Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
June-2025 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 29 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Effect of deubiquitinases in head and neck squamous cell carcinoma (Review)

  • Authors:
    • Jiahui Wang
    • Liangpei Wu
    • Zhifeng Tian
    • Jun Chen
  • View Affiliations / Copyright

    Affiliations: Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China, Cancer Center, Lishui Municipal Central Hospital, Lishui, Zhejiang 323000, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 307
    |
    Published online on: April 23, 2025
       https://doi.org/10.3892/ol.2025.15053
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

SCC includes nasopharyngeal, laryngeal and oral cancers, and its pathogenesis is influenced by various factors. As an essential part of the ubiquitin (Ub)‑proteasome system (UPS), deubiquitinating enzymes (DUBs) maintain the homeostasis of Ub molecules and influence the physiological functions of cells and disease processes by removing ubiquitinated proteins. Accumulating evidence has confirmed that the aberrant expression of DUBs is involved in cell proliferation, metastasis, and apoptosis during the development of HNSCC, with some acting as oncogenes and others as tumor‑suppressor genes. In this review, the DUBs implicated in HNSCC were summarized and the mechanisms underlying abnormal DUBs expression in signaling pathways were discussed. In addition, given the important role of DUBs in tumorigenesis, recent studies were reviewed and agonists and inhibitors of DUBs were summarized to identify more effective therapeutic strategies.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Parmar K, Mohamed A, Vaish E, Thawani R, Cetnar J and Thein KZ: Immunotherapy in head and neck squamous cell carcinoma: An updated review. Cancer Treat Res Commun. 33:1006492022. View Article : Google Scholar : PubMed/NCBI

2 

Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI

3 

McDermott JD and Bowles DW: Epidemiology of head and neck squamous cell carcinomas: Impact on staging and prevention strategies. Curr Treat Options Oncol. 20:432019. View Article : Google Scholar : PubMed/NCBI

4 

Bhatia A and Burtness B: Treating head and neck cancer in the age of immunotherapy: A 2023 update. Drugs. 83:217–248. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Daste A, Larroquette M, Gibson N, Lasserre M and Domblides C: Immunotherapy for head and neck squamous cell carcinoma: Current status and perspectives. Immunotherapy. 16:187–197. 2024. View Article : Google Scholar : PubMed/NCBI

6 

Kim YJ, Lee Y, Shin H, Hwang S, Park J and Song EJ: Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res. 46:573–597. 2023. View Article : Google Scholar : PubMed/NCBI

7 

Wang J, Xiang Y, Fan M, Fang S and Hua Q: The ubiquitin-proteasome system in tumor metabolism. Cancers (Basel). 15:23852023. View Article : Google Scholar : PubMed/NCBI

8 

Schulman BA and Harper JW: Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 10:319–331. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Zhai F, Wang J, Yang W, Ye M and Jin X: The E3 ligases in cervical cancer and endometrial cancer. Cancers (Basel). 14:53542022. View Article : Google Scholar : PubMed/NCBI

10 

Kong L and Jin X: Dysregulation of deubiquitination in breast cancer. Gene. 902:1481752024. View Article : Google Scholar : PubMed/NCBI

11 

Park J, Cho J and Song EJ: Ubiquitin-proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res. 43:1144–1161. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Hochstrasser M: Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol. 7:215–223. 1995. View Article : Google Scholar : PubMed/NCBI

13 

Spano D and Catara G: Targeting the ubiquitin-proteasome system and recent advances in cancer therapy. Cells. 13:292023. View Article : Google Scholar : PubMed/NCBI

14 

Bennett EJ and Harper JW: DNA damage: Ubiquitin marks the spot. Nat Struct Mol Biol. 15:20–22. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Pickart CM and Eddins MJ: Ubiquitin: Structures, functions, mechanisms. Biochim Biophys Acta. 1695:55–72. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Komander D, Clague MJ and Urbé S: Breaking the chains: Structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 10:550–563. 2009. View Article : Google Scholar : PubMed/NCBI

17 

Dewson G, Eichhorn PJA and Komander D: Deubiquitinases in cancer. Nat Rev Cancer. 23:842–862. 2023. View Article : Google Scholar : PubMed/NCBI

