Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
June-2025 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review)

  • Authors:
    • Aiting Lin
    • Lirong Song
    • Ying Wang
    • Kai Yan
    • Hua Tang
  • View Affiliations / Copyright

    Affiliations: School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China, Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China, Department of Thoracic Surgery, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, P.R. China
    Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 293
    |
    Published online on: April 11, 2025
       https://doi.org/10.3892/ol.2025.15039
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Esophageal cancer (EC) is one of the leading causes of cancer‑related mortality worldwide, still faces significant challenges in early diagnosis and prognosis. Early EC lesions often present subtle symptoms and current diagnostic methods are limited in accuracy due to tumor heterogeneity, lesion morphology and variable image quality. These limitations are particularly prominent in the early detection of precancerous lesions such as Barrett's esophagus. Traditional diagnostic approaches, such as endoscopic examination, pathological analysis and computed tomography, require improvements in diagnostic precision and staging accuracy. Deep learning (DL), a key branch of artificial intelligence, shows great promise in improving the detection of early EC lesions, distinguishing benign from malignant lesions and aiding cancer staging and prognosis. However, challenges remain, including image quality variability, insufficient data annotation and limited generalization. The present review summarized recent advances in the application of DL to medical images obtained through various imaging techniques for the diagnosis of EC at different stages. It assesses the role of DL in tumor pathology, prognosis prediction and clinical decision support, highlighting its advantages in EC diagnosis and prognosis evaluation. Finally, it provided an objective analysis of the challenges currently facing the field and prospects for future applications.
View Figures
View References

1 

Fatehi Hassanabad A, Chehade R, Breadner D and Raphael J: Esophageal carcinoma: Towards targeted therapies. Cell Oncol (Dordr). 43:195–209. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Qu HT, Li Q, Hao L, Jing Ni Y, Luan W, Yang Z, Chen XD, Zhang TT, Miao YD and Zhang F: Esophageal cancer screening, early detection and treatment: Current insights and future directions. World J Gastrointest Oncol. 16:1180–1191. 2024. View Article : Google Scholar : PubMed/NCBI

3 

Qi JH, Huang SL and Jin SZ: Novel milestones for early esophageal carcinoma: From bench to bed. World J Gastrointest Oncol. 16:1104–1118. 2024. View Article : Google Scholar : PubMed/NCBI

4 

Yang YM, Hong P, Xu WW, He QY and Li B: Advances in targeted therapy for esophageal cancer. Signal Transduct Target Ther. 5:2292020. View Article : Google Scholar : PubMed/NCBI

5 

Li S, Chen H, Man J, Zhang T, Yin X, He Q, Yang X and Lu M: Changing trends in the disease burden of esophageal cancer in China from 1990 to 2017 and its predicted level in 25 years. Cancer Med. 10:1889–1899. 2021. View Article : Google Scholar : PubMed/NCBI

6 

Ganaie MA, Hu M, Malik AK, Tanveer M and Suganthan PN: Ensemble deep learning: A review. Eng Appl Artif Intell. 115:1051512022. View Article : Google Scholar

7 

Shrestha A and Mahmood A: Review of deep learning algorithms and architectures. IEEE Access. 7:53040–53065. 2019. View Article : Google Scholar

8 

Zhang YH, Guo LJ, Yuan XL and Hu B: Artificial intelligence-assisted esophageal cancer management: Now and future. World J Gastroenterol. 26:5256–5271. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Tao Y, Fang L, Qin G, Xu Y, Zhang S, Zhang X and Du S: Efficiency of endoscopic artificial intelligence in the diagnosis of early esophageal cancer. Thoracic Cancer. 15:1296–1304. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Ding Z, Li H, Guo Y, Zhou D, Liu Y and Xie S: M4FNet: Multimodal medical image fusion network via Multi-receptive-field and Multi-scale feature integration. Comput Biol Med. 159:1069232023. View Article : Google Scholar : PubMed/NCBI

11 

Tokat M, van Tilburg L, Koch AD and Spaander MCW: Artificial intelligence in upper gastrointestinal endoscopy. Dig Dis. 40:395–408. 2022. View Article : Google Scholar : PubMed/NCBI

12 

Zhang S, Mu W, Dong D, Wei J, Fang M, Shao L, Zhou Y, He B, Zhang S, Liu Z, et al: The applications of artificial intelligence in digestive system neoplasms: A review. Health Data Sci. 3:00052023. View Article : Google Scholar : PubMed/NCBI

