|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Conn VM, Chinnaiyan AM and Conn SJ:
Circular RNA in cancer. Nat Rev Cancer. 24:597–613. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Qin M, Zhang C and Li Y: Circular RNAs in
gynecologic cancers: Mechanisms and implications for chemotherapy
resistance. Front Pharmacol. 14:11947192023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kristensen LS, Andersen MS, Stagsted LVW,
Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and
characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang J, Luo Z, Zheng Y, Duan M, Qiu Z and
Huang C: CircRNA as an Achilles heel of cancer: Characterization,
biomarker and therapeutic modalities. J Transl Med. 22:7522024.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zong ZH, Du YP, Guan X, Chen S and Zhao Y:
CircWHSC1 promotes ovarian cancer progression by regulating MUC1
and hTERT through sponging miR-145 and miR-1182. J Exp Clin Cancer
Res. 38:4372019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Li Y, Yang Z, Zeng M, Wang Y, Chen X, Li
S, Zhao X and Sun Y: Circular RNA differential expression profiles
and bioinformatics analysis of hsa_circRNA_079422 in human
endometrial carcinoma. J Obstet Gynaecol. 43:22288942023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Heidari-Ezzati S, Moeinian P,
Ahmadian-Nejad B, Maghbbouli F, Abbasi S, Zahedi M, Afkhami H,
Shadab A and Sajedi N: The role of long non-coding RNAs and
circular RNAs in cervical cancer: Modulating miRNA function. Front
Cell Dev Biol. 12:13087302024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lei B, Tian Z, Fan W and Ni B: Circular
RNA: A novel biomarker and therapeutic target for human cancers.
Int J Med Sci. 16:292–301. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
He AT, Liu J, Li F and Yang BB: Targeting
circular RNAs as a therapeutic approach: Current strategies and
challenges. Signal Transduct Target Ther. 6:1852021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Misir S, Wu N and Yang BB: Specific
expression and functions of circular RNAs. Cell Death Differ.
29:481–491. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sanger HL, Klotz G, Riesner D, Gross HJ
and Kleinschmidt AK: Viroids are single-stranded covalently closed
circular RNA molecules existing as highly base-paired rod-like
structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hsu MT and Coca-Prados M: Electron
microscopic evidence for the circular form of RNA in the cytoplasm
of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Salzman J, Gawad C, Wang PL, Lacayo N and
Brown PO: Circular RNAs are the predominant transcript isoform from
hundreds of human genes in diverse cell types. PLoS One.
7:e307332012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Nisar S, Bhat AA, Singh M, Karedath T,
Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S, et al:
Insights into the role of CircRNAs: Biogenesis, characterization,
functional, and clinical impact in human malignancies. Front Cell
Dev Biol. 9:6172812021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Papadopoulos N and Trifylli EM: Role of
exosomal circular RNAs as microRNA sponges and potential targeting
for suppressing hepatocellular carcinoma growth and progression.
World J Gastroenterol. 30:994–998. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Panda AC: Circular RNAs Act as miRNA
sponges. Adv Exp Med Biol. 1087:67–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hentze MW and Preiss T: Circular RNAs:
Splicing's enigma variations. EMBO J. 32:923–925. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Legnini I, Di Timoteo G, Rossi F, Morlando
M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade
M, et al: Circ-ZNF609 Is a circular RNA that can be translated and
functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen YG, Chen R, Ahmad S, Verma R, Kasturi
SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al:
N6-methyladenosine modification controls circular RNA immunity. Mol
Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wang Y, Mo Y, Gong Z, Yang X, Yang M,
Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, et al: Circular RNAs in
human cancer. Mol Cancer. 16:252017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tashakori N, Mikhailova MV, Mohammedali
ZA, Mahdi MS, Ali Al-Nuaimi AM, Radi UK, Alfaraj AM and Kiasari BA:
Circular RNAs as a novel molecular mechanism in diagnosis,
prognosis, therapeutic target, and inhibiting chemoresistance in
breast cancer. Pathol Res Pract. 263:1555692024. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Holdt LM, Kohlmaier A and Teupser D:
Circular RNAs as therapeutic agents and targets. Front Physiol.