18 

D'Arcy P, Wang X and Linder S: Deubiquitinase inhibition as a cancer therapeutic strategy. Pharmacol Ther. 147:32–54. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K and Kulathu Y: MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell. 63:146–155. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Jin S, Kudo Y and Horiguchi T: The role of deubiquitinating enzyme in head and neck squamous cell carcinoma. Int J Mol Sci. 24:5522022. View Article : Google Scholar : PubMed/NCBI

21 

Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE and Shi Y: Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell. 111:1041–1054. 2002. View Article : Google Scholar : PubMed/NCBI

22 

Kuhlbrodt K, Janiesch PC, Kevei É, Segref A, Barikbin R and Hoppe T: The Machado-Joseph disease deubiquitylase ATX-3 couples longevity and proteostasis. Nat Cell Biol. 13:273–281. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Nicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ and Pastore A: The solution structure of the Josephin domain of ataxin-3: Structural determinants for molecular recognition. Proc Natl Acad Sci USA. 102:10493–10498. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Hurley JH and Stenmark H: Molecular mechanisms of ubiquitin-dependent membrane traffic. Annu Rev Biophys. 40:119–142. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Davies CW, Paul LN, Kim MI and Das C: Structural and thermodynamic comparison of the catalytic domain of AMSH and AMSH-LP: Nearly identical fold but different stability. J Mol Biol. 413:416–429. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Liang J, Saad Y, Lei T, Wang J, Qi D, Yang Q, Kolattukudy PE and Fu M: MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med. 207:2959–2973. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Chen SMY, Krinsky AL, Woolaver RA, Wang X, Chen Z and Wang JH: Tumor immune microenvironment in head and neck cancers. Mol Carcinog. 59:766–774. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Gulve N, Su C, Deng Z, Soldan SS, Vladimirova O, Wickramasinghe J, Zheng H, Kossenkov AV and Lieberman PM: DAXX-ATRX regulation of p53 chromatin binding and DNA damage response. Nat Commun. 13:50332022. View Article : Google Scholar : PubMed/NCBI

29 

Li J, Shang L, Zhou F, Wang S, Liu N, Zhou M, Lin Q, Zhang M, Cai Y, Chen G and Yang S: Herba patriniae and its component isovitexin show anti-colorectal cancer effects by inducing apoptosis and cell-cycle arrest via p53 activation. Biomed Pharmacother. 168:1156902023. View Article : Google Scholar : PubMed/NCBI

30 

Wang H, Guo M, Wei H and Chen Y: Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther. 8:922023. View Article : Google Scholar : PubMed/NCBI

31 

Hassin O and Oren M: Drugging p53 in cancer: One protein, many targets. Nat Rev Drug Discov. 22:127–144. 2023. View Article : Google Scholar : PubMed/NCBI

32 

Brummer T and Zeiser R: The role of the MDM2/p53 axis in antitumor immune responses. Blood. 143:2701–2709. 2024. View Article : Google Scholar : PubMed/NCBI

33 

Bradford CR, Zhu S, Poore J, Fisher SG, Beals TF, Thoraval D, Hanash SM, Carey TE and Wolf GT: p53 mutation as a prognostic marker in advanced laryngeal carcinoma. Department of veterans affairs laryngeal cancer cooperative study group. Arch Otolaryngol Head Neck Surg. 123:605–609. 1997. View Article : Google Scholar : PubMed/NCBI

34 

Nathan CA, Khandelwal AR, Wolf GT, Rodrigo JP, Mäkitie AA, Saba NF, Forastiere AA, Bradford CR and Ferlito A: TP53 mutations in head and neck cancer. Mol Carcinog. 61:385–391. 2022. View Article : Google Scholar : PubMed/NCBI

35 

Koo N, Sharma AK and Narayan S: Therapeutics targeting p53-MDM2 interaction to induce cancer cell death. Int J Mol Sci. 23:50052022. View Article : Google Scholar : PubMed/NCBI

36 

Kwon SK, Saindane M and Baek KH: p53 stability is regulated by diverse deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer. 1868:404–411. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Saha G, Roy S, Basu M and Ghosh MK: USP7-a crucial regulator of cancer hallmarks. Biochim Biophys Acta Rev Cancer. 1878:1889032023. View Article : Google Scholar : PubMed/NCBI

38 

Shin SC, Park J, Kim KH, Yoon JM, Cho J, Ha BH, Oh Y, Choo H, Song EJ and Kim EE: Structural and functional characterization of USP47 reveals a hot spot for inhibitor design. Commun Biol. 6:9702023. View Article : Google Scholar : PubMed/NCBI

