|
1
|
Carron MCE: Antibacterial
nitrofurfuryldene derivatives and methods of using same. US Patent
US3290213, Filed July 9, 1962. issued December 6. 1966.
|
|
2
|
B Fernandes M, Gonçalves JE, C Tavares L
and Storpirtis S: Caco-2 cells permeability evaluation of
nifuroxazide derivatives with potential activity against
methicillin-resistant Staphylococcus aureus (MRSA). Drug Dev Ind
Pharm. 41:1066–1072. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bailly C: Toward a repositioning of the
antibacterial drug nifuroxazide for cancer treatment. Drug Discov
Today. 24:1930–1936. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Nelson EA, Walker SR, Kepich A, Gashin LB,
Hideshima T, Ikeda H, Chauhan D, Anderson KC and Frank DA:
Nifuroxazide inhibits survival of multiple myeloma cells by
directly inhibiting STAT3. Blood. 112:5095–5102. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Li D, Liu L, Li F, Ma C and Ge K:
Nifuroxazide induces the apoptosis of human non-small cell lung
cancer cells through the endoplasmic reticulum stress PERK
signaling pathway. Oncol Lett. 25:2482023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhao T, Wei P, Zhang C, Zhou S, Liang L,
Guo S, Yin Z, Cheng S, Gan Z, Xia Y, et al: Nifuroxazide suppresses
PD-L1 expression and enhances the efficacy of radiotherapy in
hepatocellular carcinoma. Elife. 12:RP909112024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Amin FM, Sharawy MH, Amin MN, El-Sherbiny
M, Said E, Salem HA and Ibrahim TM: Nifuroxazide mitigates
doxorubicin-induced cardiovascular injury: Insight into
oxidative/NLRP3/GSDMD-mediated pyroptotic signaling modulation.
Life Sci. 314:1213112023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Luo Y, Zeng A, Fang A, Song L, Fan C, Zeng
C, Ye T, Chen H, Tu C and Xie Y: Nifuroxazide induces apoptosis,
inhibits cell migration and invasion in osteosarcoma. Invest New
Drugs. 37:1006–1013. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hindupur SV, Schmid SC, Koch JA, Youssef
A, Baur EM, Wang D, Horn T, Slotta-Huspenina J, Gschwend JE, Holm
PS and Nawroth R: STAT3/5 inhibitors suppress proliferation in
bladder cancer and enhance oncolytic adenovirus therapy. Int J Mol
Sci. 21:11062020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang X, Shi W, Wang X, Lu JJ, He P, Zhang
H and Chen X: Nifuroxazide boosts the anticancer efficacy of
palbociclib-induced senescence by dual inhibition of STAT3 and CDK2
in triple-negative breast cancer. Cell Death Discov. 9:3552023.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
El-Sherbiny M, El-Sayed RM, Helal MA,
Ibrahiem AT, Elmahdi HS, Eladl MA, Bilay SE, Alshahrani AM, Tawfik
MK, Hamed ZE, et al: Nifuroxazide mitigates angiogenesis in
ehlrich's solid carcinoma: molecular docking, bioinformatic and
experimental studies on inhibition of Il-6/Jak2/Stat3 signaling.
Molecules. 26:68582021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhao T, Jia H, Cheng Q, Xiao Y, Li M, Ren
W, Li C, Feng Y, Feng Z, Wang H and Zheng J: Nifuroxazide prompts
antitumor immune response of TCL-loaded DC in mice with
orthotopically-implanted hepatocarcinoma. Oncol Rep. 37:3405–3414.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ye TH, Yang FF, Zhu YX, Li YL, Lei Q, Song
XJ, Xia Y, Xiong Y, Zhang LD, Wang NY, et al: Inhibition of Stat3
signaling pathway by nifuroxazide improves antitumor immunity and
impairs colorectal carcinoma metastasis. Cell Death Dis.
