|
1
|
Bray F, Laversanne M, Sung H, Sung H,
Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer
statistics 2022: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin.
74:229–263. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Oliveira G and Wu CJ: Dynamics and
specificities of T cells in cancer immunotherapy. Nat Rev Cancer.
23:295–316. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Qian D, Li J, Huang M, Cui Q, Liu X and
Sun K: Dendritic cell vaccines in breast cancer: Immune modulation
and immunotherapy. Biomed Pharmacother. 162:1146852023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Moore ZS, Seward JF and Lane JM: Smallpox.
Lancet. 367:425–435. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang M, Wang Y, Chen X, Zhang F, Chen J,
Zhu H, Li J, Chen Z, Wang A, Xiao Y, et al: DC vaccine enhances
CAR-T cell antitumor activity by overcoming T cell exhaustion and
promoting T cell infiltration in solid tumors. Clin Transl Oncol.
25:2972–2982. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Sadeghzadeh M, Bornehdeli S,
Mohahammadrezakhani H, Abolghasemi M, Poursaei E, Asadi M, Zafari
V, Aghebati-Maleki L and Shanehbandi D: Dendritic cell therapy in
cancer treatment; the state-of-the-art. Life Sci. 254:1175802020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shang N, Figini M, Shangguan J, Wang B,
Sun C, Pan L, Ma Q and Zhang Z: Dendritic cells based
immunotherapy. Am J Cancer Res. 7:2091–2102. 2017.PubMed/NCBI
|
|
8
|
Ding J, Zheng Y, Wang G, Zheng J and Chai
D: The performance and perspectives of dendritic cell vaccines
modified by immune checkpoint inhibitors or stimulants. Biochim
Biophys Acta Rev Cancer. 1877:1887632022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Liu J, Fu M, Wang M, Wan D, Wei Y and Wei
X: Cancer vaccines as promising immuno-therapeutics: Platforms and
current progress. J Hematol Oncol. 15:282022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Cabeza-Cabrerizo M, Cardoso A, Minutti CM,
Pereira da Costa M and Reis e Sousa C: Dendritic cells revisited.
Annu Rev Immunol. 39:131–166. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Santos PM and Butterfield LH: Dendritic
cell-based cancer vaccines. J Immunol. 200:443–449. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Satpathy AT, Murphy KM and Kc W:
Transcription factor networks in dendritic cell development. Semin
Immunol. 23:388–397. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tailor P, Tamura T and Ozato K: IRF family
proteins and type I interferon induction in dendritic cells. Cell
Res. 16:134–140. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wculek SK, Cueto FJ, Mujal AM, Melero I,
Krummel MF and Sancho D: Dendritic cells in cancer immunology and
immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Itano AA and Jenkins MK: Antigen
presentation to naive CD4 T cells in the lymph node. Nat Immunol.
4:733–739. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen L: Co-inhibitory molecules of the
B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol.
4:336–347. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
17
|
Trombetta ES and Mellman I: Cell biology
of antigen processing in vitro and in vivo. Annu Rev Immunol.
23:975–1028. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Leibundgut-Landmann S, Gross O, Robinson
MJ, Osorio F, Slack EC, Tsoni SV, Schweighoffer E, Tybulewicz V,
Brown GD, Ruland J and Reis e Sousa C: Syk- and CARD9-dependent
coupling of innate immunity to the induction of T helper cells that
produce interleukin 17. Nat Immunol. 8:630–638. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Macri C, Pang ES, Patton T and O'Keeffe M:
Dendritic cell subsets. Semin Cell Dev Biol. 84:11–21. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC,
Liu XQ, Wang D, Li N, Cheng JT, Lyv YN, et al: Dendritic cell
biology and its role in tumor immunotherapy. J Hematol Oncol.
13:1072020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Comi M, Avancini D, Santoni De Sio F,
Villa M, Uyeda MJ, Floris M, Tomasoni D, Bulfone A, Roncarolo MG
and Gregori S: Coexpression of CD163 and CD141 identifies human
circulating IL-10-producing dendritic cells (DC-10). Cell Mol
Immunol. 17:95–107. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Guo C, You Z, Shi H, Sun Y, Du X, Palacios
G, Guy C, Yuan S, Chapman NM, Lim SA, et al: SLC38A2 and glutamine
signalling in cDC1s dictate anti-tumour immunity. Nature.