39 

Nininahazwe L, Liu B, He C, Zhang H and Chen ZS: The emerging nature of Ubiquitin-specific protease 7 (USP7): A new target in cancer therapy. Drug Discov Today. 26:490–502. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Pozhidaeva A and Bezsonova I: USP7: Structure, substrate specificity, and inhibition. DNA Repair (Amst). 76:30–39. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Brooks CL, Li M, Hu M, Shi Y and Gu W: The p53-Mdm2-HAUSP complex is involved in p53 stabilization by HAUSP. Oncogene. 26:7262–7266. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Sacco JJ, Coulson JM, Clague MJ and Urbé S: Emerging roles of deubiquitinases in cancer-associated pathways. IUBMB Life. 62:140–157. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Niu H, Zhu Y, Wang J, Wang T, Wang X and Yan L: Effects of USP7 on radiation sensitivity through p53 pathway in laryngeal squamous cell carcinoma. Transl Oncol. 22:1014662022. View Article : Google Scholar : PubMed/NCBI

44 

Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, Zeng C, Zhou T and Zhang J: NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct Target Ther. 9:532024. View Article : Google Scholar : PubMed/NCBI

45 

Yu H, Lin L, Zhang Z, Zhang H and Hu H: Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar : PubMed/NCBI

46 

Tan Y, Sun R, Liu L, Yang D, Xiang Q, Li L, Tang J, Qiu Z, Peng W, Wang Y, et al: Tumor suppressor DRD2 facilitates M1 macrophages and restricts NF-κB signaling to trigger pyroptosis in breast cancer. Theranostics. 11:5214–5231. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Schrank TP, Prince AC, Sathe T, Wang X, Liu X, Alzhanov DT, Burtness B, Baldwin AS, Yarbrough WG and Issaeva N: NF-κB over-activation portends improved outcomes in HPV-associated head and neck cancer. Oncotarget. 13:707–722. 2022. View Article : Google Scholar : PubMed/NCBI

48 

Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL, Darnay BG, Chaturvedi MM and Aggarwal BB: Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kappaB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene. 26:1385–1397. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Napetschnig J and Wu H: Molecular basis of NF-κB signaling. Annu Rev Biophys. 42:443–468. 2013. View Article : Google Scholar : PubMed/NCBI

50 

Courtois G: Tumor suppressor CYLD: Negative regulation of NF-kappaB signaling and more. Cell Mol Life Sci. 65:1123–1132. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Yang Y and Zhou J: CYLD-a deubiquitylase that acts to fine-tune microtubule properties and functions. J Cell Sci. 129:2289–2295. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Cui Z, Kang H, Grandis JR and Johnson DE: CYLD alterations in the tumorigenesis and progression of human papillomavirus-associated head and neck cancers. Mol Cancer Res. 19:14–24. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Massoumi R: CYLD: A deubiquitination enzyme with multiple roles in cancer. Future Oncol. 7:285–297. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Verhoeft KR, Ngan HL and Lui VWY: The cylindromatosis (CYLD) gene and head and neck tumorigenesis. Cancers Head Neck. 1:102016. View Article : Google Scholar : PubMed/NCBI

55 

Deng M, Dai W, Yu VZ, Tao L and Lung ML: Cylindromatosis lysine 63 deubiquitinase (CYLD) regulates NF-kB signaling pathway and modulates fibroblast and endothelial cells recruitment in nasopharyngeal carcinoma. Cancers (Basel). 12:19242020. View Article : Google Scholar : PubMed/NCBI

56 

Hu B, Zhang D, Zhao K, Wang Y, Pei L, Fu Q and Ma X: Spotlight on USP4: Structure, function, and regulation. Front Cell Dev Biol. 9:5951592021. View Article : Google Scholar : PubMed/NCBI

57 

Tao Y and You W: The deubiquitinating enzyme USP4 functions as an oncoprotein in gastric cancer and mediates NF-κB signaling by regulating PRL-3 expression. Front Biosci (Landmark Ed). 27:2862022. View Article : Google Scholar : PubMed/NCBI