8:e25342017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Yang F, Hu M, Lei Q, Xia Y, Zhu Y, Song X,
Li Y, Jie H, Liu C, Xiong Y, et al: Nifuroxazide induces apoptosis
and impairs pulmonary metastasis in breast cancer model. Cell Death
Dis. 6:e17012015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yu H, Lee H, Herrmann A, Buettner R and
Jove R: Revisiting STAT3 signalling in cancer: New and unexpected
biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Huynh J, Etemadi N, Hollande F, Ernst M
and Buchert M: The JAK/STAT3 axis: A comprehensive drug target for
solid malignancies. Semin Cancer Biol. 45:13–22. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jung KH, Yoo W, Stevenson HL, Deshpande D,
Shen H, Gagea M, Yoo SY, Wang J, Eckols TK, Bharadwaj U, et al:
Multi-functional effects of a small-molecule STAT3 inhibitor on
NASH and HCC in mice. Clin Cancer Res. 23:5537–5546. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Guo C, Yang G, Khun K, Kong X, Levy D, Lee
P and Melamed J: Activation of Stat3 in renal tumors. Am J Transl
Res. 1:283–290. 2009.PubMed/NCBI
|
|
19
|
Tong M, Wang J, Jiang N, Pan H and Li D:
Correlation between p-STAT3 overexpression and prognosis in lung
cancer: A systematic review and meta-analysis. PLoS One.
12:e01822822017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Takemoto S, Ushijima K, Kawano K,
Yamaguchi T, Terada A, Fujiyoshi N, Nishio S, Tsuda N, Ijichi M,
Kakuma T, et al: Expression of activated signal transducer and
activator of transcription-3 predicts poor prognosis in cervical
squamous-cell carcinoma. Br J Cancer. 101:967–972. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen CL, Cen L, Kohout J, Hutzen B, Chan
C, Hsieh FC, Loy A, Huang V, Cheng G and Lin J: Signal transducer
and activator of transcription 3 activation is associated with
bladder cancer cell growth and survival. Mol Cancer. 7:782008.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hammarén HM, Virtanen AT, Raivola J and
Silvennoinen O: The regulation of JAKs in cytokine signaling and
its breakdown in disease. Cytokine. 118:48–63. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jia H, Cui J, Jia X, Zhao J, Feng Y, Zhao
P, Zang D, Yu J, Zhao T, Wang H and Xu K: Therapeutic effects of
STAT3 inhibition by nifuroxazide on murine acute graft
graft-vs.-host disease: Old drug, new use. Mol Med Rep.
16:9480–9486. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Althagafy HS, El-Aziz MKA, Ibrahim IM,
Abd-Alhameed EK and Hassanein EHM: Pharmacological updates of
nifuroxazide: Promising preclinical effects and the underlying
molecular mechanisms. Eur J Pharmacol. 951:1757762023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Hasson TS, Said E and Helal MG:
Nifuroxazide modulates hepatic expression of LXRs/SR-BI/CES1/CYP7A1
and LDL-R and attenuates experimentally-induced
hypercholesterolemia and the associated cardiovascular
complications. Life Sci. 306:1207902022. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kishimoto T and Ishizaka K: Regulation of
antibody response in vitro. X. Biphasic effect of cyclic AMP on the
secondary anti-hapten antibody response to anti-immunoglobulin and
enhancing soluble factor. J Immunol. 116:534–541. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Darnell JE Jr: Transcription factors as
targets for cancer therapy. Nat Rev Cancer. 2:740–749. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hirano T: Interleukin 6 and its receptor:
ten years later. Int Rev Immunol. 16:249–284. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Brumfftt W, Reynolds AV and
Hamilton-Miller JM: Letter: Activity of nitrofurantoin and
nifuratel against anaerobic gram-negative bacilli. Lancet.
1:4601975. View Article : Google Scholar
|
|
30
|
Kang S, Narazaki M, Metwally H and
Kishimoto T: Historical overview of the interleukin-6 family
cytokine. J Exp Med. 217:e201903472020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hirano T and Kishimoto T: Interleukin-6.
Peptide Growth Factors and Their Receptors I. Sporn MB and Roberts
AB: Springer; Berlin: pp. p6331990, View Article : Google Scholar
|
|
32
|
Heinrich PC, Behrmann I, Haan S, Hermanns
HM, Müller-Newen G and Schaper F: Principles of interleukin
(IL)-6-type cytokine signalling and its regulation. Biochem J.
