
Circular RNAs in gynecological cancer: From molecular mechanisms to clinical applications (Review)
- Authors:
- Ying Liu
- Hao Ai
-
Affiliations: Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China - Published online on: April 11, 2025 https://doi.org/10.3892/ol.2025.15037
- Article Number: 291
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Conn VM, Chinnaiyan AM and Conn SJ: Circular RNA in cancer. Nat Rev Cancer. 24:597–613. 2024. View Article : Google Scholar : PubMed/NCBI | |
Qin M, Zhang C and Li Y: Circular RNAs in gynecologic cancers: Mechanisms and implications for chemotherapy resistance. Front Pharmacol. 14:11947192023. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Luo Z, Zheng Y, Duan M, Qiu Z and Huang C: CircRNA as an Achilles heel of cancer: Characterization, biomarker and therapeutic modalities. J Transl Med. 22:7522024. View Article : Google Scholar : PubMed/NCBI | |
Zong ZH, Du YP, Guan X, Chen S and Zhao Y: CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. J Exp Clin Cancer Res. 38:4372019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang Z, Zeng M, Wang Y, Chen X, Li S, Zhao X and Sun Y: Circular RNA differential expression profiles and bioinformatics analysis of hsa_circRNA_079422 in human endometrial carcinoma. J Obstet Gynaecol. 43:22288942023. View Article : Google Scholar : PubMed/NCBI | |
Heidari-Ezzati S, Moeinian P, Ahmadian-Nejad B, Maghbbouli F, Abbasi S, Zahedi M, Afkhami H, Shadab A and Sajedi N: The role of long non-coding RNAs and circular RNAs in cervical cancer: Modulating miRNA function. Front Cell Dev Biol. 12:13087302024. View Article : Google Scholar : PubMed/NCBI | |
Lei B, Tian Z, Fan W and Ni B: Circular RNA: A novel biomarker and therapeutic target for human cancers. Int J Med Sci. 16:292–301. 2019. View Article : Google Scholar : PubMed/NCBI | |
He AT, Liu J, Li F and Yang BB: Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct Target Ther. 6:1852021. View Article : Google Scholar : PubMed/NCBI | |
Misir S, Wu N and Yang BB: Specific expression and functions of circular RNAs. Cell Death Differ. 29:481–491. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI | |
Hsu MT and Coca-Prados M: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI | |
Salzman J, Gawad C, Wang PL, Lacayo N and Brown PO: Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 7:e307332012. View Article : Google Scholar : PubMed/NCBI | |
Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S, et al: Insights into the role of CircRNAs: Biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell Dev Biol. 9:6172812021. View Article : Google Scholar : PubMed/NCBI | |
Papadopoulos N and Trifylli EM: Role of exosomal circular RNAs as microRNA sponges and potential targeting for suppressing hepatocellular carcinoma growth and progression. World J Gastroenterol. 30:994–998. 2024. View Article : Google Scholar : PubMed/NCBI | |
Panda AC: Circular RNAs Act as miRNA sponges. Adv Exp Med Biol. 1087:67–79. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hentze MW and Preiss T: Circular RNAs: Splicing's enigma variations. EMBO J. 32:923–925. 2013. View Article : Google Scholar : PubMed/NCBI | |
Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 Is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al: N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Mo Y, Gong Z, Yang X, Yang M, Zhang S, Xiong F, Xiang B, Zhou M, Liao Q, et al: Circular RNAs in human cancer. Mol Cancer. 16:252017. View Article : Google Scholar : PubMed/NCBI | |
Tashakori N, Mikhailova MV, Mohammedali ZA, Mahdi MS, Ali Al-Nuaimi AM, Radi UK, Alfaraj AM and Kiasari BA: Circular RNAs as a novel molecular mechanism in diagnosis, prognosis, therapeutic target, and inhibiting chemoresistance in breast cancer. Pathol Res Pract. 263:1555692024. View Article : Google Scholar : PubMed/NCBI | |
Holdt LM, Kohlmaier A and Teupser D: Circular RNAs as therapeutic agents and targets. Front Physiol. 9:12622018. View Article : Google Scholar : PubMed/NCBI | |