58 

Hou X, Wang L, Zhang L, Pan X and Zhao W: Ubiquitin-specific protease 4 promotes TNF-α-induced apoptosis by deubiquitination of RIP1 in head and neck squamous cell carcinoma. FEBS Lett. 587:311–316. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Shi A, Liu L, Li S and Qi B: Natural products targeting the MAPK-signaling pathway in cancer: Overview. J Cancer Res Clin Oncol. 150:62024. View Article : Google Scholar : PubMed/NCBI

60 

Cheng Y, Chen J, Shi Y, Fang X and Tang Z: MAPK signaling pathway in oral squamous cell carcinoma: Biological function and targeted therapy. Cancers (Basel). 14:46252022. View Article : Google Scholar : PubMed/NCBI

61 

Roskoski R Jr: ERK1/2 MAP kinases: Structure, function, and regulation. Pharmacol Res. 66:105–143. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Ngan HL, Law CH, Choi YCY, Chan JY and Lui VWY: Precision drugging of the MAPK pathway in head and neck cancer. NPJ Genom Med. 7:202022. View Article : Google Scholar : PubMed/NCBI

63 

Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI

64 

Wu PK, Becker A and Park JI: Growth inhibitory signaling of the Raf/MEK/ERK pathway. Int J Mol Sci. 21:54362020. View Article : Google Scholar : PubMed/NCBI

65 

Shen J, Xie M, Xu Y, Qian Q, Qiu T, Shi W, Ren D, Ji J and Huang J: Identification of the deubiquitinase USP28 as a novel molecular therapeutic target of ovarian cancer. Biochem Biophys Res Commun. 638:184–191. 2023. View Article : Google Scholar : PubMed/NCBI

66 

Li J, Peng J, Wu L, Shen X, Zhen X, Zhang Y, Ma H, Xu Y, Xiong Q, Zhu Q and Zhang P: The deubiquitinase USP28 maintains the expression of the transcription factor MYCN and is essential in neuroblastoma cells. J Biol Chem. 299:1048562023. View Article : Google Scholar : PubMed/NCBI

67 

Prieto-Garcia C, Tomašković I, Shah VJ, Dikic I and Diefenbacher M: USP28: oncogene or tumor suppressor? A unifying paradigm for squamous cell carcinoma. Cells. 10:26522021. View Article : Google Scholar : PubMed/NCBI

68 

Park HB and Baek KH: E3 ligases and deubiquitinating enzymes regulating the MAPK signaling pathway in cancers. Biochim Biophys Acta Rev Cancer. 1877:1887362022. View Article : Google Scholar : PubMed/NCBI

69 

Arita H, Nagata M, Yoshida R, Matsuoka Y, Hirosue A, Kawahara K, Sakata J, Nakashima H, Kojima T, Toya R, et al: FBXW7 expression affects the response to chemoradiotherapy and overall survival among patients with oral squamous cell carcinoma: A single-center retrospective study. Tumour Biol. 39:10104283177317712017. View Article : Google Scholar : PubMed/NCBI

70 

Yu H, Ling T, Shi R, Shu Q, Li Y and Tan Z: Expression of FBXW7 in esophageal squamous cell carcinoma and its clinical significance. Zhonghua Zhong Liu Za Zhi. 37:347–351. 2015.(In Chinese). PubMed/NCBI

71 

Saei A, Palafox M, Benoukraf T, Kumari N, Jaynes PW, Iyengar PV, Muñoz-Couselo E, Nuciforo P, Cortés J, Nötzel C, et al: Loss of USP28-mediated BRAF degradation drives resistance to RAF cancer therapies. J Exp Med. 215:1913–1928. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Cheng Y and Tian H: Current development status of MEK inhibitors. Molecules. 22:15512017. View Article : Google Scholar : PubMed/NCBI

73 

Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, et al: PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 22:1382023. View Article : Google Scholar : PubMed/NCBI

74 

Jin J, He J, Li X, Ni X and Jin X: The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: A potential target for cancer therapy. Gene. 889:1478072023. View Article : Google Scholar : PubMed/NCBI

75 

Chen M, Choi S, Wen T, Chen C, Thapa N, Lee JH, Cryns VL and Anderson RA: A p53-phosphoinositide signalosome regulates nuclear AKT activation. Nat Cell Biol. 24:1099–1113. 2022. View Article : Google Scholar : PubMed/NCBI

76 

Marquard FE and Jücker M: PI3K/AKT/mTOR signaling as a molecular target in head and neck cancer. Biochem Pharmacol. 172:1137292020. View Article : Google Scholar : PubMed/NCBI