9:12622018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ragan C, Goodall GJ, Shirokikh NE and
Preiss T: Insights into the biogenesis and potential functions of
exonic circular RNA. Sci Rep. 9:20482019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Wang T, Zhang X and Zheng B:
Identification of intronic lariat-derived circular RNAs in
arabidopsis by RNA deep sequencing. Methods Mol Biol. 2362:93–100.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhong Y, Yang Y, Wang X, Ren B, Wang X,
Shan G and Chen L: Systematic identification and characterization
of exon-intron circRNAs. Genome Res. 34:376–393. 2024.PubMed/NCBI
|
|
27
|
Zhang XO, Dong R, Zhang Y, Zhang JL, Luo
Z, Zhang J, Chen LL and Yang L: Diverse alternative back-splicing
and alternative splicing landscape of circular RNAs. Genome Res.
26:1277–1287. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Guo Z, Cao Q, Zhao Z and Song C:
Biogenesis, features, functions, and disease relationships of a
specific circular RNA: CDR1as. Aging Dis. 11:1009–1020. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhu J, Li Q, Wu Z, Xu W and Jiang R:
Circular RNA-mediated miRNA sponge & RNA binding protein in
biological modulation of breast cancer. Noncoding RNA Res.
9:262–276. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Conn SJ, Pillman KA, Toubia J, Conn VM,
Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and
Goodall GJ: The RNA binding protein quaking regulates formation of
circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Pisignano G, Michael DC, Visal TH, Pirlog
R, Ladomery M and Calin GA: Going circular: History, present, and
future of circRNAs in cancer. Oncogene. 42:2783–2800. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhao X, Zhong Y, Wang X, Shen J and An W:
Advances in circular RNA and its applications. Int J Med Sci.
19:975–985. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li L, Wei C, Xie Y, Su Y, Liu C, Qiu G,
Liu W, Liang Y, Zhao X, Huang D and Wu D: Expanded insights into
the mechanisms of RNA-binding protein regulation of circRNA
generation and function in cancer biology and therapy. Gen Dis.
1013832024.
|
|
35
|
Chen LL: The expanding regulatory
mechanisms and cellular functions of circular RNAs. Nature reviews.
Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Huang A, Zheng H, Wu Z, Chen M and Huang
Y: Circular RNA-protein interactions: functions, mechanisms, and
identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen L and Shan G: CircRNA in cancer:
Fundamental mechanism and clinical potential. Cancer Lett.
505:49–57. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ashwal-Fluss R, Meyer M, Pamudurti NR,
Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and
Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol
Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hwang HJ and Kim YK: Molecular mechanisms
of circular RNA translation. Exp Mol Med. 56:1272–1280. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yang X, Mei J, Wang H, Gu D, Ding J and
Liu C: The emerging roles of circular RNAs in ovarian cancer.
Cancer Cell Int. 20:2652020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gao S, Zhao T, Meng F, Luo Y, Li Y and
Wang Y: Circular RNAs in endometrial carcinoma (Review). Oncol Rep.
48:2122022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin
QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long
noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ye C, Liu Z, Xie Q, Tang Y, Zeng J, Feng
Z, Liu J and Xie H: Adeno-associated virus mediated artificial
circular RNA for triggering cancer immunotherapy to treat prostate
cancer. Front Oncol. 15:14435712025. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lv H, Wei X and Lin Y: Immunoregulatory
role of exosomal CircRNAs in the tumor microenvironment. Front
Oncol. 15:14537862025. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jarlstad Olesen MT and S Kristensen L:
Circular RNAs as microRNA sponges: Evidence and controversies.
Essays Biochem. 65:685–696. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Piwecka M, Glažar P, Hernandez-Miranda LR,
Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda
Jara CA, Fenske P, et al: Loss of a mammalian circular RNA locus
causes miRNA deregulation and affects brain function. Science.
357:eaam85262017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Heydarnia E, Dorostgou Z, Hedayati N,
Mousavi V, Yahyazadeh S, Alimohammadi M, Gheibi M, Heidari P, Igder
S, Mafi A and Vakili O: Circular RNAs and cervical cancer: Friends
or foes? A landscape on circRNA-mediated regulation of key
signaling pathways involved in the onset and progression of
HPV-related cervical neoplasms. Cell Commun Signal. 22:1072024.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM,
Sarfaraz S, Taheri M and Ayatollahi SA: Circ_CDR1as: A circular RNA
with roles in the carcinogenesis. Pathol Res Pract. 236:1539682022.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jiao J, Zhang T, Jiao X, Huang T, Zhao L,
Ma D and Cui B: hsa_circ_0000745 promotes cervical cancer by
increasing cell proliferation, migration, and invasion. J Cell
Physiol. 235:1287–1295. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wang Y, Yin L and Sun X: CircRNA
hsa_circ_0002577 accelerates endometrial cancer progression through
activating IGF1R/PI3K/Akt pathway. J Exp Clin Cancer Res.