620:200–208. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kvedaraite E and Ginhoux F: Human
dendritic cells in cancer. Sci Immunol. 7:eabm94092022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Feng J, Pucella JN, Jang G,
Alcántara-Hernández M, Upadhaya S, Adams NM, Khodadadi-Jamayran A,
Lau CM, Stoeckius M, Hao S, et al: Clonal lineage tracing reveals
shared origin of conventional and plasmacytoid dendritic cells.
Immunity. 55:405–422.e11. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bruni D, Chazal M, Sinigaglia L, Chauveau
L, Schwartz O, Desprès P and Jouvenet N: Viral entry route
determines how human plasmacytoid dendritic cells produce type I
interferons. Sci Signal. 8:ra252015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Collin M and Bigley V: Human dendritic
cell subsets: An update. Immunology. 154:3–20. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Datta J, Terhune JH, Lowenfeld L, Cintolo
JA, Xu S, Roses RE and Czerniecki BJ: Optimizing dendritic
cell-based approaches for cancer immunotherapy. Yale J Biol Med.
87:491–518. 2014.PubMed/NCBI
|
|
28
|
Young JW and Steinman RM: Accessory cell
requirements for the mixed-leukocyte reaction and polyclonal
mitogens, as studied with a new technique for enriching blood
dendritic cells. Cell Immunol. 111:167–182. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang R, Zhu T, Hou B and Huang H: An
iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor
immunity in melanoma. Mol Ther. 31:2376–2390. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Van Den Bergh JMJ, Smits ELJM, Berneman
ZN, Hutten TJA, De Reu H, Van Tendeloo VFI, Dolstra H, Lion E and
Hobo W: Monocyte-derived dendritic cells with silenced PD-1 ligands
and transpresenting interleukin-15 stimulate strong tumor-reactive
T-cell expansion. Cancer Immunol Res. 5:710–715. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lutz MB, Ali S, Audiger C, Autenrieth SE,
Berod L, Bigley V, Cyran L, Dalod M, Dörrie J, Dudziak D, et al:
Guidelines for mouse and human DC generation. Eur J Immunol.
53:e22498162023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bonasio R and Von Andrian UH: Generation,
migration and function of circulating dendritic cells. Curr Opin
Immunol. 18:503–511. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yu J, Sun H, Cao W, Song Y and Jiang Z:
Research progress on dendritic cell vaccines in cancer
immunotherapy. Exp Hematol Oncol. 11:32022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Anguille S, Smits EL, Bryant C, Van Acker
HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF and
Berneman ZN: Dendritic cells as pharmacological tools for cancer
immunotherapy. Pharmacol Rev. 67:731–753. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Boudreau JE, Bonehill A, Thielemans K and
Wan Y: Engineering dendritic cells to enhance cancer immunotherapy.
Mol Ther. 19:841–853. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Janssens S, Pulendran B and Lambrecht BN:
Emerging functions of the unfolded protein response in immunity.
Nat Immunol. 15:910–919. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Xia D, Moyana T and Xiang J: Combinational
adenovirus-mediated gene therapy and dendritic cell vaccine in
combating well-established tumors. Cell Res. 16:241–259. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Allahyari M and Mohit E: Peptide/protein
vaccine delivery system based on PLGA particles. Hum Vaccin
Immunother. 12:806–828. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Rosendahl Huber S, Van Beek J, de Jonge J,
Luytjes W and van Baarle D: T cell responses to viral
infections-opportunities for peptide vaccination. Front Immunol.
5:1712014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Shi Y, Lu Y and You J: Antigen transfer
and its effect on vaccine-induced immune amplification and
tolerance. Theranostics. 12:5888–5913. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lei Y and Takahama Y: XCL1 and XCR1 in the
immune system. Microbes Infect. 14:262–267. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Matsuo K, Kitahata K, Kawabata F, Kamei M,
Hara Y, Takamura S, Oiso N, Kawada A, Yoshie O and Nakayama T: A
highly active form of XCL1/lymphotactin functions as an effective
adjuvant to recruit cross-presenting dendritic cells for induction
of effector and memory CD8+ T cells. Front Immunol.