77 

De Felice F and Guerrero Urbano T: New drug development in head and neck squamous cell carcinoma: The PI3-K inhibitors. Oral Oncol. 67:119–123. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Borgato GB, Borges GA, Souza AP, Squarize CH and Castilho RM: Loss of PTEN sensitizes head and neck squamous cell carcinoma to 5-AZA-2′-deoxycytidine. Oral Surg Oral Med Oral Pathol Oral Radiol. 130:181–190. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Psyrri A, Seiwert TY and Jimeno A: Molecular pathways in head and neck cancer: EGFR, PI3K, and more. Am Soc Clin Oncol Educ Book. 2013:246–255. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Tewari D, Patni P and Bishayee A, Sah AN and Bishayee A: Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol. 80:1–17. 2022. View Article : Google Scholar : PubMed/NCBI

81 

Vander Broek R, Mohan S, Eytan DF, Chen Z and Van Waes C: The PI3K/Akt/mTOR axis in head and neck cancer: Functions, aberrations, cross-talk, and therapies. Oral Dis. 21:815–825. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Li X, Yang G, Zhang W, Qin B, Ye Z, Shi H, Zhao X, Chen Y, Song B, Mei Z, et al: USP13: Multiple functions and target inhibition. Front Cell Dev Biol. 10:8751242022. View Article : Google Scholar : PubMed/NCBI

83 

Zhang J, Zhang P, Wei Y, Piao HL, Wang W, Maddika S, Wang M, Chen D, Sun Y, Hung MC, et al: Deubiquitylation and stabilization of PTEN by USP13. Nat Cell Biol. 15:1486–1494. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Qu Z, Zhang R, Su M and Liu W: USP13 serves as a tumor suppressor via the PTEN/AKT pathway in oral squamous cell carcinoma. Cancer Manag Res. 11:9175–9183. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Huang J, Ye Z, Wang J, Chen Q, Huang D and Liu H: USP13 mediates PTEN to ameliorate osteoarthritis by restraining oxidative stress, apoptosis and inflammation via AKT-dependent manner. Biomed Pharmacother. 133:1110892021. View Article : Google Scholar : PubMed/NCBI

86 

Wang K, Liu J, Li YL, Li JP and Zhang R: Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer. 1877:1887232022. View Article : Google Scholar : PubMed/NCBI

87 

Wang M, Li Y, Xiao Y, Yang M, Chen J, Jian Y, Chen X, Shi D, Chen X, Ouyang Y, et al: Nicotine-mediated OTUD3 downregulation inhibits VEGF-C mRNA decay to promote lymphatic metastasis of human esophageal cancer. Nat Commun. 12:70062021. View Article : Google Scholar : PubMed/NCBI

88 

Geng W, Song H, Zhao Q, Dong K, Pu Q, Gao H and Lv Y: miR-520h stimulates drug resistance to paclitaxel by targeting the OTUD3-PTEN axis in breast cancer. Biomed Res Int. 2020:95127932020. View Article : Google Scholar : PubMed/NCBI

89 

Yuan L, Lv Y, Li H, Gao H, Song S, Zhang Y, Xing G, Kong X, Wang L, Li Y, et al: Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol. 17:1169–1181. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Zhao M, Yang F, Sang C, Yan C and Wang Z: BGL3 inhibits papillary thyroid carcinoma progression via regulating PTEN stability. J Endocrinol Invest. 44:2165–2174. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Antonenko S, Zavelevich M and Telegeev G: The role of USP1 deubiquitinase in the pathogenesis and therapy of cancer. Acta Biochim Pol. 70:219–231. 2023.PubMed/NCBI

92 

Xu J, Li B, Song W, Cao L, Zhu C and Lin S: Tumor suppressor functions of miRNA-375 in nasopharyngeal carcinoma through inhibition of ubiquitin-specific protease 1 expression. Int J Biochem Cell Biol. 141:1060922021. View Article : Google Scholar : PubMed/NCBI

93 

Vucic D, Dixit VM and Wertz IE: Ubiquitylation in apoptosis: A post-translational modification at the edge of life and death. Nat Rev Mol Cell. 12:439–452. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Schaefer A, Nethe M and Hordijk PL: Ubiquitin links to cytoskeletal dynamics, cell adhesion and migration. Biochem J. 442:13–25. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Ulrich HD and Walden H: Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol. 11:479–489. 2010. View Article : Google Scholar : PubMed/NCBI