374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Kamimura D, Ishihara K and Hirano T: IL-6
signal transduction and its physiological roles: the signal
orchestration model. Rev Physiol Biochem Pharmacol. 149:1–38. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hasegawa H, Mizoguchi I, Chiba Y, Ohashi
M, Xu M and Yoshimoto T: Expanding diversity in molecular
structures and functions of the IL-6/IL-12 heterodimeric cytokine
family. Front Immunol. 7:4792016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Polatti F: Bacterial vaginosis, Atopobium
vaginae and nifuratel. Curr Clin Pharmacol. 7:36–40. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yang L, Wang L, Lin HK, Kan PY, Xie S,
Tsai MY, Wang PH, Chen YT and Chang C: Interleukin-6 differentially
regulates androgen receptor transactivation via PI3K-Akt, STAT3,
and MAPK, three distinct signal pathways in prostate cancer cells.
Biochem Biophys Res Commun. 305:462–469. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yu H, Pardoll D and Jove R: STATs in
cancer Inflammation and immunity: A leading role for STAT3. Nat Rev
Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Catlett-Falcone R, Landowski TH, Oshiro
MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L,
Fernández-Luna JL, Nuñez G, et al: Constitutive activation of Stat3
signaling confers resistance to apoptosis in human U266 myeloma
cells. Immunity. 10:105–115. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zilberstein A, Ruggieri R, Korn JH and
Revel M: Structure and expression of cDNA and genes for human
interferon-beta-2, a distinct species inducible by
growth-stimulatory cytokines. EMBO J. 5:2529–2537. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Haegeman G, Content J, Volckaert G,
Derynck R, Tavernier J and Fier W: Structural analysis of the
sequence coding for an inducible 26-kDa protein in human
fibroblasts. Eur J Biochem. 159:625–632. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kubo M, Hanada T and Yoshimura A:
Suppressors of cytokine signaling and immunity. Nat Immunol.
4:1169–1176. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhong Z, Wen Z and Darnell JE Jr: Stat3: a
STAT family member activated by tyrosine phosphorylation in
response to epidermal growth factor and interleukin-6. Science.
264:95–98. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lieblein JC, Ball S, Hutzen B, Sasser AK,
Lin HJ, Huang TH, Hall BM and Lin J: STAT3 can be activated through
paracrine signaling in breast epithelial cells. BMC Cancer.
8:3022008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chang Q, Bournazou E, Sansone P, Berishaj
M, Gao SP, Daly L, Wels J, Theilen T, Granitto S, Zhang X, et al:
The IL6/JAK/Stat3 feed-forward loop drives tumorigenesis and
metastasis. Neoplasia. 15:848–862. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fukada T, Hibi M, Yamanaka Y,
Takahashi-Tezuka M, Fujitani Y, Yamaguchi T, Nakajima K and Hirano
T: Two signals are necessary for cell proliferation induced by a
cytokine receptorGp130: Involvementof STAT3 inAnti-apoptosis.
Immunity. 5:449–460. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Leslie K, Lang C, Devgan G, Azare J,
Berishaj M, Gerald W, Kim YB, Paz K, Darnell JE, Albanese C, et al:
Cyclin D1 is transcriptionally regulated by and required for
transformation by activated signal transducer and activator of
transcription 3. Cancer Res. 66:2544–2552. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Burke WM, Jin X, Lin HJ, Huang M, Liu R,
Reynolds RK and Lin J: Inhibition of constitutively active stat3
suppresses growth of human ovarian and breast cancer cells.
Oncogene. 20:7925–7934. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lee HT, Xue J, Chou PC, Zhou A, Yang P,
Conrad CA, Aldape KD, Priebe W, Patterson C, Sawaya R, et al: Stat3
orchestrates interaction between endothelial and tumor cells and
inhibition of stat3 suppresses brain metastasis of breast cancer
cells. Oncotarget. 6:10016–10029. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vageli DP, Doukas PG, Siametis A and
Judson BL: Targeting STAT3 prevents bile reflux-induced oncogenic
molecular events linked to hypopharyngeal carcinogenesis. J Cell
Mol Med. 26:75–87. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Manore SG, Doheny DL, Wong GL and Lo HW:
IL-6/JAK/STAT3 signaling in breast cancer metastasis: Biology and
treatment. Front Oncol. 12:8660142022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hirano T, Yasukawa K, Harada H, Taga T,
Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K,
Iwamatsu A, et al: Complementary DNA for a novel human interleukin
(BSF-2) that induces B lymphocytes to produce immunoglobulin.