9:27752018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang W, He L and Cao X: Enhanced
antitumor effects induced by lymphotactin gene-modified dendritic
cells after pulsed with tumor antigen peptide. Zhonghua Yi Xue Za
Zhi. 79:170–173. 1999.(In Chinese). PubMed/NCBI
|
|
44
|
Dorner BG, Dorner MB, Zhou X, Opitz C,
Mora A, Güttler S, Hutloff A, Mages HW, Ranke K, Schaefer M, et al:
Selective expression of the chemokine receptor XCR1 on
cross-presenting dendritic cells determines cooperation with CD8+ T
cells. Immunity. 31:823–833. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fahrmann JF, Marsh T, Irajizad E, Patel N,
Murage E, Vykoukal J, Dennison JB, Do KA, Ostrin E, Spitz MR, et
al: Blood-based biomarker panel for personalized lung cancer risk
assessment. J Clin Oncol. 40:876–883. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Sun QF, Zhao XN, Peng CL, Hao YT, Zhao YP,
Jiang N, Xue H, Guo JZ, Yun CH, Cong B and Zhao XG: Immunotherapy
for Lewis lung carcinoma utilizing dendritic cells infected with
CK19 gene recombinant adenoviral vectors. Oncol Rep. 34:2289–2295.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kobayashi T, Tsuda H, Noguchi M, Hirohashi
S, Shimosato Y, Goya T and Hayata Y: Association of point mutation
in c-Ki-ras oncogene in lung adenocarcinoma with particular
reference to cytologic subtypes. Cancer. 66:289–294. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yu J, Lu Y, Zhu W, Wang Y, Chen X, Yi C,
Luo D, Lotze MT and Zhou Q: Anti-tumor activities of lung cancer
dendritic cell vaccine modified by mutant Ki-ras gene in vitro.
Zhongguo Fei Ai Za Zhi. 7:104–107. 2004.(In Chinese). PubMed/NCBI
|
|
49
|
Sun J, Liao R, Chen Z, Wang Z, Zhang Q and
Hu Y: Study on enhancing sensitivity of SPC-A1 cells to
chemotherapy by Livin isoform-specific gene silencing. Zhongguo Fei
Ai Za Zhi. 10:461–465. 2007.(In Chinese). PubMed/NCBI
|
|
50
|
Chen H, Jin Y, Chen T, Zhang M, Ma W,
Xiong X and Tao X: The antitumor effect of human cord blood-derived
dendritic cells modified by the livin α gene in lung cancer cell
lines. Oncol Rep. 29:619–627. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xie J, Xiong L, Tao X, Li X, Su Y, Hou X
and Shi H: Antitumor effects of murine bone marrow-derived
dendritic cells infected with xenogeneic livin alpha recombinant
adenoviral vectors against Lewis lung carcinoma. Lung Cancer.
68:338–345. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mao X, Xu J, Wang W, Liang C, Hua J, Liu
J, Zhang B, Meng Q, Yu X and Shi S: Crosstalk between
cancer-associated fibroblasts and immune cells in the tumor
microenvironment: New findings and future perspectives. Mol Cancer.
20:1312021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xie J, Yuan S, Peng L, Li H, Niu L, Xu H,
Guo X, Yang M and Duan F: Antitumor immunity targeting fibroblast
activation protein-α in a mouse Lewis lung carcinoma model. Oncol
Lett. 20:868–876. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ye Z, Pan J, Yin Z, Wang S, Li Y, Cai X,
Zheng H and Cao Z: Dendritic cells infected with recombinant
adenoviral vector encoding mouse fibroblast activation protein-α
and human livin α exert an antitumor effect against Lewis lung
carcinoma in mice. Immun Inflamm Dis. 11:e10112023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Jiang T, Chen X, Zhou W, Fan G, Zhao P,
Ren S, Zhou C and Zhang J: Immunotherapy with dendritic cells
modified with tumor-associated antigen gene demonstrates enhanced
antitumor effect against lung cancer. Transl Oncol. 10:132–141.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu Z, Wang H, Li Z, Dress RJ, Zhu Y,
Zhang S, De Feo D, Kong WT, Cai P, Shin A, et al: Dendritic cell
