chemotherapy.
Front Mol Biosci. 8:6348742021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen M, Jiang W, Xiao C, Yang W, Qin Q,
Mao A, Tan Q, Lian B and Wei C: Sodium butyrate combined with
docetaxel for the treatment of lung adenocarcinoma A549 cells by
targeting Gli1. Onco Targets Ther. 13:8861–8875. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lajkó E, Spring S, Hegedüs R, Biri-Kovács
B, Ingebrandt S, Mező G and Kőhidai L: Comparative cell biological
study of in vitro antitumor and antimetastatic activity on melanoma
cells of GnRH-III-containing conjugates modified with short-chain
fatty acids. Beilstein J Org Chem. 14:2495–2509. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chen W, Wei F, Xu J, Wang Y, Chen L, Wang
J and Guan X: Trastuzumab enhances the anti-tumor effects of the
histone deacetylase inhibitor sodium butyrate on a
HER2-overexpressing breast cancer cell line. Int J Mol Med.
28:985–991. 2011.PubMed/NCBI
|
|
74
|
Andrade FO, Nagamine MK, Conti AD, Chaible
LM, Fontelles CC, Jordão Junior AA, Vannucchi H, Dagli ML, Bassoli
BK, Moreno FS and Ong TP: Efficacy of the dietary histone
deacetylase inhibitor butyrate alone or in combination with vitamin
A against proliferation of MCF-7 human breast cancer cells. Braz J
Med Biol Res. 45:841–850. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Nomura M, Nagatomo R, Doi K, Shimizu J,
Baba K, Saito T, Matsumoto S, Inoue K and Muto M: Association of
short-chain fatty acids in the gut microbiome with clinical
response to treatment with nivolumab or pembrolizumab in patients
with solid cancer tumors. JAMA Netw Open. 3:e2028952020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ren S, Feng L, Liu H, Mao Y and Yu Z: Gut
microbiome affects the response to immunotherapy in non-small cell
lung cancer. Thorac Cancer. 15:1149–1163. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Muradas TC, Freitas RD, Goncalves JI,
Xavier FA and Marinowic DR: Potential antitumor effects of
short-chain fatty acids in breast cancer models. Am J Cancer Res.
14:1999–2019. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Coutzac C, Jouniaux JM, Paci A, Schmidt J,
Mallardo D, Seck A, Asvatourian V, Cassard L, Saulnier P, Lacroix
L, et al: Systemic short chain fatty acids limit antitumor effect
of CTLA-4 blockade in hosts with cancer. Nat Commun. 11:21682020.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhou C, Basnet R, Zhen C, Ma S, Guo X,
Wang Z and Yuan Y: Trimethylamine N-oxide promotes the
proliferation and migration of hepatocellular carcinoma cell
through the MAPK pathway. Discov Oncol. 15:3462024. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Jalandra R, Dalal N, Yadav AK, Verma D,
Sharma M, Singh R, Khosla A, Kumar A and Solanki PR: Emerging role
of trimethylamine-N-oxide (TMAO) in colorectal cancer. Appl
Microbiol Biotechnol. 105:7651–7660. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang H, Rong X, Zhao G, Zhou Y, Xiao Y, Ma
D, Jin X, Wu Y, Yan Y, Yang H, et al: The microbial metabolite
trimethylamine N-oxide promotes antitumor immunity in
triple-negative breast cancer. Cell Metab. 34:581–594.e8. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Yang S, Dai H, Lu Y, Li R, Gao C and Pan
S: Trimethylamine N-oxide promotes cell proliferation and
angiogenesis in colorectal cancer. J Immunol Res. 2022:70438562022.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Chiba A, Bawaneh A, Velazquez C, Clear
KYJ, Wilson AS, Howard-McNatt M, Levine EA, Levi-Polyachenko N,
Yates-Alston SA, Diggle SP, et al: Neoadjuvant chemotherapy shifts
breast tumor microbiota populations to regulate drug responsiveness
and the development of metastasis. Mol Cancer Res. 18:130–139.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Groizeleau J, Rybtke M, Andersen JB,
Berthelsen J, Liu Y, Yang L, Nielsen TE, Kaever V, Givskov M and
Tolker-Nielsen T: The anti-cancerous drug doxorubicin decreases the
c-di-GMP content in Pseudomonas aeruginosa but promotes
biofilm formation. Microbiology (Reading). 162:1797–1807. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Abdelaziz AA, Kamer AMA, Al-Monofy KB and
Al-Madboly LA: Pseudomonas aeruginosa's greenish-blue
pigment pyocyanin: Its production and biological activities. Microb
Cell Fact. 22:1102023. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chiba A, Bawaneh A, Velazquez C, Clear
KYJ, Wilson AS, Howard-McNatt M, Levine EA, Levi-Polyachenko N,
Yates-Alston SA, Diggle SP, et al: Neoadjuvant Chemotherapy shifts
breast tumor microbiota populations to regulate drug responsiveness
and the development of metastasis. Mol Cancer Res. 18:130–139.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Baindara P and Mandal SM: Bacteria and
bacterial anticancer agents as a promising alternative for cancer
therapeutics. Biochimie. 177:164–189. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Rana K, Sharma R and Preet S: Augmented
therapeutic efficacy of 5-fluorouracil in conjunction with
lantibiotic nisin against skin cancer. Biochem Biophys Res Commun.
520:551–559. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Coker OO, Liu C, Wu WKK, Wong SH, Jia W,
Sung JJY and Yu J: Altered gut metabolites and microbiota
interactions are implicated in colorectal carcinogenesis and can be
non-invasive diagnostic biomarkers. Microbiome. 10:352022.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gao L, Zhang JH, Chen XX, Ren HL, Feng XL,
Wang JL and Xiao JH: Combination of L-Arginine and L-Norvaline
protects against pulmonary fibrosis progression induced by
bleomycin in mice. Biomed Pharmacother. 113:1087682019. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ren X, Wang N, Zhou Y, Song A, Jin G, Li Z
and Luan Y: An injectable hydrogel using an immunomodulating
gelator for amplified tumor immunotherapy by blocking the arginase
pathway. Acta Biomater. 124:179–190. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Arlauckas SP, Garren SB, Garris CS, Kohler
RH, Oh J, Pittet MJ and Weissleder R: Arg1 expression defines
immunosuppressive subsets of tumor-associated macrophages.
Theranostics. 8:5842–5854. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Yurdagul AJ, Subramanian M, Wang X, Crown
SB, Ilkayeva OR, Darville L, Kolluru GK, Rymond CC, Gerlach BD,
Zheng Z, et al: Macrophage metabolism of apoptotic cell-derived
arginine promotes continual efferocytosis and resolution of injury.
Cell Metab. 31:518–533.e10. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wieërs G, Belkhir L, Enaud R, Leclercq S,
Philippart de Foy JM, Dequenne I, de Timary P and Cani PD: How
probiotics affect the microbiota. Front Cell Infect Microbiol.
9:4542020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
German R, Marino N, Hemmerich C, Podicheti
R, Rusch DB, Stiemsma LT, Gao H, Xuei X, Rockey P and Storniolo AM:
Exploring breast tissue microbial composition and the association
with breast cancer risk factors. Breast Cancer Res. 25:822023.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Davani-Davari D, Negahdaripour M,
Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, Berenjian A and
Ghasemi Y: Prebiotics: Definition, types, sources, mechanisms, and
clinical applications. Foods. 8:922019. View Article : Google Scholar : PubMed/NCBI
|