Ragan C, Goodall GJ, Shirokikh NE and Preiss T: Insights into the biogenesis and potential functions of exonic circular RNA. Sci Rep. 9:20482019. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Zhang X and Zheng B: Identification of intronic lariat-derived circular RNAs in arabidopsis by RNA deep sequencing. Methods Mol Biol. 2362:93–100. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Yang Y, Wang X, Ren B, Wang X, Shan G and Chen L: Systematic identification and characterization of exon-intron circRNAs. Genome Res. 34:376–393. 2024.PubMed/NCBI | |
Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL and Yang L: Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 26:1277–1287. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Cao Q, Zhao Z and Song C: Biogenesis, features, functions, and disease relationships of a specific circular RNA: CDR1as. Aging Dis. 11:1009–1020. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Li Q, Wu Z, Xu W and Jiang R: Circular RNA-mediated miRNA sponge & RNA binding protein in biological modulation of breast cancer. Noncoding RNA Res. 9:262–276. 2024. View Article : Google Scholar : PubMed/NCBI | |
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, Roslan S, Schreiber AW, Gregory PA and Goodall GJ: The RNA binding protein quaking regulates formation of circRNAs. Cell. 160:1125–1134. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pisignano G, Michael DC, Visal TH, Pirlog R, Ladomery M and Calin GA: Going circular: History, present, and future of circRNAs in cancer. Oncogene. 42:2783–2800. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Zhong Y, Wang X, Shen J and An W: Advances in circular RNA and its applications. Int J Med Sci. 19:975–985. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li L, Wei C, Xie Y, Su Y, Liu C, Qiu G, Liu W, Liang Y, Zhao X, Huang D and Wu D: Expanded insights into the mechanisms of RNA-binding protein regulation of circRNA generation and function in cancer biology and therapy. Gen Dis. 1013832024. | |
Chen LL: The expanding regulatory mechanisms and cellular functions of circular RNAs. Nature reviews. Nat Rev Mol Cell Biol. 21:475–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang A, Zheng H, Wu Z, Chen M and Huang Y: Circular RNA-protein interactions: functions, mechanisms, and identification. Theranostics. 10:3503–3517. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Shan G: CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett. 505:49–57. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hwang HJ and Kim YK: Molecular mechanisms of circular RNA translation. Exp Mol Med. 56:1272–1280. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Mei J, Wang H, Gu D, Ding J and Liu C: The emerging roles of circular RNAs in ovarian cancer. Cancer Cell Int. 20:2652020. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Zhao T, Meng F, Luo Y, Li Y and Wang Y: Circular RNAs in endometrial carcinoma (Review). Oncol Rep. 48:2122022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ye C, Liu Z, Xie Q, Tang Y, Zeng J, Feng Z, Liu J and Xie H: Adeno-associated virus mediated artificial circular RNA for triggering cancer immunotherapy to treat prostate cancer. Front Oncol. 15:14435712025. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Wei X and Lin Y: Immunoregulatory role of exosomal CircRNAs in the tumor microenvironment. Front Oncol. 15:14537862025. View Article : Google Scholar : PubMed/NCBI | |
Jarlstad Olesen MT and S Kristensen L: Circular RNAs as microRNA sponges: Evidence and controversies. Essays Biochem. 65:685–696. 2021. View Article : Google Scholar : PubMed/NCBI | |
Piwecka M, Glažar P, Hernandez-Miranda LR, Memczak S, Wolf SA, Rybak-Wolf A, Filipchyk A, Klironomos F, Cerda Jara CA, Fenske P, et al: Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 357:eaam85262017. View Article : Google Scholar : PubMed/NCBI | |
Heydarnia E, Dorostgou Z, Hedayati N, Mousavi V, Yahyazadeh S, Alimohammadi M, Gheibi M, Heidari P, Igder S, Mafi A and Vakili O: Circular RNAs and cervical cancer: Friends or foes? A landscape on circRNA-mediated regulation of key signaling pathways involved in the onset and progression of HPV-related cervical neoplasms. Cell Commun Signal. 22:1072024. View Article : Google Scholar : PubMed/NCBI | |