Nature. 324:73–76. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Gauldie J, Richards C, Harnish D, Lansdorp
P and Baumann H: Interferon beta 2/B-Cell stimulatory factor type 2
shares identity with monocyte-derived hepatocyte-stimulating factor
and regulates the major acute phase protein response in liver
cells. Proc Natl Acad Sci USA. 84:7251–7255. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Brakenhoff JP, de Groot ER, Evers RF,
Pannekoek H and Aarden LA: molecular cloning and expression of
hybridoma growth factor in escherichia coli. J Immunol.
139:4116–4121. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei
Y, Abbruzzese JL, Hortobagyi GN and Hung MC: Epidermal growth
factor receptor cooperates with signal transducer and activator of
transcription 3 to induce epithelial-mesenchymal transition in
cancer cells via up-regulation of TWIST gene expression. Cancer
Res. 67:9066–9076. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Niu G, Wright KL, Huang M, Song L, Haura
E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, et al:
Constitutive Stat3 Activity Up-Regulates VEGF expression and tumor
angiogenesis. Oncogene. 21:2000–2008. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Kortylewski M and Yu H: Role of stat3 in
suppressing anti-tumor immunity. Curr Opin Immunol. 20:228–233.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wang T, Niu G, Kortylewski M, Burdelya L,
Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola
D, et al: Regulation of the innate and adaptive immune responses by
stat-3 signaling in tumor cells. Nat Med. 10:48–54. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Carpenter RL and Lo HW: STAT3 target genes
relevant to human cancers. Cancers (Basel). 6:897–925. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Alvarez JV, Febbo PG, Ramaswamy S, Loda M,
Richardson A and Frank DA: Identification of a genetic signature of
activated signal transducer and activator of transcription 3 in
human tumors. Cancer Res. 65:5054–5062. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dechow TN, Pedranzini L, Leitch A, Leslie
K, Gerald WL, Linkov I and Bromberg JF: Requirement of matrix
metalloproteinase-9 for the transformation of human mammary
epithelial cells by stat3-C. Proc Natl Acad Sci USA.
101:10602–10607. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kujawski M, Kortylewski M, Lee H, Herrmann
A, Kay H and Yu H: Stat3 mediates myeloid cell-dependent tumor
angiogenesis in mice. J Clin Invest. 118:3367–3377. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jiang M, Chen J, Zhang W, Zhang R, Ye Y,
Liu P, Yu W, Wei F, Ren X and Yu J: Interleukin-6 transsignaling
pathway promotes immunosuppressive myeloid-derived suppressor cells
via suppression of suppressor of cytokine signaling 3 in breast
cancer. Front Immunol. 8:18402017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sun Z, Yao Z, Liu S, Tang H and Yan X: An
oligonucleotide decoy for stat3 activates the immune response of
macrophages to breast cancer. Immunobiology. 211:199–209. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jones LM, Broz ML, Ranger JJ, Ozcelik J,
Ahn R, Zuo D, Ursini-Siegel J, Hallett MT, Krummel M and Muller WJ:
STAT3 establishes an immunosuppressive microenvironment during the
early stages of breast carcinogenesis to promote tumor growth and
metastasis. Cancer Res. 76:1416–1428. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Iliopoulos D, Hirsch HA and Struhl K: An
epigenetic switch involving NF-KappaB, Lin28, Let-7 MicroRNA, and
IL6 links Inflammation to cell transformation. Cell. 139:693–706.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Barbieri I, Pensa S, Pannellini T,
Quaglino E, Maritano D, Demaria M, Voster A, Turkson J, Cavallo F,
Watson CJ, et al: Constitutively active stat3 enhances neu-mediated
migration and metastasis in mammary tumors via upregulation of
Cten. Cancer Res. 70:2558–2567. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yu H, Kortylewski M and Pardoll D:
Crosstalk between cancer and immune cells: Role of STAT3 in the
tumour microenvironment. Nat Rev Immunol. 7:41–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Wei D, Le X, Zheng L, Wang L, Frey JA, Gao
AC, Peng Z, Huang S, Xiong HQ, Abbruzzese J and Xie K: Stat3
activation regulates the expression of vascular endothelial growth
factor and human pancreatic cancer angiogenesis and metastasis.