13 

Li H, Hou X, Lin R, Fan M, Pang S, Jiang L, Liu Q and Fu L: Advanced endoscopic methods in gastrointestinal diseases: A systematic review. Quant Imaging Med Surg. 9:905–920. 2019. View Article : Google Scholar : PubMed/NCBI

14 

DiSiena M, Perelman A, Birk J and Rezaizadeh H: Esophageal cancer: An updated review. South Med J. 114:161–168. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Mohan A, Asghar Z, Abid R, Subedi R, Kumari K and Kumar S, Majumder K, Bhurgri AI, Tejwaney U and Kumar S: Revolutionizing healthcare by use of artificial intelligence in esophageal carcinoma-a narrative review. Ann Med Surg (Lond). 85:4920–4927. 2023. View Article : Google Scholar : PubMed/NCBI

16 

Ohmori M, Ishihara R, Aoyama K, Nakagawa K, Iwagami H, Matsuura N, Shichijo S, Yamamoto K, Nagaike K, Nakahara M, et al: Endoscopic detection and differentiation of esophageal lesions using a deep neural network. Gastrointest Endosc. 91:301–309.e1. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Yang XX, Li Z, Shao XJ, Ji R, Qu JY, Zheng MQ, Sun YN, Zhou RC, You H, Li LX, et al: Real-time artificial intelligence for endoscopic diagnosis of early esophageal squamous cell cancer (with video). Dig Endosc. 33:1075–1084. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Goda K and Irisawa A: Japan esophageal society classification for predicting the invasion depth of superficial esophageal squamous cell carcinoma: Should it be modified now? Digestive Endoscopy. 32:37–38. 2020. View Article : Google Scholar : PubMed/NCBI

19 

Shiroma S, Yoshio T, Kato Y, Horie Y, Namikawa K, Tokai Y, Yoshimizu S, Yoshizawa N, Horiuchi Y, Ishiyama A, et al: Ability of artificial intelligence to detect T1 esophageal squamous cell carcinoma from endoscopic videos and the effects of real-time assistance. Sci Rep. 11:77592021. View Article : Google Scholar : PubMed/NCBI

20 

Guo L, Xiao X, Wu C, Zeng X, Zhang Y, Du J, Bai S, Xie J, Zhang Z, Li Y, et al: Real-time automated diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using a deep learning model (with videos). Gastrointest Endosc. 91:41–51. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Yan Y, Zhang S, Jin Y, Cheng F, Qian Z and Lu S: Spatial and temporal detection with attention for real-time video analytics at edges. IEEE Transactions Mobile Computing. 23:9254–9270. 2024. View Article : Google Scholar

22 

Kunzmann AT, Coleman HG, Johnston BT, Turkington RC, McManus D, Anderson LA and Thrift AP: Does risk of progression from Barrett's esophagus to esophageal adenocarcinoma change based on the number of Non-dysplastic Endoscopies? Dig Dis Sci. 66:1965–1973. 2021. View Article : Google Scholar : PubMed/NCBI

23 

Bhatti KM, Khanzada ZS, Kuzman M, Ali SM, Iftikhar SY and Small P: Diagnostic performance of artificial Intelligence-based models for the detection of early esophageal cancers in Barret's esophagus: A Meta-analysis of Patient-based studies. Cureus. 13:e154472021.PubMed/NCBI

24 

Hussein M, González-Bueno Puyal J, Lines D, Sehgal V, Toth D, Ahmad OF, Kader R, Everson M, Lipman G, Fernandez-Sordo JO, et al: A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks. United European Gastroenterol J. 10:528–537. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Knabe M, Welsch L, Blasberg T, Müller E, Heilani M, Bergen C, Herrmann E and May A: Artificial Intelligence-assisted staging in Barrett's carcinoma. Endoscopy. 54:1191–1197. 2022. View Article : Google Scholar : PubMed/NCBI

26 

Tsai MC, Yen HH, Tsai HY, Huang YK, Luo YS, Kornelius E, Sung WW, Lin CC, Tseng MH and Wang CC: Artificial intelligence system for the detection of Barrett's esophagus. World J Gastroenterol. 29:6198–6207. 2023. View Article : Google Scholar : PubMed/NCBI

27 

Tu JX, Lin XT, Ye HQ, Yang SL, Deng LF, Zhu RL, Wu L and Zhang XQ: Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000–2022) via CiteSpace and VOSviewer. Front Oncol. 12:9723572022. View Article : Google Scholar : PubMed/NCBI