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Sarfaraz S, Taheri M and Ayatollahi SA: Circ_CDR1as: A circular RNA with roles in the carcinogenesis. Pathol Res Pract. 236:1539682022. View Article : Google Scholar : PubMed/NCBI | |
Jiao J, Zhang T, Jiao X, Huang T, Zhao L, Ma D and Cui B: hsa_circ_0000745 promotes cervical cancer by increasing cell proliferation, migration, and invasion. J Cell Physiol. 235:1287–1295. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yin L and Sun X: CircRNA hsa_circ_0002577 accelerates endometrial cancer progression through activating IGF1R/PI3K/Akt pathway. J Exp Clin Cancer Res. 39:1692020. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Zheng L, Gao Y, Zhang W, Zhang Q and Xu Y: A comprehensive overview of circRNAs: Emerging biomarkers and potential therapeutics in gynecological cancers. Front Cell Dev Biol. 9:7095122021. View Article : Google Scholar : PubMed/NCBI | |
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rao D, Yu C, Sheng J, Lv E and Huang W: The emerging roles of circFOXO3 in cancer. Front Cell Dev Biol. 9:6594172021. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Chen J and Lu C: Circular RNA Foxo3 enhances progression of ovarian carcinoma cells. Aging. 13:22432–22443. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Wang Y, Wu S, Zhou Z, Ding X, Shi R, Thorne RF, Zhang XD, Hu W and Wu M: CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab. 30:157–173.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Yang Z, Wang D, Chen P and Zhang Y: The circular RNA circZFR phosphorylates Rb promoting cervical cancer progression by regulating the SSBP1/CDK2/cyclin E1 complex. J Exp Clin Cancer Res. 40:482021. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Zong ZH, Liu Y, Chen S, Wang LL and Zhao Y: circPUM1 promotes tumorigenesis and progression of ovarian cancer by sponging miR-615-5p and miR-6753-5p. Mol Ther Nucleic Acids. 18:882–892. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou WY, Cai ZR, Liu J, Wang DS, Ju HQ and Xu RH: Circular RNA: Metabolism, functions and interactions with proteins. Mol Cancer. 19:1722020. View Article : Google Scholar : PubMed/NCBI | |
Xue C, Li G, Lu J and Li L: Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther. 6:4002021. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ye F, Gao G, Zou Y, Zheng S, Zhang L, Ou X, Xie X and Tang H: circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Mol Ther Nucleic Acids. 18:88–98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Lee EE, Kim J, Yang R, Chamseddin B, Ni C, Gusho E, Xie Y, Chiang CM, Buszczak M, et al: Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun. 10:23002019. View Article : Google Scholar : PubMed/NCBI | |
Ju X, Tang Y, Qu R and Hao S: The emerging role of circ-SHPRH in cancer. Onco Targets Ther. 14:4177–4188. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lei M, Zheng G, Ning Q, Zheng J and Dong D: Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Cheng C, Lin Z, Xiao L, Su X, Zheng L, Mu Y, Liao M, Ouyang R, Li W, et al: The global burden and associated factors of ovarian cancer in 1990–2019: Findings from the global burden of disease study 2019. BMC Public Health. 22:14552022. View Article : Google Scholar : PubMed/NCBI | |
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC Jr, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, et al: Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer. 15:668–679. 2015. View Article : Google Scholar : PubMed/NCBI | |
Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A and Siegel RL: Ovarian cancer statistics, 2018. CA Cancer J Clin. 68:284–296. 2018. View Article : Google Scholar : PubMed/NCBI | |
Colombo N, Ledermann JA and Lorusso D: Newly diagnosed and relapsed epithelial ovarian cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 34:127–144. 2023. View Article : Google Scholar | |