39:1692020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ma Y, Zheng L, Gao Y, Zhang W, Zhang Q and
Xu Y: A comprehensive overview of circRNAs: Emerging biomarkers and
potential therapeutics in gynecological cancers. Front Cell Dev
Biol. 9:7095122021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P
and Yang BB: Foxo3 circular RNA retards cell cycle progression via
forming ternary complexes with p21 and CDK2. Nucleic Acids Res.
44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Rao D, Yu C, Sheng J, Lv E and Huang W:
The emerging roles of circFOXO3 in cancer. Front Cell Dev Biol.
9:6594172021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wang L, Chen J and Lu C: Circular RNA
Foxo3 enhances progression of ovarian carcinoma cells. Aging.
13:22432–22443. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Li Q, Wang Y, Wu S, Zhou Z, Ding X, Shi R,
Thorne RF, Zhang XD, Hu W and Wu M: CircACC1 regulates assembly and
activation of AMPK complex under metabolic stress. Cell Metab.
30:157–173.e7. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhou M, Yang Z, Wang D, Chen P and Zhang
Y: The circular RNA circZFR phosphorylates Rb promoting cervical
cancer progression by regulating the SSBP1/CDK2/cyclin E1 complex.
J Exp Clin Cancer Res. 40:482021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Guan X, Zong ZH, Liu Y, Chen S, Wang LL
and Zhao Y: circPUM1 promotes tumorigenesis and progression of
ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol Ther
Nucleic Acids. 18:882–892. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ and
Xu RH: Circular RNA: Metabolism, functions and interactions with
proteins. Mol Cancer. 19:1722020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Xue C, Li G, Lu J and Li L: Crosstalk
between circRNAs and the PI3K/AKT signaling pathway in cancer
progression. Signal Transduct Target Ther. 6:4002021. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang
Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of
circular RNAs driven by N6-methyladenosine. Cell Res.
27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou
X, Xie X and Tang H: circFBXW7 inhibits malignant progression by
sponging miR-197-3p and encoding a 185-aa protein in
triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhao J, Lee EE, Kim J, Yang R, Chamseddin
B, Ni C, Gusho E, Xie Y, Chiang CM, Buszczak M, et al: Transforming
activity of an oncoprotein-encoding circular RNA from human
papillomavirus. Nat Commun. 10:23002019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ju X, Tang Y, Qu R and Hao S: The emerging
role of circ-SHPRH in cancer. Onco Targets Ther. 14:4177–4188.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lei M, Zheng G, Ning Q, Zheng J and Dong
D: Translation and functional roles of circular RNAs in human
cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang S, Cheng C, Lin Z, Xiao L, Su X,
Zheng L, Mu Y, Liao M, Ouyang R, Li W, et al: The global burden and
associated factors of ovarian cancer in 1990–2019: Findings from
the global burden of disease study 2019. BMC Public Health.
22:14552022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ,
Bast RC Jr, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, et
al: Rethinking ovarian cancer II: Reducing mortality from
high-grade serous ovarian cancer. Nat Rev Cancer. 15:668–679. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Torre LA, Trabert B, DeSantis CE, Miller
KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A and Siegel RL:
Ovarian cancer statistics, 2018. CA Cancer J Clin. 68:284–296.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Colombo N, Ledermann JA and Lorusso D:
Newly diagnosed and relapsed epithelial ovarian cancer: ESMO
clinical practice guideline for diagnosis, treatment and follow-up.
Ann Oncol. 34:127–144. 2023. View Article : Google Scholar
|
|
69
|
Tendulkar S and Dodamani S:
Chemoresistance in ovarian cancer: Prospects for new drugs.