28 

Kumar CA and Mubarak MND: A review on esophageal cancer detection and classification using deep learning techniques. Int J Curr Res Rev. 13:51–57. 2021. View Article : Google Scholar

29 

Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, Hirasawa T, Tsuchida T, Ozawa T, Ishihara S, et al: Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc. 89:25–32. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Shimamoto Y, Ishihara R, Kato Y, Shoji A, Inoue T, Matsueda K, Miyake M, Waki K, Kono M, Fukuda H, et al: Real-time assessment of video images for esophageal squamous cell carcinoma invasion depth using artificial intelligence. J Gastroenterol. 55:1037–1045. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Mine S, Tanaka K, Kawachi H, Shirakawa Y, Kitagawa Y, Toh Y, Yasuda T, Watanabe M, Kamei T, Oyama T, et al: Japanese classification of esophageal cancer, 12th edition: Part I. Esophagus. 21:179–215. 2024. View Article : Google Scholar : PubMed/NCBI

32 

Li H, Liu D, Zeng Y, Liu S, Gan T, Rao N, Yang J and Zeng B: Single-Image-based deep learning for segmentation of early esophageal cancer lesions. IEEE Trans Image Process. 33:2676–2688. 2024. View Article : Google Scholar : PubMed/NCBI

33 

Nakagawa K, Ishihara R, Aoyama K, Ohmori M, Nakahira H, Matsuura N, Shichijo S, Nishida T, Yamada T, Yamaguchi S, et al: Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointest Endosc. 90:407–414. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M and Adam H: MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv. 57:342017.

35 

Sandler M, Howard A, Zhu M, Zhmoginov A and Chen LC: MobileNetV2: Inverted residuals and linear bottlenecks. Conference on Computer Vision and Pattern Recognition (CVPR). 4510–4520. 2018.

36 

Howard A, Sandler M, Chu G, Chen CL, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V, et al: Searching for MobileNetV3. IEEE/CVF International Conference on Computer Vision (ICCV) Seoul, Korea (South): IEEE; pp. 1314–1324. 2019

37 

Li SW, Zhang LH, Cai Y, Zhou XB, Fu XY, Song YQ, Xu SW, Tang SP, Luo RQ, Huang Q, et al: Deep learning assists detection of esophageal cancer and precursor lesions in a prospective, randomized controlled study. Sci Transl Med. 16:eadk53952024. View Article : Google Scholar : PubMed/NCBI

38 

Yasaka K, Hatano S, Mizuki M, Okimoto N, Kubo T, Shibata E, Watadani T and Abe O: Effects of deep learning on radiologists' and radiology residents' performance in identifying esophageal cancer on CT. Br J Radiol. 96:202206852023. View Article : Google Scholar : PubMed/NCBI

39 

Takeuchi M, Seto T, Hashimoto M, Ichihara N, Morimoto Y, Kawakubo H, Suzuki T, Jinzaki M, Kitagawa Y, Miyata H and Sakakibara Y: Performance of a deep learning-based identification system for esophageal cancer from CT images. Esophagus. 18:612–620. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Sui H, Ma R, Liu L, Gao Y, Zhang W and Mo Z: Detection of incidental esophageal cancers on chest CT by deep learning. Front Oncol. 11:7002102021. View Article : Google Scholar : PubMed/NCBI

41 

Lin C, Guo Y, Huang X, Rao S and Zhou J: Esophageal cancer detection via Non-contrast CT and deep learning. Front Med (Lausanne). 11:13567522024. View Article : Google Scholar : PubMed/NCBI

42 

Hosseini F, Asadi F, Emami H and Harari RE: Machine learning applications for early detection of esophageal cancer: A systematic review. BMC Med Inform Decis Mak. 23:1242023. View Article : Google Scholar : PubMed/NCBI

43 

Baxi V, Edwards R, Montalto M and Saha S: Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod Pathol. 35:23–32. 2022. View Article : Google Scholar : PubMed/NCBI

44 

Gehrung M, Crispin-Ortuzar M, Berman AG, O'Donovan M, Fitzgerald RC and Markowetz F: Triage-driven diagnosis of Barrett's esophagus for early detection of esophageal adenocarcinoma using deep learning. Nat Med. 27:833–841. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Sharma P, Dent J, Armstrong D, Bergman JJ, Gossner L, Hoshihara Y, Jankowski JA, Junghard O, Lundell L, Tytgat GN and Vieth M: The development and validation of an endoscopic grading system for Barrett's esophagus: The Prague C & M criteria. Gastroenterology. 131:1392–1399. 2006. View Article : Google Scholar : PubMed/NCBI