Oncogene. 22:319–329. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen RY, Yen CJ, Liu YW, Guo CG, Weng CY,
Lai CH, Wang JM, Lin YJ and Hung LY: CPAP promotes angiogenesis and
metastasis by enhancing STAT3 activity. Cell Death Differ.
27:1259–1273. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Johnson DE, O'Keefe RA and Grandis JR:
Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev
Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Khatib A, Solaimuthu B, Ben Yosef M, Abu
Rmaileh A, Tanna M, Oren G, Schlesinger Frisch M, Axelrod JH,
Lichtenstein M and Shaul YD: The glutathione peroxidase 8
(GPX8)/IL-6/STAT3 axis is essential in maintaining an aggressive
breast cancer phenotype. Proc Natl Acad Sci USA. 117:21420–21431.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Siersbæk R, Scabia V, Nagarajan S,
Chernukhin I, Papachristou EK, Broome R, Johnston SJ, Joosten SEP,
Green AR, Kumar S, et al: IL6/STAT3 signaling hijacks estrogen
receptor α enhancers to drive breast cancer metastasis. Cancer
Cell. 38:412–423.e9. 2020. View Article : Google Scholar
|
|
73
|
Liu JY, Zhang YC, Song LN, Zhang L, Yang
FY, Zhu XR, Cheng ZQ, Cao X and Yang JK: Nifuroxazide ameliorates
lipid and glucose metabolism in palmitate-induced HepG2 cells. RSC
Adv. 9:39394–39404. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wang T, Fahrmann JF, Lee H, Li YJ,
Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, et al:
JAK/STAT3-regulated fatty acid β-oxidation is critical for breast
cancer stem cell self-renewal and chemoresistance. Cell Metab.
27:136–150.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sarvi S, Crispin R, Lu Y, Zeng L, Hurley
TD, Houston DR, von Kriegsheim A, Chen CH, Mochly-Rosen D, Ranzani
M, et al: ALDH1 bioactivates nifuroxazide to eradicate
ALDHHigh melanoma-initiating cells. Cell Chem Biol.
25:1456–1469.e6. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhou L, Ishizaki H, Spitzer M, Taylor KL,
Temperley ND, Johnson SL, Brear P, Gautier P, Zeng Z, Mitchell A,
et al: ALDH2 mediates 5-nitrofuran activity in multiple species.
Cell Chem Biol. 27:14522020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ismail IH and Hendzel MJ: The gamma-H2A.X:
Is it just a surrogate marker of double-strand breaks or much more?
Environ Mol Mutagen. 49:73–82. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Genin M, Clement F, Fattaccioli A, Raes M
and Michiels C: M1 and M2 macrophages derived from THP-1 cells
differentially modulate the response of cancer cells to etoposide.
BMC Cancer. 15:5772015. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sizemore GM, Pitarresi JR, Balakrishnan S
and Ostrowski MC: The ETS family of oncogenic transcription
factorsin solid tumors. Nat Rev Cancer. 17:337–351. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Verger A, Buisine E, Carrere S, Wintjens
R, Flourens A, Coll J, Stéhelin D and Duterque-Coquillaud M:
Identification of amino acid residues in the ETS transcription
factor Erg that mediate Erg-Jun/Fos-DNA ternary complex formation.
J Biol Chem. 276:17181–17189. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Bassuk AG, Anandappa RT and Leiden JM:
Physical interactions between Ets and NF-kappaB/NFAT proteins play
an important role in their cooperative activation of the human
immunodeficiency virus enhancer in T cells. J Virol. 71:3563–3573.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Li C, Zhang J, Wu Q, Kumar A, Pan G and
Kelvin DJ: Nifuroxazide activates the parthanatos to overcome
TMPRSS2: ERG fusion-positive prostate cancer. Mol Cancer Ther.