Anticancer Agents Med Chem. 21:668–678. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Xing Y, Liang X, Lv X, Cheng Y, Du J, Liu
C and Yang Y: New insights into the role of circular RNAs in
ovarian cancer. Pathol Res Pract. 238:1540732022. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song
X, Gorshkov K, Sun Q, Lin H, Zheng X, et al: CircRNA-SORE mediates
sorafenib resistance in hepatocellular carcinoma by stabilizing
YBX1. Signal Transduct Target Ther. 5:2982020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Luo Y, Fu Y, Huang R, Gao M, Liu F, Gui R
and Nie X: CircRNA_101505 sensitizes hepatocellular carcinoma cells
to cisplatin by sponging miR-103 and promotes oxidored-nitro
domain-containing protein 1 expression. Cell Death Discov.
5:1212019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wang H, Zhang Y, Miao H, Xu T, Nie X and
Cheng W: CircRAD23B promotes proliferation and carboplatin
resistance in ovarian cancer cell lines and organoids. Cancer Cell
Int. 24:422024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gan X, Zhu H, Jiang X, Obiegbusi SC, Yong
M, Long X and Hu J: CircMUC16 promotes autophagy of epithelial
ovarian cancer via interaction with ATG13 and miR-199a. Mol Cancer.
19:452020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li QH, Liu Y, Chen S, Zong ZH, Du YP,
Sheng XJ and Zhao Y: circ-CSPP1 promotes proliferation, invasion
and migration of ovarian cancer cells by acting as a miR-1236-3p
sponge. Biomed Pharmacother. 114:1088322019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Foruzandeh Z, Zeinali-Sehrig F, Nejati K,
Rahmanpour D, Pashazadeh F, Seif F and Alivand MR: CircRNAs as
potent biomarkers in ovarian cancer: A systematic scoping review.
Cell Mol Biol Lett. 26:412021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao
L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The
landscape of circular RNA in cancer. Cell. 176:869–881.e13. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ahmed I, Karedath T, Andrews SS, Al-Azwani
IK, Mohamoud YA, Querleu D, Rafii A and Malek JA: Altered
expression pattern of circular RNAs in primary and metastatic sites
of epithelial ovarian carcinoma. Oncotarget. 7:36366–36381. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Pei C, Wang H, Shi C, Zhang C and Wang M:
CircRNA hsa_circ_0013958 may contribute to the development of
ovarian cancer by affecting epithelial-mesenchymal transition and
apoptotic signaling pathways. J Clin Lab Anal. 34:e232922020.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sun Y, Chen X, Shi Y, Teng F, Dai C, Ge L,
Xu J and Jia X: hsa_circ_0020093 suppresses ovarian cancer
progression by modulating LRPPRC activity and miR-107/LATS2
signaling. Biol Direct. 19:692024. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhang N, Jin Y, Hu Q, Cheng S, Wang C,
Yang Z and Wang Y: Circular RNA hsa_circ_0078607 suppresses ovarian
cancer progression by regulating miR-518a-5p/Fas signaling pathway.
J Ovarian Res. 13:642020. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Shabaninejad Z, Vafadar A, Movahedpour A,
Ghasemi Y, Namdar A, Fathizadeh H, Pourhanifeh MH, Savardashtaki A
and Mirzaei H: Circular RNAs in cancer: New insights into functions
and implications in ovarian cancer. J Ovarian Res. 12:842019.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Malviya A and Bhuyan R: Circular RNAs in
cancer: Roles, mechanisms, and therapeutic potential across
colorectal, gastric, liver, and lung carcinomas. Discov Oncol.
16:52025. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhu Y, Liang L, Zhao Y, Li J, Zeng J, Yuan
Y, Li N and Wu L: CircNUP50 is a novel therapeutic target that
promotes cisplatin resistance in ovarian cancer by modulating p53
ubiquitination. J Nanobiotechnology. 22:352024. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Wang Y, Chen X and Yang Y:
CircRNA-regulated glucose metabolism in ovarian cancer: An emerging
landscape for therapeutic intervention. Clin Transl Oncol.