46 

Pisula JI, Datta RR, Valdez LB, Avemarg JR, Jung JO, Plum P, Löser H, Lohneis P, Meuschke M, Dos Santos DP, et al: Predicting the HER2 status in oesophageal cancer from tissue microarrays using convolutional neural networks. Br J Cancer. 128:1369–1376. 2023. View Article : Google Scholar : PubMed/NCBI

47 

Kumar N, Gupta R and Gupta S: Whole slide imaging (WSI) in pathology: Current perspectives and future directions. J Digit Imaging. 33:1034–1040. 2020. View Article : Google Scholar : PubMed/NCBI

48 

Faghani S, Codipilly DC, David Vogelsang, Moassefi M, Rouzrokh P, Khosravi B, Agarwal S, Dhaliwal L, Katzka DA, Hagen C, et al: Development of a deep learning model for the histologic diagnosis of dysplasia in Barrett's esophagus. Gastrointest Endosc. 96:918–925.e3. 2022. View Article : Google Scholar : PubMed/NCBI

49 

Bouzid K, Sharma H, Killcoyne S, Castro DC, Schwaighofer A, Ilse M, Salvatelli V, Oktay O, Murthy S, Bordeaux L, et al: Enabling large-scale screening of Barrett's esophagus using weakly supervised deep learning in histopathology. Nat Commun. 15:20262024. View Article : Google Scholar : PubMed/NCBI

50 

Wan J and Zeng Y: Prediction of hepatic metastasis in esophageal cancer based on machine learning. Sc Rep. 14:145072024. View Article : Google Scholar : PubMed/NCBI

51 

Chen L, Ouyang Y, Liu S, Lin J, Chen C, Zheng C, Lin J, Hu Z and Qiu M: Radiomics analysis of lymph nodes with esophageal squamous cell carcinoma based on deep learning. J Oncol. 2022:132022. View Article : Google Scholar

52 

Pan Y, Sun Z, Wang W, Yang Z, Jia J, Feng X, Wang Y, Fang Q, Li J, Dai H, et al: Automatic detection of squamous cell carcinoma metastasis in esophageal lymph nodes using semantic segmentation. Clin Transl Med. 10:e1292020. View Article : Google Scholar : PubMed/NCBI

53 

Xiang J, Wang X, Zhang X, Xi Y, Eweje F, Chen Y, Li Y, Bergstrom C, Gopaulchan M, Kim T, et al: A vision-language foundation model for precision oncology. Nature. 638:769–778. 2025. View Article : Google Scholar : PubMed/NCBI

54 

Yang Z, Guan F, Bronk L and Zhao L: Multi-omics approaches for biomarker discovery in predicting the response of esophageal cancer to neoadjuvant therapy: A multidimensional perspective. Pharmacol Ther. 254:1085912024. View Article : Google Scholar : PubMed/NCBI

55 

Sheen AR and Saqib HWU: ‘Harnessing AI for treatment optimization: Neoadjuvant chemotherapy in gastroesophageal cancer’. Eur J Surg Oncol. 50:1082282024. View Article : Google Scholar : PubMed/NCBI

56 

Duan Y, Wang J, Wu P, Shao Y, Chen H, Wang H, Cao H, Gu H, Feng A, Huang Y, et al: AS-NeSt: A Novel 3D deep learning model for radiation therapy dose distribution prediction in esophageal cancer treatment with multiple prescriptions. Int J Radiat Oncol Biol Phys. 119:978–989. 2024. View Article : Google Scholar : PubMed/NCBI

57 

Zhang S, Li K, Sun Y, Wan Y, Ao Y, Zhong Y, Liang M, Wang L, Chen X, Pei X, et al: Deep learning for automatic gross tumor volumes contouring in esophageal cancer based on contrast-enhanced computed tomography images: A multi-institutional study. Int J Radiat Oncol Biol Phys. 119:1590–1600. 2024. View Article : Google Scholar : PubMed/NCBI

58 

Matsuda S, Irino T, Kawakubo H, Takeuchi M, Nishimura E, Hisaoka K, Sano J, Kobayashi R, Fukuda K, Nakamura R, et al: Evaluation of endoscopic response using deep neural network in esophageal cancer patients who received neoadjuvant chemotherapy. Ann Surg Oncol. 30:3733–3742. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Li Z, Wang F, Zhang H, Xie S, Peng L, Xu H and Wang Y: A radiomics strategy based on CT intra-tumoral and peritumoral regions for preoperative prediction of neoadjuvant chemoradiotherapy for esophageal cancer. Eur J Surg Oncol. 50:1080522024. View Article : Google Scholar : PubMed/NCBI