96 

Ma A, Tang M, Zhang L, Wang B, Yang Z, Liu Y, Xu G, Wu L, Jing T, Xu X, et al: Correction to: USP1 inhibition destabilizes KPNA2 and suppresses breast cancer metastasis. Oncogene. 41:16732022. View Article : Google Scholar : PubMed/NCBI

97 

Liu D, Li Q, Zang Y, Li X, Li Z, Zhang P, Feng C, Yang P, Cui J, Sun Y, et al: USP1 modulates hepatocellular carcinoma progression via the Hippo/TAZ axis. Cell Death Dis. 14:2642023. View Article : Google Scholar : PubMed/NCBI

98 

Huang Z, Chen Y, Chen R, Zhou B, Wang Y, Hong L, Wang Y, Wang J, Xu X, Huang Z and Chen W: HPV Enhances HNSCC chemosensitization by inhibiting SERPINB3 expression to disrupt the fanconi anemia pathway. Adv Sci (Weinh). 10:e22024372022. View Article : Google Scholar : PubMed/NCBI

99 

Goldbraikh D, Neufeld D, Eid-Mutlak Y, Lasry I, Gilda JE, Parnis A and Cohen S: USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation. EMBO Rep. 21:e487912020. View Article : Google Scholar : PubMed/NCBI

100 

Shi Y and Massagué J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI

101 

Heldin CH, Miyazono K and ten Dijke P: TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 390:465–471. 1997. View Article : Google Scholar : PubMed/NCBI

102 

Derynck R and Budi EH: Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 12:eaav51832019. View Article : Google Scholar : PubMed/NCBI

103 

Meulmeester E and Ten Dijke P: The dynamic roles of TGF-β in cancer. J Pathol. 223:205–218. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Britton WR, Cioffi I, Stonebraker C, Spence M, Okolo O, Martin C, Henick B, Nakagawa H and Parikh AS: Advancements in TGF-β Targeting Therapies for Head and Neck Squamous Cell Carcinoma. Cancers (Basel). 16:30472024. View Article : Google Scholar : PubMed/NCBI

105 

Ibi H, Takahashi K, Harada H, Watabe T and Podyma-Inoue KA: Transforming growth factor-β signals promote progression of squamous cell carcinoma by inducing epithelial-mesenchymal transition and angiogenesis. Biochem Biophys Res Commun. 714:1499652024. View Article : Google Scholar : PubMed/NCBI

106 

Itoh S and ten Dijke P: Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol. 19:176–184. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Shinriki S, Jono H, Maeshiro M, Nakamura T, Guo J, Li JD, Ueda M, Yoshida R, Shinohara M, Nakayama H, et al: Loss of CYLD promotes cell invasion via ALK5 stabilization in oral squamous cell carcinoma. J Pathol. 244:367–379. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Zhao Y, Thornton AM, Kinney MC, Ma CA, Spinner JJ, Fuss IJ, Shevach EM and Jain A: The deubiquitinase CYLD targets Smad7 protein to regulate transforming growth factor β (TGF-β) signaling and the development of regulatory T cells. J Biol Chem. 286:40520–40530. 2011. View Article : Google Scholar : PubMed/NCBI

109 

Zhao Y, Xing C, Deng Y, Ye C and Peng H: HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis. 11:234–251. 2024. View Article : Google Scholar : PubMed/NCBI

110 

Yu Z, Li H, Zhu J, Wang H and Jin X: The roles of E3 ligases in Hepatocellular carcinoma. Am J Cancer Res. 12:1179–1214. 2022.PubMed/NCBI

111 

Semenza GL: Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 9:47–71. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Wenger RH, Stiehl DP and Camenisch G: Integration of oxygen signaling at the consensus HRE. Sci STKE. 2005:re122005. View Article : Google Scholar : PubMed/NCBI

113 

Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, et al: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468–472. 2001. View Article : Google Scholar : PubMed/NCBI

114 

Gong L, Zhang W, Zhou J, Lu J, Xiong H, Shi X and Chen J: Prognostic value of HIFs expression in head and neck cancer: A systematic review. PLoS One. 8:e750942013. View Article : Google Scholar : PubMed/NCBI