Tendulkar S and Dodamani S: Chemoresistance in ovarian cancer: Prospects for new drugs. Anticancer Agents Med Chem. 21:668–678. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xing Y, Liang X, Lv X, Cheng Y, Du J, Liu C and Yang Y: New insights into the role of circular RNAs in ovarian cancer. Pathol Res Pract. 238:1540732022. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, Gorshkov K, Sun Q, Lin H, Zheng X, et al: CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther. 5:2982020. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Fu Y, Huang R, Gao M, Liu F, Gui R and Nie X: CircRNA_101505 sensitizes hepatocellular carcinoma cells to cisplatin by sponging miR-103 and promotes oxidored-nitro domain-containing protein 1 expression. Cell Death Discov. 5:1212019. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Zhang Y, Miao H, Xu T, Nie X and Cheng W: CircRAD23B promotes proliferation and carboplatin resistance in ovarian cancer cell lines and organoids. Cancer Cell Int. 24:422024. View Article : Google Scholar : PubMed/NCBI | |
Gan X, Zhu H, Jiang X, Obiegbusi SC, Yong M, Long X and Hu J: CircMUC16 promotes autophagy of epithelial ovarian cancer via interaction with ATG13 and miR-199a. Mol Cancer. 19:452020. View Article : Google Scholar : PubMed/NCBI | |
Li QH, Liu Y, Chen S, Zong ZH, Du YP, Sheng XJ and Zhao Y: circ-CSPP1 promotes proliferation, invasion and migration of ovarian cancer cells by acting as a miR-1236-3p sponge. Biomed Pharmacother. 114:1088322019. View Article : Google Scholar : PubMed/NCBI | |
Foruzandeh Z, Zeinali-Sehrig F, Nejati K, Rahmanpour D, Pashazadeh F, Seif F and Alivand MR: CircRNAs as potent biomarkers in ovarian cancer: A systematic scoping review. Cell Mol Biol Lett. 26:412021. View Article : Google Scholar : PubMed/NCBI | |
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The landscape of circular RNA in cancer. Cell. 176:869–881.e13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ahmed I, Karedath T, Andrews SS, Al-Azwani IK, Mohamoud YA, Querleu D, Rafii A and Malek JA: Altered expression pattern of circular RNAs in primary and metastatic sites of epithelial ovarian carcinoma. Oncotarget. 7:36366–36381. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pei C, Wang H, Shi C, Zhang C and Wang M: CircRNA hsa_circ_0013958 may contribute to the development of ovarian cancer by affecting epithelial-mesenchymal transition and apoptotic signaling pathways. J Clin Lab Anal. 34:e232922020. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Chen X, Shi Y, Teng F, Dai C, Ge L, Xu J and Jia X: hsa_circ_0020093 suppresses ovarian cancer progression by modulating LRPPRC activity and miR-107/LATS2 signaling. Biol Direct. 19:692024. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Jin Y, Hu Q, Cheng S, Wang C, Yang Z and Wang Y: Circular RNA hsa_circ_0078607 suppresses ovarian cancer progression by regulating miR-518a-5p/Fas signaling pathway. J Ovarian Res. 13:642020. View Article : Google Scholar : PubMed/NCBI | |
Shabaninejad Z, Vafadar A, Movahedpour A, Ghasemi Y, Namdar A, Fathizadeh H, Pourhanifeh MH, Savardashtaki A and Mirzaei H: Circular RNAs in cancer: New insights into functions and implications in ovarian cancer. J Ovarian Res. 12:842019. View Article : Google Scholar : PubMed/NCBI | |
Malviya A and Bhuyan R: Circular RNAs in cancer: Roles, mechanisms, and therapeutic potential across colorectal, gastric, liver, and lung carcinomas. Discov Oncol. 16:52025. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Liang L, Zhao Y, Li J, Zeng J, Yuan Y, Li N and Wu L: CircNUP50 is a novel therapeutic target that promotes cisplatin resistance in ovarian cancer by modulating p53 ubiquitination. J Nanobiotechnology. 22:352024. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen X and Yang Y: CircRNA-regulated glucose metabolism in ovarian cancer: An emerging landscape for therapeutic intervention. Clin Transl Oncol. 26:584–596. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Guo Q, Mao G, Zhu J and Li F: CircLARP4 suppresses cell proliferation, invasion and glycolysis and promotes apoptosis in non-small cell lung cancer by targeting miR-135b. Onco Targets Ther. 13:3717–3728. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Gao YQ and Sun XF: Circular RNA ITCH suppresses proliferation and promotes apoptosis in human epithelial ovarian cancer cells by sponging miR-10a-α. Eur Rev Med Pharmacol Sci. 22:8119–8126. 2018.PubMed/NCBI | |