26:584–596. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lu H, Guo Q, Mao G, Zhu J and Li F:
CircLARP4 suppresses cell proliferation, invasion and glycolysis
and promotes apoptosis in non-small cell lung cancer by targeting
miR-135b. Onco Targets Ther. 13:3717–3728. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Luo L, Gao YQ and Sun XF: Circular RNA
ITCH suppresses proliferation and promotes apoptosis in human
epithelial ovarian cancer cells by sponging miR-10a-α. Eur Rev Med
Pharmacol Sci. 22:8119–8126. 2018.PubMed/NCBI
|
|
88
|
Verduci L, Tarcitano E, Strano S, Yarden Y
and Blandino G: CircRNAs: Role in human diseases and potential use
as biomarkers. Cell Death Dis. 12:4682021. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Arnaiz E, Sole C, Manterola L,
Iparraguirre L, Otaegui D and Lawrie CH: CircRNAs and cancer:
Biomarkers and master regulators. Semin Cancer Biol. 58:90–99.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li H, Peng K, Yang K, Ma W, Qi S, Yu X, He
J, Lin X and Yu G: Circular RNA cancer vaccines drive immunity in
hard-to-treat malignancies. Theranostics. 12:6422–6436. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhang X, Yuan Y, Wang X, Wang H, Zhang L
and He J: CircWHSC1 (CircNSD2): A novel circular RNA in multiple
cancers. Clin Med Insights Oncol. 18:117955492412547812024.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Du Y, Zuber PK, Xiao H, Li X, Gordiyenko Y
and Ramakrishnan V: Efficient circular RNA synthesis for potent
rolling circle translation. Nat Biomed Eng. Dec 13–2024.(Epub ahead
of print). View Article : Google Scholar
|
|
93
|
Li J, Li X, Quan C, Li X, Wan C and Wu X:
Genomic profile of Chinese patients with endometrial carcinoma. BMC
Cancer. 23:8882023. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Morice P, Leary A, Creutzberg C,
Abu-Rustum N and Darai E: Endometrial cancer. Lancet.
387:1094–1108. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Du Y, Xu Y, Qin Z, Sun L, Chen Y, Han L
and Zheng A: The oncology safety of diagnostic hysteroscopy in
early-stage endometrial cancer: A systematic review and
meta-analysis. Front Oncol. 11:7427612021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Clarke MA, Long BJ, Del Mar Morillo A,
Arbyn M, Bakkum-Gamez JN and Wentzensen N: Association of
endometrial cancer risk with postmenopausal bleeding in women: A
systematic review and meta-analysis. JAMA Intern Med.
178:1210–1222. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Colombo N, Creutzberg C, Amant F, Bosse T,
González-Martín A, Ledermann J, Marth C, Nout R, Querleu D, Mirza
MR, et al: ESMO-ESGO-ESTRO consensus conference on endometrial
cancer: Diagnosis, treatment and follow-up. Ann Oncol. 27:16–41.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kok PS, Antill YC, Scott CL and Lee CK:
The impact of single agent PD-1 or PD-L1 inhibition on advanced
endometrial cancers: Meta-analysis. ESMO Open. 7:1006352022.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tao M, Zheng M, Xu Y, Ma S, Zhang W and Ju
S: CircRNAs and their regulatory roles in cancers. Mol Med.
27:942021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Xu H, Gong Z, Shen Y, Fang Y and Zhong S:
Circular RNA expression in extracellular vesicles isolated from
serum of patients with endometrial cancer. Epigenomics. 10:187–197.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zhang W, Xu C, Yang Z, Zhou J, Peng W,
Zhang X, Li H, Qu S and Tao K: Circular RNAs in tumor immunity and
immunotherapy. Mol Cancer. 23:1712024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Włodarczyk K, Kuryło W, Pawłowska-Łachut
A, Skiba W, Suszczyk D, Pieniądz P, Majewska M, Boniewska-Bernacka
E and Wertel I: circRNAs in endometrial cancer-a promising
biomarker: State of the art. Int J Mol Sci. 25:63872024. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Das A, Sinha T, Shyamal S and Panda AC:
Emerging role of circular RNA-protein interactions. Noncoding RNA.
7:482021.PubMed/NCBI
|
|
104
|
Ye F, Tang QL, Ma F, Cai L, Chen M, Ran
XX, Wang XY and Jiang XF: Analysis of the circular RNA
transcriptome in the grade 3 endometrial cancer. Cancer Manag Res.