22:306–316. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Cobrinik D: Pocket proteins and cell cycle
control. Oncogene. 24:2796–2809. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kron KJ, Murison A, Zhou S, Huang V,
Yamaguchi TN, Shiah YJ, Fraser M, van der Kwast T, Boutros PC,
Bristow RG and Lupien M: TMPRSS2-ERG fusion co-opts master
transcription factors and activates NOTCH signaling in primary
prostate cancer. Nat Genet. 49:1336–1345. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Y, An R, Umanah GK, Park H, Nambiar
K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C, et al: A nuclease
that mediates cell death induced by DNA damage and poly(ADP-ribose)
polymerase-1. Science. 354:aad68722016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Tak J, Nguyen TK, Lee K, Kim SG and Ahn
HC: Utilizing machine learning to identify nifuroxazide as an
inhibitor of ubiquitin-specific protease 21 in a drug repositioning
strategy. Biomed Pharmacother. 174:1164592024. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Harrigan JA, Jacq X, Martin NM and Jackson
SP: Deubiquitylating enzymes and drug discovery: Emerging
opportunities. Nat Rev Drug Discov. 17:57–78. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kanan D, Kanan T, Dogan B, Orhan MD, Avsar
T and Durdagi S: An integrated in silico approach and in vitro
study for the discovery of small-molecule USP7 inhibitors as
potential cancer therapies. ChemMedChem. 16:555–567. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Saito Y, Kishimoto M, Yoshizawa Y and
Kawaii S: Synthesis and structure-activity relationship studies of
furan-ring fused chalcones as antiproliferative agents. Anticancer
Res. 35:811–817. 2015.PubMed/NCBI
|
|
90
|
Al Koussa HK, Abrahamian CF, Elzahhar PM,
Serie MA, Belal A and El-Yazbi AF: A novel series of nitrofuran
derivatives produces an anti-tumor effect via a p53-dependent
mechanism. FASEB J. 34:12020. View Article : Google Scholar
|
|
91
|
Ashraf Z, Mahmood T, Hassan M, Afzal S,
Rafique H, Afzal K and Latip J: Dexibuprofen amide derivatives as
potential anticancer agents: Synthesis, in silico docking,
bioevaluation, and molecular dynamic simulation. Drug Des Devel
Ther. 13:1643–1657. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Guo Q, Shi D, Lin L, Li H, Wei Y, Li B and
Wu D: De-ubiquitinating enzymes USP21 regulate MAPK1 expression by
binding to transcription factor GATA3 to regulate tumor growth and
cell stemness of gastric cancer. Front Cell Dev Biol. 9:6419812021.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zhang Q, Chen Z, Tang Q, Wang Z, Lu J, You
Y and Wang H: USP21 promotes self-renewal and tumorigenicity of
mesenchymal glioblastoma stem cells by deubiquitinating and
stabilizing FOXD1. Cell Death Dis. 13:7122022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ali SH, Osmaniye D, Sağlık BN, Levent S,
Özkay Y and Kaplancıklı ZA: Design, synthesis, and molecular
docking studies of novel quinoxaline derivatives as anticancer
agents. Chem Biol Drug Des. 102:303–315. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hou P, Ma X, Zhang Q, Wu CJ, Liao W, Li J,
Wang H, Zhao J, Zhou X, Guan C, et al: USP21 deubiquitinase
promotes pancreas cancer cell stemness via Wnt pathway activation.
Genes Dev. 33:1361–1366. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liu X, Yao Y, Ding H, Han C, Chen Y, Zhang
Y, Wang C, Zhang X, Zhang Y, Zhai Y, et al: USP21 deubiquitylates
Nanog to regulate protein stability and stem cell pluripotency.