Verduci L, Tarcitano E, Strano S, Yarden Y and Blandino G: CircRNAs: Role in human diseases and potential use as biomarkers. Cell Death Dis. 12:4682021. View Article : Google Scholar : PubMed/NCBI | |
Arnaiz E, Sole C, Manterola L, Iparraguirre L, Otaegui D and Lawrie CH: CircRNAs and cancer: Biomarkers and master regulators. Semin Cancer Biol. 58:90–99. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li H, Peng K, Yang K, Ma W, Qi S, Yu X, He J, Lin X and Yu G: Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics. 12:6422–6436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yuan Y, Wang X, Wang H, Zhang L and He J: CircWHSC1 (CircNSD2): A novel circular RNA in multiple cancers. Clin Med Insights Oncol. 18:117955492412547812024. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Zuber PK, Xiao H, Li X, Gordiyenko Y and Ramakrishnan V: Efficient circular RNA synthesis for potent rolling circle translation. Nat Biomed Eng. Dec 13–2024.(Epub ahead of print). View Article : Google Scholar | |
Li J, Li X, Quan C, Li X, Wan C and Wu X: Genomic profile of Chinese patients with endometrial carcinoma. BMC Cancer. 23:8882023. View Article : Google Scholar : PubMed/NCBI | |
Morice P, Leary A, Creutzberg C, Abu-Rustum N and Darai E: Endometrial cancer. Lancet. 387:1094–1108. 2016. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Xu Y, Qin Z, Sun L, Chen Y, Han L and Zheng A: The oncology safety of diagnostic hysteroscopy in early-stage endometrial cancer: A systematic review and meta-analysis. Front Oncol. 11:7427612021. View Article : Google Scholar : PubMed/NCBI | |
Clarke MA, Long BJ, Del Mar Morillo A, Arbyn M, Bakkum-Gamez JN and Wentzensen N: Association of endometrial cancer risk with postmenopausal bleeding in women: A systematic review and meta-analysis. JAMA Intern Med. 178:1210–1222. 2018. View Article : Google Scholar : PubMed/NCBI | |
Colombo N, Creutzberg C, Amant F, Bosse T, González-Martín A, Ledermann J, Marth C, Nout R, Querleu D, Mirza MR, et al: ESMO-ESGO-ESTRO consensus conference on endometrial cancer: Diagnosis, treatment and follow-up. Ann Oncol. 27:16–41. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kok PS, Antill YC, Scott CL and Lee CK: The impact of single agent PD-1 or PD-L1 inhibition on advanced endometrial cancers: Meta-analysis. ESMO Open. 7:1006352022. View Article : Google Scholar : PubMed/NCBI | |
Tao M, Zheng M, Xu Y, Ma S, Zhang W and Ju S: CircRNAs and their regulatory roles in cancers. Mol Med. 27:942021. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Gong Z, Shen Y, Fang Y and Zhong S: Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics. 10:187–197. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Xu C, Yang Z, Zhou J, Peng W, Zhang X, Li H, Qu S and Tao K: Circular RNAs in tumor immunity and immunotherapy. Mol Cancer. 23:1712024. View Article : Google Scholar : PubMed/NCBI | |
Włodarczyk K, Kuryło W, Pawłowska-Łachut A, Skiba W, Suszczyk D, Pieniądz P, Majewska M, Boniewska-Bernacka E and Wertel I: circRNAs in endometrial cancer-a promising biomarker: State of the art. Int J Mol Sci. 25:63872024. View Article : Google Scholar : PubMed/NCBI | |
Das A, Sinha T, Shyamal S and Panda AC: Emerging role of circular RNA-protein interactions. Noncoding RNA. 7:482021.PubMed/NCBI | |