11:6215–6227. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Liu Y, Chen S, Zong ZH, Guan X and Zhao Y:
CircRNA WHSC1 targets the miR-646/NPM1 pathway to promote the
development of endometrial cancer. J Cell Mol Med. 24:6898–6907.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Mumtaz PT, Taban Q, Dar MA, Mir S, Haq ZU,
Zargar SM, Shah RA and Ahmad SM: Deep insights in circular RNAs:
From biogenesis to therapeutics. Biol Proced Online. 22:102020.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Liu Y, Chang Y and Cai Y: Hsa_circ_0061140
promotes endometrial carcinoma progression via regulating
miR-149-5p/STAT3. Gene. 745:1446252020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shi R, Zhao R, Shen Y, Wei S, Zhang T,
Zhang J, Shu W, Cheng S, Teng H and Wang H: IGF2BP2-modified
circular RNA circCHD7 promotes endometrial cancer progression via
stabilizing PDGFRB and activating JAK/STAT signaling pathway.
Cancer Gene Ther. 31:1221–1236. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Chen BJ, Byrne FL, Takenaka K, Modesitt
SC, Olzomer EM, Mills JD, Farrell R, Hoehn KL and Janitz M:
Analysis of the circular RNA transcriptome in endometrial cancer.
Oncotarget. 9:5786–5796. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yuan S, Zheng P, Sun X, Zeng J, Cao W, Gao
W, Wang Y and Wang L: Hsa_Circ_0001860 promotes Smad7 to enhance
MPA resistance in endometrial cancer via miR-520h. Front Cell Dev
Biol. 9:7381892021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang
Y, Li X, Wu Z, Yang D, Zhou Y, et al: Circular RNAs in cancer:
Emerging functions in hallmarks, stemness, resistance and roles as
potential biomarkers. Mol Cancer. 18:902019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Ren Y, Manoharan T, Liu B, Cheng CZM, En
Siew B, Cheong WK, Lee KY, Tan IJ, Lieske B, Tan KK and Chia G:
Circular RNA as a source of neoantigens for cancer vaccines. J
Immunother Cancer. 12:e0084022024. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Xie J, Ye F, Deng X, Tang Y, Liang JY,
Huang X, Sun Y, Tang H, Lei J, Zheng S and Zou Y: Circular RNA: A
promising new star of vaccine. J Transl Int Med. 11:372–381. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Liu X, Zhang Y, Zhou S, Dain L, Mei L and
Zhu G: Circular RNA: An emerging frontier in RNA therapeutic
targets, RNA therapeutics, and mRNA vaccines. J Control Release.
348:84–94. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Li W, Liu JQ, Chen M, Xu J and Zhu D:
Circular RNA in cancer development and immune regulation. J Cell
Mol Med. 26:1785–1798. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Takenaka K, Olzomer EM, Hoehn KL,
Curry-Hyde A, Jun Chen B, Farrell R, Byrne FL and Janitz M:
Investigation of circular RNA transcriptome in obesity-related
endometrial cancer. Gene. 855:1471252023. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Su P and Zhang L, Zhou F and Zhang L:
Circular RNA vaccine, a novel mRNA vaccine design strategy for
SARS-CoV-2 and variants. MedComm (2020). 3:e1532022. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Xiaohui C: Analysis cervical cancer among
urban and rural residents in Xiangyang, Hubei, 2017–2019. Prog Med
Sci. 9:1–5. 2025.
|
|
119
|
Agarwal R, King JB, Gopalani SV and
Senkomago V: Cervical cancer incidence and trends among women aged
15–29 years by county-level economic status and rurality-United
States, 2007–2020. Cancer Epidemiol. 94:1027302025. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Tanaka S, Palmer M and Katanoda K: Trends
in cervical cancer incidence and mortality of young and middle
adults in Japan. Cancer Sci. 113:1801–1807. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Liu X, Meng Q, Wang W, Zhou Z, Zhang F and
Hu K: Predictors of distant metastasis in patients with cervical
cancer treated with definitive radiotherapy. J Cancer.
10:3967–3974. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ogasawara A and Hasegawa K: Recent
advances in immunotherapy for cervical cancer. Int J Clin Oncol.
30:434–448. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Wan J, Wang Z, Wang L, Wu L, Zhang C, Zhou
M, Fu ZF and Zhao L: Circular RNA vaccines with long-term lymph
node-targeting delivery stability after lyophilization induce
potent and persistent immune responses. mBio. 15:e01775232024.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Saleem A, Khan MU, Zahid T, Khurram I,
Ghani MU, Ullah I, Munir R, Calina D and Sharifi-Rad J: Biological
role and regulation of circular RNA as an emerging biomarker and
potential therapeutic target for cancer. Mol Biol Rep. 51:2962024.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Ma Y, Wang T, Zhang X, Wang P and Long F:
The role of circular RNAs in regulating resistance to cancer
immunotherapy: Mechanisms and implications. Cell Death Dis.