Signal Transduct Target Ther. 1:160242016. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Chen Y, Zhou B and Chen D: USP21 promotes
cell proliferation and metastasis through suppressing EZH2
ubiquitination in bladder carcinoma. Onco Targets Ther. 10:681–689.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xu P, Xiao H, Yang Q, Hu R, Jiang L, Bi R,
Jiang X, Wang L, Mei J, Ding F and Huang J: The USP21/YY1/SNHG16
axis contributes to tumor proliferation, migration, and invasion of
non-small-cell lung cancer. Exp Mol Med. 52:41–55. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Li W, Cui K, Prochownik EV and Li Y: The
deubiquitinase USP21 stabilizes MEK2 to promote tumor growth. Cell
Death Dis. 9:4822018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Hassanein EHM, Abdel-Reheim MA, Althagafy
HS, Hemeda MS, Gad RA and Abdel-Sattar AR: Nifuroxazide attenuates
indomethacin-induced renal injury by upregulating Nrf2/HO-1 and
cytoglobin and suppressing NADPH-oxidase, NF-κB, and JAK-1/STAT3
signals. Naunyn Schmiedebergs Arch Pharmacol. 397:3985–3994. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Mcintosh MT, Koganti S, Boatwright JL, Li
X, Spadaro SV, Brantly AC, Ayers JB, Perez RD, Burton EM, Burgula
S, et al: STAT3 imparts BRCAness by impairing homologous
recombination repair in Epstein-Barr virus-transformed B
lymphocytes. PLoS Pathog. 16:e10088492020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ettner NM, Vijayaraghavan S, Durak MG, Bui
T, Kohansal M, Ha MJ, Liu B, Rao X, Wang J, Yi M, et al: Combined
inhibition of STAT3 and DNA repair in palbociclib-resistant
ER-positive breast cancer. Clin Cancer Res. 25:3996–4013. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Wang Y, Liu W, Liu M, Wang H, Zhou L, Chen
J, Sun H, Wei X, Fan M, Yang M, et al: Nifuroxazide in combination
with CpG ODN exerts greater efficacy against hepatocellular
carcinoma. Int Immunopharmacol. 108:1089112022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Misra SK, Wu Z, Ostadhossein F, Ye M,
Boateng K, Schulten K, Tajkhorshid E and Pan D: Pro-nifuroxazide
self-assembly leads to triggerable nanomedicine for anti-cancer
therapy. ACS Appl Mater Interfaces. 11:18074–18089. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Luo L, Xu F, Peng H, Luo Y, Tian X,
Battaglia G, Zhang H, Gong Q, Gu Z and Luo K: Stimuli-responsive
polymeric prodrug-based nanomedicine delivering nifuroxazide and
doxorubicin against primary breast cancer and pulmonary metastasis.
J Control Release. 318:124–135. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Zhao T, Feng Y, Guo M, Zhang C, Wu Q, Chen
J, Guo S, Liu S, Zhou Q, Wang Z, et al: Combination of attenuated
Salmonella carrying PD-1 siRNA with nifuroxazide for colon cancer
therapy. J Cell Biochem. 121:1973–1985. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wong ALA, Hirpara JL, Pervaiz S, Eu JQ,
Sethi G and Goh BC: Do STAT3 inhibitors have potential in the
future for cancer therapy? Expert Opin Investig Drugs. 26:883–887.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shindano A, Marot L and Geubel AP:
Nifuroxazide-induced acute pancreatitis: A new side-effect for an
old drug? Acta Gastroenterol Belg. 70:32–33. 2007.PubMed/NCBI
|
|
109
|
Quillardet P, Arrault X, Michel V and
Touati E: Organ-targeted mutagenicity of nitrofurantoin in Big Blue
transgenic mice. Mutagenesis. 21:305–311. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Mazzaccara C, Labruna G, Cito G, Scarfò M,
De Felice M, Pastore L and Sacchetti L: Age-related reference
intervals of the main biochemical and hematological parameters in
C57BL/6J, 129SV/EV and C3H/HeJ mouse strains. PLoS One.
3:e37722008. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Cipolla BG, Havouis R and Moulinoux JP:
Polyamine contents in current foods: A basis for polyamine reduced
diet and a study of its long term observance and tolerance in
prostate carcinoma patients. Amino Acids. 33:203–212. 2007.
View Article : Google Scholar : PubMed/NCBI
|