Ye F, Tang QL, Ma F, Cai L, Chen M, Ran XX, Wang XY and Jiang XF: Analysis of the circular RNA transcriptome in the grade 3 endometrial cancer. Cancer Manag Res. 11:6215–6227. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen S, Zong ZH, Guan X and Zhao Y: CircRNA WHSC1 targets the miR-646/NPM1 pathway to promote the development of endometrial cancer. J Cell Mol Med. 24:6898–6907. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mumtaz PT, Taban Q, Dar MA, Mir S, Haq ZU, Zargar SM, Shah RA and Ahmad SM: Deep insights in circular RNAs: From biogenesis to therapeutics. Biol Proced Online. 22:102020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chang Y and Cai Y: Hsa_circ_0061140 promotes endometrial carcinoma progression via regulating miR-149-5p/STAT3. Gene. 745:1446252020. View Article : Google Scholar : PubMed/NCBI | |
Shi R, Zhao R, Shen Y, Wei S, Zhang T, Zhang J, Shu W, Cheng S, Teng H and Wang H: IGF2BP2-modified circular RNA circCHD7 promotes endometrial cancer progression via stabilizing PDGFRB and activating JAK/STAT signaling pathway. Cancer Gene Ther. 31:1221–1236. 2024. View Article : Google Scholar : PubMed/NCBI | |
Chen BJ, Byrne FL, Takenaka K, Modesitt SC, Olzomer EM, Mills JD, Farrell R, Hoehn KL and Janitz M: Analysis of the circular RNA transcriptome in endometrial cancer. Oncotarget. 9:5786–5796. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yuan S, Zheng P, Sun X, Zeng J, Cao W, Gao W, Wang Y and Wang L: Hsa_Circ_0001860 promotes Smad7 to enhance MPA resistance in endometrial cancer via miR-520h. Front Cell Dev Biol. 9:7381892021. View Article : Google Scholar : PubMed/NCBI | |
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, et al: Circular RNAs in cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 18:902019. View Article : Google Scholar : PubMed/NCBI | |
Ren Y, Manoharan T, Liu B, Cheng CZM, En Siew B, Cheong WK, Lee KY, Tan IJ, Lieske B, Tan KK and Chia G: Circular RNA as a source of neoantigens for cancer vaccines. J Immunother Cancer. 12:e0084022024. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Ye F, Deng X, Tang Y, Liang JY, Huang X, Sun Y, Tang H, Lei J, Zheng S and Zou Y: Circular RNA: A promising new star of vaccine. J Transl Int Med. 11:372–381. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Y, Zhou S, Dain L, Mei L and Zhu G: Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release. 348:84–94. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li W, Liu JQ, Chen M, Xu J and Zhu D: Circular RNA in cancer development and immune regulation. J Cell Mol Med. 26:1785–1798. 2022. View Article : Google Scholar : PubMed/NCBI | |
Takenaka K, Olzomer EM, Hoehn KL, Curry-Hyde A, Jun Chen B, Farrell R, Byrne FL and Janitz M: Investigation of circular RNA transcriptome in obesity-related endometrial cancer. Gene. 855:1471252023. View Article : Google Scholar : PubMed/NCBI | |
Su P and Zhang L, Zhou F and Zhang L: Circular RNA vaccine, a novel mRNA vaccine design strategy for SARS-CoV-2 and variants. MedComm (2020). 3:e1532022. View Article : Google Scholar : PubMed/NCBI | |
Xiaohui C: Analysis cervical cancer among urban and rural residents in Xiangyang, Hubei, 2017–2019. Prog Med Sci. 9:1–5. 2025. | |
Agarwal R, King JB, Gopalani SV and Senkomago V: Cervical cancer incidence and trends among women aged 15–29 years by county-level economic status and rurality-United States, 2007–2020. Cancer Epidemiol. 94:1027302025. View Article : Google Scholar : PubMed/NCBI | |
Tanaka S, Palmer M and Katanoda K: Trends in cervical cancer incidence and mortality of young and middle adults in Japan. Cancer Sci. 113:1801–1807. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Meng Q, Wang W, Zhou Z, Zhang F and Hu K: Predictors of distant metastasis in patients with cervical cancer treated with definitive radiotherapy. J Cancer. 10:3967–3974. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ogasawara A and Hasegawa K: Recent advances in immunotherapy for cervical cancer. Int J Clin Oncol. 30:434–448. 2025. View Article : Google Scholar : PubMed/NCBI | |
Wan J, Wang Z, Wang L, Wu L, Zhang C, Zhou M, Fu ZF and Zhao L: Circular RNA vaccines with long-term lymph node-targeting delivery stability after lyophilization induce potent and persistent immune responses. mBio. 15:e01775232024. View Article : Google Scholar : PubMed/NCBI | |