type 3 arises from Ly6C+ monocyte-dendritic cell
progenitors. Immunity. 56:1761–1777.e6. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Beckwith DM and Cudic M: Tumor-associated
O-glycans of MUC1: Carriers of the glyco-code and targets for
cancer vaccine design. Semin Immunol. 47:1013892020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Chen W, Zhang Z, Zhang S, Zhu P, Ko JK and
Yung KK: MUC1: Structure, function, and clinic application in
epithelial cancers. Int J Mol Sci. 22:65672021. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Xiao D, Zeng T, Zhu W, Yu ZZ, Huang W, Yi
H, Lu SS, Feng J, Feng XP, Wu D, et al: ANXA1 promotes tumor immune
evasion by binding PARP1 and upregulating Stat3-induced expression
of PD-L1 in multiple cancers. Cancer Immunol Res. 11:1367–1383.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen J, Liu H, Jehng T, Li Y, Chen Z, Lee
KD, Shen HT, Jones L, Huang XF and Chen SY: A novel anti-PD-L1
vaccine for cancer immunotherapy and immunoprevention. Cancers
(Basel). 11:19092019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pan J, Zeng W, Jia J, Shi Y, Wang D, Dong
J, Fang Z, He J, Yang X, Zhang R, et al: A novel therapeutic tumor
vaccine targeting MUC1 in combination with PD-L1 elicits specific
anti-tumor immunity in mice. Vaccines Basel). 10:10922022.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Teramoto K, Ohshio Y, Fujita T, Hanaoka J
and Kontani K: Simultaneous activation of T helper function can
augment the potency of dendritic cell-based cancer immunotherapy. J
Cancer Res Clin Oncol. 139:861–870. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shinagawa N, Yamazaki K, Tamura Y, Imai A,
Kikuchi E, Yokouchi H, Hommura F, Oizumi S and Nishimura M:
Immunotherapy with dendritic cells pulsed with tumor-derived gp96
against murine lung cancer is effective through immune response of
CD8+ cytotoxic T lymphocytes and natural killer cells. Cancer
Immunol Immunother. 57:165–174. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang H and Gao XD: Nanodelivery systems
for enhancing the immunostimulatory effect of CpG
oligodeoxynucleotides. Mater Sci Eng C Mater Biol Appl. 70:935–946.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Du YC, Lin P, Zhang J, Lu YR and Ning QZ:
Studies on the enhancement of DC vaccine to mouse Lewis lung cancer
by CpG oligonucleotides. Zhonghua Zhong Liu Za Zhi. 27:1–5.
2005.(In Chinese). PubMed/NCBI
|
|
66
|
Wculek SK, Amores-Iniesta J, Conde-Garrosa
R, Khouili SC, Melero I and Sancho D: Effective cancer
immunotherapy by natural mouse conventional type-1 dendritic cells
bearing dead tumor antigen. J Immunother Cancer. 7:1002019.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Schadendorf D, Ugurel S, Schuler-Thurner
B, Nestle FO, Enk A, Bröcker EB, Grabbe S, Rittgen W, Edler L,
Sucker A, et al: Dacarbazine (DTIC) versus vaccination with
autologous peptide-pulsed dendritic cells (DC) in first-line
treatment of patients with metastatic melanoma: A randomized phase
III trial of the DC study group of the DeCOG. Ann Oncol.
17:563–570. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kantoff PW, Higano CS, Shore ND, Berger
ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims
RB, et al: Sipuleucel-T immunotherapy for castration-resistant
prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Anguille S, Smits EL, Lion E, van Tendeloo
VF and Berneman ZN: Clinical use of dendritic cells for cancer
therapy. Lancet Oncol. 15:e257–e267. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hirschowitz EA, Foody T, Kryscio R,
Dickson L, Sturgill J and Yannelli J: Autologous dendritic cell
vaccines for non-small-cell lung cancer. J Clin Oncol.