115 

Grethe C, Schmidt M, Kipka GM, O'Dea R, Gallant K, Janning P and Gersch M: Structural basis for specific inhibition of the deubiquitinase UCHL1. Nat Commun. 13:59502022. View Article : Google Scholar : PubMed/NCBI

116 

Bishop P, Rocca D and Henley JM: Ubiquitin C-terminal hydrolase L1 (UCH-L1): Structure, distribution and roles in brain function and dysfunction. Biochem J. 473:2453–2462. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Lee KC, Chen HH, Cheng KC, Liu TT, Lee KF, Teng CC, Huang CY, Hsieh MC and Kuo HC: Use of iTRAQ-based quantitative proteomic identification of CHGA and UCHL1 correlated with lymph node metastasis in colorectal carcinoma. J Cell Mol Med. 27:2004–2020. 2023. View Article : Google Scholar : PubMed/NCBI

118 

Li J, Liang Y, Zhou S, Chen J and Wu C: UCHL1 contributes to insensitivity to endocrine therapy in triple-negative breast cancer by deubiquitinating and stabilizing KLF5. Breast Cancer Res. 26:442024. View Article : Google Scholar : PubMed/NCBI

119 

Zhang D, Fu Y, Tian G, Li J, Shang D and Zhou S: UCHL1 promotes proliferation and metastasis in head and neck squamous cell carcinoma and could be a potential therapeutic target. Oral Surg Oral Med Oral Pathol Oral Radiol. 133:684–697. 2022. View Article : Google Scholar : PubMed/NCBI

120 

Li X, Hattori A, Takahashi S, Goto Y, Harada H and Kakeya H: Ubiquitin carboxyl-terminal hydrolase L1 promotes hypoxia-inducible factor 1-dependent tumor cell malignancy in spheroid models. Cancer Sci. 111:239–252. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, Bevilacqua A and Tesei A: 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained. Sci Rep. 6:191032016. View Article : Google Scholar : PubMed/NCBI

122 

Günter J, Ruiz-Serrano A, Pickel C, Wenger RH and Scholz CC: The functional interplay between the HIF pathway and the ubiquitin system-more than a one-way road. Exp Cell Res. 356:152–159. 2017. View Article : Google Scholar : PubMed/NCBI

123 

Tejeda-Muñoz N and Robles-Flores M: Glycogen synthase kinase 3 in Wnt signaling pathway and cancer. IUBMB Life. 67:914–922. 2015. View Article : Google Scholar : PubMed/NCBI

124 

Gordon MD and Nusse R: Wnt signaling: Multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem. 281:22429–22433. 2006. View Article : Google Scholar : PubMed/NCBI

125 

Xie J, Huang L, Lu YG and Zheng DL: Roles of the Wnt signaling pathway in head and neck squamous cell carcinoma. Front Mol Biosci. 7:5909122020. View Article : Google Scholar : PubMed/NCBI

126 

Yang F, Zeng Q, Yu G, Li S and Wang CY: Wnt/beta-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal. 18:679–687. 2006. View Article : Google Scholar : PubMed/NCBI

127 

Moon JH, Lee SH and Lim YC: Wnt/β-catenin/Slug pathway contributes to tumor invasion and lymph node metastasis in head and neck squamous cell carcinoma. Clin Exp Metastasis. 38:163–174. 2021. View Article : Google Scholar : PubMed/NCBI

128 

Zheng N, Chu M, Lin M, He Y and Wang Z: USP7 stabilizes EZH2 and enhances cancer malignant progression. Am J Cancer Res. 10:299–313. 2020.PubMed/NCBI

129 

Yamagishi M and Uchimaru K: Targeting EZH2 in cancer therapy. Curr Opin Oncol. 29:375–381. 2017. View Article : Google Scholar : PubMed/NCBI

130 

Wang L, Jin Q, Lee JE, Su IH and Ge K: Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci USA. 107:7317–7322. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Zhang MJ, Chen DS, Li H, Liu WW, Han GY and Han YF: Clinical significance of USP7 and EZH2 in predicting prognosis of laryngeal squamous cell carcinoma and their possible functional mechanism. Int J Clin Exp Pathol. 12:2184–2194. 2019.PubMed/NCBI

132 

Liu S, Qin Z, Mao Y, Zhang W, Wang Y, Jia L and Peng X: Therapeutic targeting of MYC in head and neck squamous cell carcinoma. Oncoimmunology. 11:21305832022. View Article : Google Scholar : PubMed/NCBI

