|
1
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Biller LH and Schrag D: Diagnosis and
treatment of metastatic colorectal cancer: A review. JAMA.
325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ganesh K, Stadler ZK, Cercek A, Mendelsohn
RB, Shia J, Segal NH and Diaz LA Jr: Immunotherapy in colorectal
cancer: Rationale, challenges and potential. Nat Rev Gastroenterol
Hepatol. 16:361–375. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu
K: Combination strategies with PD-1/PD-L1 blockade: Current
advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Arifuzzaman M, Collins N, Guo CJ and Artis
D: Nutritional regulation of microbiota-derived metabolites:
Implications for immunity and inflammation. Immunity. 57:14–27.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wu H, Mu C, Xu L, Yu K, Shen L and Zhu W:
Host-microbiota interaction in intestinal stem cell homeostasis.
Gut Microbes. 16:23533992024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hurst NR, Kendig DM, Murthy KS and Grider
JR: The short chain fatty acids, butyrate and propionate, have
differential effects on the motility of the guinea pig colon.
Neurogastroenterol Motil. 26:1586–1596. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Meyer JH, Cervenka S, Kim MJ, Kreisl WC,
Henter ID and Innis RB: Neuroinflammation in psychiatric disorders:
PET imaging and promising new targets. Lancet Psychiatry.
7:1064–1074. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Morrison DJ and Preston T: Formation of
short chain fatty acids by the gut microbiota and their impact on
human metabolism. Gut Microbes. 7:189–200. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
He J, Zhang P, Shen L, Niu L, Tan Y, Chen
L, Zhao Y, Bai L, Hao X, Li X, et al: Short-chain fatty acids and
their association with signalling pathways in inflammation, glucose
and lipid metabolism. Int J Mol Sci. 21:63562020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Filippone A, Casili G, Scuderi SA, Mannino
D, Lanza M, Campolo M, Paterniti I, Capra AP, Colarossi C, Bonasera
A, et al: Sodium propionate contributes to tumor cell growth
inhibition through PPAR-γ signaling. Cancers (Basel). 15:2172022.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wong JM, de Souza R, Kendall CW, Emam A
and Jenkins DJ: Colonic health: Fermentation and short chain fatty
acids. J Clin Gastroenterol. 40:235–243. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tran NL, Lee IK, Choi J, Kim SH and Oh SJ:
Acetate decreases PVR/CD155 expression via PI3K/AKT pathway in
cancer cells. BMB Rep. 54:431–436. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Peng Z, Cheng S, Kou Y, Wang Z, Jin R, Hu
H, Zhang X, Gong JF, Li J, Lu M, et al: The gut microbiome is
associated with clinical response to anti-PD-1/PD-L1 immunotherapy
in gastrointestinal cancer. Cancer Immunol Res. 8:1251–1261. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Park HS, Han JH, Park JW, Lee DH, Jang KW,
Lee M, Heo KS and Myung CS: Sodium propionate exerts anticancer
effect in mice bearing breast cancer cell xenograft by regulating
JAK2/STAT3/ROS/p38 MAPK signaling. Acta Pharmacol Sin.
42:1311–1323. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kim K, Kwon O, Ryu TY, Jung CR, Kim J, Min
JK, Kim DS, Son MY and Cho HS: Propionate of a microbiota
metabolite induces cell apoptosis and cell cycle arrest in lung
cancer. Mol Med Rep. 20:1569–1574. 2019.PubMed/NCBI
|
|
17
|
Khalaf K, Hana D, Chou JT, Singh C,
Mackiewicz A and Kaczmarek M: Aspects of the tumor microenvironment
involved in immune resistance and drug resistance. Front Immunol.
12:6563642021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Peng S, Wang R, Zhang X, Ma Y, Zhong L, Li
K, Nishiyama A, Arai S, Yano S and Wang W: EGFR-TKI resistance
promotes immune escape in lung cancer via increased PD-L1
expression. Mol Cancer. 18:1652019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tsai TF, Lin JF, Lin YC, Chou KY, Chen HE,
Ho CY, Chen PC and Hwang TI: Cisplatin contributes to programmed
death-ligand 1 expression in bladder cancer through ERK1/2-AP-1
signaling pathway. Biosci Rep. 39:BSR201903622019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fournel L, Wu Z, Stadler N, Damotte D,
Lococo F, Boulle G, Ségal-Bendirdjian E, Bobbio A, Icard P,
Trédaniel J, et al: Cisplatin increases PD-L1 expression and
optimizes immune check-point blockade in non-small cell lung
cancer. Cancer Lett. 464:5–14. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wang X, Wu R, Liu Y, Zhao Y, Bi Z, Yao Y,
Liu Q, Shi H, Wang F and Wang Y: m(6)A mRNA methylation controls
autophagy and adipogenesis by targeting Atg5 and Atg7. Autophagy.