Saleem A, Khan MU, Zahid T, Khurram I, Ghani MU, Ullah I, Munir R, Calina D and Sharifi-Rad J: Biological role and regulation of circular RNA as an emerging biomarker and potential therapeutic target for cancer. Mol Biol Rep. 51:2962024. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Wang T, Zhang X, Wang P and Long F: The role of circular RNAs in regulating resistance to cancer immunotherapy: Mechanisms and implications. Cell Death Dis. 15:3122024. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Zhao X, Zhang J, Zheng X and Li F: Circular RNA hsa_circ_0023404 exerts an oncogenic role in cervical cancer through regulating miR-136/TFCP2/YAP pathway. Biochem Biophys Res Commun. 501:428–433. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, He R, Yang Y, He Y, Shao K, Zhan L and Wei B: Circular RNAs: Novel biomarkers for cervical, ovarian and endometrial cancer (Review). Oncol Rep. 44:1787–1798. 2020.PubMed/NCBI | |
Ma H, Tian T, Liu X, Xia M, Chen C, Mai L, Xie S and Yu L: Upregulated circ_0005576 facilitates cervical cancer progression via the miR-153/KIF20A axis. Biomed Pharmacother. 118:1093112019. View Article : Google Scholar : PubMed/NCBI | |
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R and Karampoor S: Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res. 9:970–994. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Xie Y, Yu T, Liu N, Wang Z, Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, et al: m6A-dependent biogenesis of circular RNAs in male germ cells. Cell Res. 30:211–228. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ding L and Zhang H: Circ-ATP8A2 promotes cell proliferation and invasion as a ceRNA to target EGFR by sponging miR-433 in cervical cancer. Gene. 705:103–108. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dong M, Li P, Xie Y, Wang Z and Wang R: CircMYBL2 regulates the resistance of cervical cancer cells to paclitaxel via miR-665-dependent regulation of EGFR. Drug Dev Res. 82:1193–1205. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Liu L, Wang J and Liu W: The role of long noncoding RNAs in therapeutic resistance in cervical cancer. Front Cell Dev Biol. 10:10609092022. View Article : Google Scholar : PubMed/NCBI | |
Mao Y, Zhang L and Li Y: circEIF4G2 modulates the malignant features of cervical cancer via the miR-218/HOXA1 pathway. Mol Med Rep. 19:3714–3722. 2019.PubMed/NCBI | |
Liu G, Zhang Z, Song Q, Guo Y, Bao P and Shui H: Circ_0006528 contributes to paclitaxel resistance of breast cancer cells by regulating miR-1299/CDK8 axis. Onco Targets Ther. 13:9497–9511. 2020. View Article : Google Scholar : PubMed/NCBI | |
Niu D, Wu Y and Lian J: Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther. 8:3412023. View Article : Google Scholar : PubMed/NCBI | |
Ou R, Lv J, Zhang Q, Lin F, Zhu L, Huang F, Li X, Li T, Zhao L, Ren Y and Xu Y: circAMOTL1 motivates AMOTL1 expression to facilitate cervical cancer growth. Mol Ther Nucleic Acids. 19:50–60. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xu X, Yu S, Jeong KJ, Zhou Z, Han L, Tsang YH, Li J, Chen H, Mangala LS, et al: Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome Res. 27:1112–1125. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ou Y and Hou L: Advances in RNA-based therapeutics: Challenges and innovations in RNA delivery systems. Curr Issues Mol Biol. 47:222024. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Xiao Q, Du WW, Wang S and Yang BB: CircRNA: Functions, applications and prospects. Biomolecules. 14:15032024. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Jiang J, Qian H, Yan Y and Xu W: Exosomal circRNA: Emerging insights into cancer progression and clinical application potential. J Hematol Oncol. 16:672023. View Article : Google Scholar : PubMed/NCBI | |
Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ and Wang WT: New insight into circRNAs: Characterization, strategies, and biomedical applications. Exp Hematol Oncol. 12:912023. View Article : Google Scholar : PubMed/NCBI | |
O'Leary E, Jiang Y, Kristensen LS, Hansen TB and Kjems J: The therapeutic potential of circular RNAs. Nat Rev Genet. 26:230–244. 2025. View Article : Google Scholar : PubMed/NCBI |