60 

Roisman LC, Kian W, Anoze A, Fuchs V, Spector M, Steiner R, Kassel L, Rechnitzer G, Fried I, Peled N and Bogot NR: Radiological artificial intelligence-predicting personalized immunotherapy outcomes in lung cancer. NPJ Precis Oncol. 7:1252023. View Article : Google Scholar : PubMed/NCBI

61 

Nardone V, Boldrini L, Grassi R, Franceschini D, Morelli I, Becherini C, Loi M, Greto D and Desideri I: Radiomics in the setting of neoadjuvant radiotherapy: A new approach for tailored treatment. Cancers. 13:35902021. View Article : Google Scholar : PubMed/NCBI

62 

Zhao M, Xue G, He B, Deng J, Wang T, Zhong Y, Li S, Wang Y, He Y, Chen T, et al: Integrated multiomics signatures to optimize the accurate diagnosis of lung cancer. Nat Commun. 16:842025. View Article : Google Scholar : PubMed/NCBI

63 

Tada T, Hirasawa T and Yoshio T: The role for artificial intelligence in evaluation of upper GI cancer. Techniques Innovations Gastrointestinal Endoscopy. 22:66–70. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Merchán Gómez B, Milla Collado L and Rodríguez M: Artificial intelligence in esophageal cancer diagnosis and treatment: Where are we now?-a narrative review. Ann Transl Med. 11:353. 2023. View Article : Google Scholar : PubMed/NCBI

65 

Watanabe M, Otake R, Kozuki R, Toihata T, Takahashi K, Okamura A and Imamura Y: Recent progress in multidisciplinary treatment for patients with esophageal cancer. Surg Today. 50:12–20. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Kassem K, Sperti M, Cavallo A, Vergani AM, Fassino D, Moz M, Liscio A, Banali R, Dahlweid M, Benetti L, et al: An innovative artificial intelligence-based method to compress complex models into explainable, model-agnostic and reduced decision support systems with application to healthcare (NEAR). Artif Intell Med. 151:1028412024. View Article : Google Scholar : PubMed/NCBI

67 

Knapič S, Malhi A, Saluja R and Främling K: Explainable artificial intelligence for human decision support system in the medical domain. Machine Learning Knowledge Extraction. 3:740–770. 2021. View Article : Google Scholar

68 

Lutnick B, Ramon AJ, Ginley B, Csiszer C, Kim A, Flament I, Damasceno PF, Cornibe J, Parmar C, Standish K, et al: Accelerating pharmaceutical R&D with a user-friendly AI system for histopathology image analysis. J Pathol Inform. 14:1003372023. View Article : Google Scholar : PubMed/NCBI

69 

Guidozzi N, Menon N, Chidambaram S and Markar SR: The role of artificial intelligence in the endoscopic diagnosis of esophageal cancer: A systematic review and meta-analysis. Dis Esophagus. 36:doad0482023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lin A, Song L, Wang Y, Yan K and Tang H: Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review). Oncol Lett 29: 293, 2025.
APA
Lin, A., Song, L., Wang, Y., Yan, K., & Tang, H. (2025). Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review). Oncology Letters, 29, 293. https://doi.org/10.3892/ol.2025.15039
MLA
Lin, A., Song, L., Wang, Y., Yan, K., Tang, H."Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review)". Oncology Letters 29.6 (2025): 293.
Chicago
Lin, A., Song, L., Wang, Y., Yan, K., Tang, H."Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review)". Oncology Letters 29, no. 6 (2025): 293. https://doi.org/10.3892/ol.2025.15039
Copy and paste a formatted citation
x
Spandidos Publications style
Lin A, Song L, Wang Y, Yan K and Tang H: Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review). Oncol Lett 29: 293, 2025.
APA
Lin, A., Song, L., Wang, Y., Yan, K., & Tang, H. (2025). Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review). Oncology Letters, 29, 293. https://doi.org/10.3892/ol.2025.15039
MLA
Lin, A., Song, L., Wang, Y., Yan, K., Tang, H."Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review)". Oncology Letters 29.6 (2025): 293.
Chicago
Lin, A., Song, L., Wang, Y., Yan, K., Tang, H."Future prospects of deep learning in esophageal cancer diagnosis and clinical decision support (Review)". Oncology Letters 29, no. 6 (2025): 293. https://doi.org/10.3892/ol.2025.15039
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team