16:1221–1235. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Peritz T, Zeng F, Kannanayakal TJ, Kilk K,
Eiríksdóttir E, Langel U and Eberwine J: Immunoprecipitation of
mRNA-protein complexes. Nat Protoc. 1:577–580. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
MIto M, Mimura K, Nakajima S, Saito K, Min
AKT, Okayama H, Saito M, Momma T, Saze Z, Ohtsuka M, et al: Immune
escape mechanism behind resistance to anti-PD-1 therapy in
gastrointestinal tract metastasis in malignant melanoma patients
with multiple metastases. Cancer Immunol Immunother. 71:2293–2300.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu J, Chen Z, Li Y, Zhao W, Wu J and
Zhang Z: PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy.
Front Pharmacol. 12:7317982021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Jiang T, He X, Zhao Z, Zhang X, Wang T and
Jia L: RNA m6A reader IGF2BP3 promotes metastasis of
triple-negative breast cancer via SLIT2 repression. FASEB J.
36:e226182022. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ryu TY, Kim K, Son MY, Min JK, Kim J, Han
TS, Kim DS and Cho HS: Downregulation of PRMT1, a histone arginine
methyltransferase, by sodium propionate induces cell apoptosis in
colon cancer. Oncol Rep. 41:1691–1699. 2019.PubMed/NCBI
|
|
28
|
Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J,
Li J, Li F and Tan HB: Immune cells within the tumor
microenvironment: Biological functions and roles in cancer
immunotherapy. Cancer Lett. 470:126–133. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wu Q, Jiang L, Li SC, He QJ, Yang B and
Cao J: Small molecule inhibitors targeting the PD-1/PD-L1 signaling
pathway. Acta Pharmacol Sin. 42:1–9. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhang J, Huang D, Saw PE and Song E:
Turning cold tumors hot: From molecular mechanisms to clinical
applications. Trends Immunol. 43:523–545. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rameshbabu S, Labadie BW, Argulian A and
Patnaik A: Targeting innate immunity in cancer therapy. Vaccines
(Basel). 9:1382021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Karin N: Chemokines in the landscape of
cancer immunotherapy: How they and their receptors can be used to
turn cold tumors into hot ones? Cancers (Basel). 13:63172021.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lin KX, Istl AC, Quan D, Skaro A, Tang E
and Zheng X: PD-1 and PD-L1 inhibitors in cold colorectal cancer:
Challenges and strategies. Cancer Immunol Immunother. 72:3875–3893.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Xiong W, Gao X, Zhang T, Jiang B, Hu MM,
Bu X, Gao Y, Zhang LZ, Xiao BL, He C, et al: USP8 inhibition
reshapes an inflamed tumor microenvironment that potentiates the
immunotherapy. Nat Commun. 13:17002022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Cao J and Yan Q: Cancer epigenetics, tumor
immunity, and immunotherapy. Trends Cancer. 6:580–592. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
An Y and Duan H: The role of m6A RNA
methylation in cancer metabolism. Mol Cancer. 21:142022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sun T, Wu R and Ming L: The role of m6A
RNA methylation in cancer. Biomed Pharmacother. 112:1086132019.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Pan J, Huang T, Deng Z and Zou C: Roles
and therapeutic implications of m6A modification in cancer
immunotherapy. Front Immunol. 14:11326012023. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Chen LJ, Liu HY, Xiao ZY, Qiu T, Zhang D,
Zhang LJ, Han FY, Chen GJ, Xu XM and Zhu JH: IGF2BP3 promotes the
progression of colorectal cancer and mediates cetuximab resistance
by stabilizing EGFR mRNA in an m(6)A-dependent manner. Cell Death
Dis. 14:5812023. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Xu W, Sheng Y, Guo Y, Huang Z, Huang Y,
Wen D, Liu CY, Cui L, Yang Y and Du P: Increased IGF2BP3 expression
promotes the aggressive phenotypes of colorectal cancer cells in
vitro and vivo. J Cell Physiol. 234:18466–18479. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wan W, Ao X, Chen Q, Yu Y, Ao L, Xing W,
Guo W, Wu X, Pu C, Hu X, et al: METTL3/IGF2BP3 axis inhibits tumor
immune surveillance by upregulating N(6)-methyladenosine
modification of PD-L1 mRNA in breast cancer. Mol Cancer. 21:602022.
View Article : Google Scholar : PubMed/NCBI
|