22:2808–2815. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hirschowitz EA, Foody T, Hidalgo GE and
Yannelli JR: Immunization of NSCLC patients with antigen-pulsed
immature autologous dendritic cells. Lung Cancer. 57:365–372. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chang GC, Lan HC, Juang SH, Wu YC, Lee HC,
Hung YM, Yang HY, Whang-Peng J and Liu KJ: A pilot clinical trial
of vaccination with dendritic cells pulsed with autologous tumor
cells derived from malignant pleural effusion in patients with
late-stage lung carcinoma. Cancer. 103:763–771. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Perroud MW Jr, Honma HN, Barbeiro AS,
Gilli SC, Almeida MT, Vassallo J, Saad ST and Zambon L: Mature
autologous dendritic cell vaccines in advanced non-small cell lung
cancer: A phase I pilot study. J Exp Clin Cancer Res. 30:652011.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ueda Y, Itoh T, Nukaya I, Kawashima I,
Okugawa K, Yano Y, Yamamoto Y, Naitoh K, Shimizu K, Imura K, et al:
Dendritic cell-based immunotherapy of cancer with carcinoembryonic
antigen-derived, HLA-A24-restricted CTL epitope: Clinical outcomes
of 18 patients with metastatic gastrointestinal or lung
adenocarcinomas. Int J Oncol. 24:909–917. 2004.PubMed/NCBI
|
|
75
|
Teramoto K, Ozaki Y, Hanaoka J, Sawai S,
Tezuka N, Fujino S, Daigo Y and Kontani K: Predictive biomarkers
and effectiveness of MUC1-targeted dendritic-cell-based vaccine in
patients with refractory non-small cell lung cancer. Ther Adv Med
Oncol. 9:147–157. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kontani K, Taguchi O, Ozaki Y, Hanaoka J,
Sawai S, Inoue S, Abe H, Hanasawa K and Fujino S: Dendritic cell
vaccine immunotherapy of cancer targeting MUC1 mucin. Int J Mol
Med. 12:493–502. 2003.PubMed/NCBI
|
|
77
|
Takahashi H, Okamoto M, Shimodaira S,
Tsujitani S, Nagaya M, Ishidao T, Kishimoto J and Yonemitsu Y;
DC-vaccine study group at the Japan Society of Innovative Cell
Therapy (J-SICT), : Impact of dendritic cell vaccines pulsed with
Wilms' tumour-1 peptide antigen on the survival of patients with
advanced non-small cell lung cancers. Eur J Cancer. 49:852–859.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li D and He S: MAGE3 and Survivin
activated dendritic cell immunotherapy for the treatment of
non-small cell lung cancer. Oncol Lett. 15:8777–8783.
2018.PubMed/NCBI
|
|
79
|
Lee JM, Lee MH, Garon E, Goldman JW,
Salehi-Rad R, Baratelli FE, Schaue D, Wang G, Rosen F, Yanagawa J,
et al: Phase I trial of intratumoral injection of CCL21
gene-modified dendritic cells in lung cancer elicits tumor-specific
immune responses and CD8+ T-cell infiltration. Clin
Cancer Res. 23:4556–4568. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ge C, Li R, Song H, Geng T, Yang J, Tan Q,
Song L, Wang Y, Xue Y, Li Z, et al: Phase I clinical trial of a
novel autologous modified-DC vaccine in patients with resected
NSCLC. BMC Cancer. 17:8842017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Gao S, Tan H and Li D: Oridonin suppresses
gastric cancer SGC-7901 cell proliferation by targeting the
TNF-alpha/androgen receptor/TGF-beta signalling pathway axis. J
Cell Mol Med. 27:2661–2674. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Takahashi H, Shimodaira S, Ogasawara M,
Ota S, Kobayashi M, Abe H, Morita Y, Nagai K, Tsujitani S, Okamoto
M, et al: Lung adenocarcinoma may be a more susceptive subtype to a
dendritic cell-based cancer vaccine than other subtypes of
non-small cell lung cancers: A multicenter retrospective analysis.
Cancer Immunol Immunother. 65:1099–1111. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhang X, Xu Z, Dai X, Zhang X and Wang X:
Research progress of neoantigen-based dendritic cell vaccines in
pancreatic cancer. Front Immunol. 14:11048602023. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li L, Goedegebuure P, Mardis ER, Ellis MJ,
Zhang X, Herndon JM, Fleming TP, Carreno BM, Hansen TH and
Gillanders WE: Cancer genome sequencing and its implications for
personalized cancer vaccines. Cancers (Basel). 3:4191–4211. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Van Buuren MM, Calis JJ and Schumacher TN:
High sensitivity of cancer exome-based CD8 T cell neo-antigen
identification. Oncoimmunology. 3:e288362014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Ding Z, Li Q, Zhang R, Xie L, Shu Y, Gao
S, Wang P, Su X, Qin Y, Wang Y, et al: Personalized neoantigen
pulsed dendritic cell vaccine for advanced lung cancer. Signal
Transduct Target Ther. 6:262021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Provencio M, Serna-Blasco R, Nadal E, Insa
A, García-Campelo MR, Casal Rubio J, Dómine M, Majem M,
Rodríguez-Abreu D, Martínez-Martí A, et al: Overall survival and
biomarker analysis of neoadjuvant nivolumab plus chemotherapy in
operable stage IIIA non-small-cell lung cancer (NADIM phase II
trial). J Clin Oncol. 40:2924–2933. 2022. View Article : Google Scholar : PubMed/NCBI
|