15:3122024. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Zhang J, Zhao X, Zhang J, Zheng X and Li
F: Circular RNA hsa_circ_0023404 exerts an oncogenic role in
cervical cancer through regulating miR-136/TFCP2/YAP pathway.
Biochem Biophys Res Commun. 501:428–433. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Shi Y, He R, Yang Y, He Y, Shao K, Zhan L
and Wei B: Circular RNAs: Novel biomarkers for cervical, ovarian
and endometrial cancer (Review). Oncol Rep. 44:1787–1798.
2020.PubMed/NCBI
|
|
128
|
Ma H, Tian T, Liu X, Xia M, Chen C, Mai L,
Xie S and Yu L: Upregulated circ_0005576 facilitates cervical
cancer progression via the miR-153/KIF20A axis. Biomed
Pharmacother. 118:1093112019. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS,
Ubaid M, Athab AH, Mirzaei R and Karampoor S: Exploring the impact
of circRNAs on cancer glycolysis: Insights into tumor progression
and therapeutic strategies. Noncoding RNA Res. 9:970–994. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Tang C, Xie Y, Yu T, Liu N, Wang Z,
Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, et al:
m6A-dependent biogenesis of circular RNAs in male germ
cells. Cell Res. 30:211–228. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Ding L and Zhang H: Circ-ATP8A2 promotes
cell proliferation and invasion as a ceRNA to target EGFR by
sponging miR-433 in cervical cancer. Gene. 705:103–108. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Dong M, Li P, Xie Y, Wang Z and Wang R:
CircMYBL2 regulates the resistance of cervical cancer cells to
paclitaxel via miR-665-dependent regulation of EGFR. Drug Dev Res.
82:1193–1205. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Zhou M, Liu L, Wang J and Liu W: The role
of long noncoding RNAs in therapeutic resistance in cervical
cancer. Front Cell Dev Biol. 10:10609092022. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Mao Y, Zhang L and Li Y: circEIF4G2
modulates the malignant features of cervical cancer via the
miR-218/HOXA1 pathway. Mol Med Rep. 19:3714–3722. 2019.PubMed/NCBI
|
|
135
|
Liu G, Zhang Z, Song Q, Guo Y, Bao P and
Shui H: Circ_0006528 contributes to paclitaxel resistance of breast
cancer cells by regulating miR-1299/CDK8 axis. Onco Targets Ther.
13:9497–9511. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Niu D, Wu Y and Lian J: Circular RNA
vaccine in disease prevention and treatment. Signal Transduct
Target Ther. 8:3412023. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Ou R, Lv J, Zhang Q, Lin F, Zhu L, Huang
F, Li X, Li T, Zhao L, Ren Y and Xu Y: circAMOTL1 motivates AMOTL1
expression to facilitate cervical cancer growth. Mol Ther Nucleic
Acids. 19:50–60. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Wang Y, Xu X, Yu S, Jeong KJ, Zhou Z, Han
L, Tsang YH, Li J, Chen H, Mangala LS, et al: Systematic
characterization of A-to-I RNA editing hotspots in microRNAs across
human cancers. Genome Res. 27:1112–1125. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Liu Y, Ou Y and Hou L: Advances in
RNA-based therapeutics: Challenges and innovations in RNA delivery
systems. Curr Issues Mol Biol. 47:222024. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Xu F, Xiao Q, Du WW, Wang S and Yang BB:
CircRNA: Functions, applications and prospects. Biomolecules.
14:15032024. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Zhang F, Jiang J, Qian H, Yan Y and Xu W:
Exosomal circRNA: Emerging insights into cancer progression and
clinical application potential. J Hematol Oncol. 16:672023.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ
and Wang WT: New insight into circRNAs: Characterization,
strategies, and biomedical applications. Exp Hematol Oncol.
12:912023. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
O'Leary E, Jiang Y, Kristensen LS, Hansen
TB and Kjems J: The therapeutic potential of circular RNAs. Nat Rev
Genet. 26:230–244. 2025. View Article : Google Scholar : PubMed/NCBI
|