133 

Llombart V and Mansour MR: Therapeutic targeting of ‘undruggable’ MYC. EBioMedicine. 75:1037562022. View Article : Google Scholar : PubMed/NCBI

134 

Dejure FR and Eilers M: MYC and tumor metabolism: Chicken and egg. EMBO J. 36:3409–3420. 2017. View Article : Google Scholar : PubMed/NCBI

135 

Wang L, Chen C, Song Z, Wang H, Ye M, Wang D, Kang W, Liu H and Qing G: EZH2 depletion potentiates MYC degradation inhibiting neuroblastoma and small cell carcinoma tumor formation. Nat Commun. 13:122022. View Article : Google Scholar : PubMed/NCBI

136 

Dou Y, Lin J, Shu H and Jiang N: Role of ubiquitin-specific peptidase 22 in carcinogenesis of human pharyngeal squamous cell carcinoma. Mol Med Rep. 10:2973–2978. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Kim D, Hong A, Park HI, Shin WH, Yoo L, Jeon SJ and Chung KC: Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. J Cell Physiol. 232:3664–3676. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Li L, Wen S, Wang B, Gao W, Zhang W, Meng X, Yang L and Kong L: Expression of cancer stem cell marker USP22 in laryngeal squamous cell carcinoma. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 49:479–482. 2014.(In Chinese). PubMed/NCBI

139 

Shin E and Kim J: The potential role of YAP in head and neck squamous cell carcinoma. Exp Mol Med. 52:1264–1274. 2020. View Article : Google Scholar : PubMed/NCBI

140 

Faraji F, Ramirez SI, Anguiano Quiroz PY, Mendez-Molina AN and Gutkind JS: Genomic hippo pathway alterations and persistent YAP/TAZ activation: New hallmarks in head and neck cancer. Cells. 11:13702022. View Article : Google Scholar : PubMed/NCBI

141 

Segrelles C, Paramio JM and Lorz C: The transcriptional co-activator YAP: A new player in head and neck cancer. Oral Oncol. 86:25–32. 2018. View Article : Google Scholar : PubMed/NCBI

142 

Chan EH, Nousiainen M, Chalamalasetty RB, Schäfer A, Nigg EA and Silljé HH: The Ste20-like kinase Mst2 activates the human large tumor suppressor kinase Lats1. Oncogene. 24:2076–2086. 2005. View Article : Google Scholar : PubMed/NCBI

143 

Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC and Yaffe MB: TAZ: A novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19:6778–6791. 2000. View Article : Google Scholar : PubMed/NCBI

144 

Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al: TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22:1962–1971. 2008. View Article : Google Scholar : PubMed/NCBI

145 

Pocaterra A, Romani P and Dupont S: YAP/TAZ functions and their regulation at a glance. J Cell Sci. 133:jcs2304252020. View Article : Google Scholar : PubMed/NCBI

146 

Fang Y, Fu D and Shen XZ: The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochim Biophys Acta. 1806:1–6. 2010.PubMed/NCBI

147 

Mtango NR, Sutovsky M, Susor A, Zhong Z, Latham KE and Sutovsky P: Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development. J Cell Physiol. 227:1592–1603. 2012. View Article : Google Scholar : PubMed/NCBI

148 

Suzuki M, Setsuie R and Wada K: Ubiquitin carboxyl-terminal hydrolase l3 promotes insulin signaling and adipogenesis. Endocrinology. 150:5230–5239. 2009. View Article : Google Scholar : PubMed/NCBI

149 

Mtango NR, Sutovsky M, Vandevoort CA, Latham KE and Sutovsky P: Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. J Cell Physiol. 227:2022–2029. 2012. View Article : Google Scholar : PubMed/NCBI

150 

Nishi R, Wijnhoven PWG, Kimura Y, Matsui M, Konietzny R, Wu Q, Nakamura K, Blundell TL and Kessler BM: The deubiquitylating enzyme UCHL3 regulates Ku80 retention at sites of DNA damage. Sci Rep. 8:178912018. View Article : Google Scholar : PubMed/NCBI

151 

Zhang X, Smits AH, van Tilburg GB, Jansen PW, Makowski MM, Ovaa H and Vermeulen M: An interaction landscape of ubiquitin signaling. Mol Cell. 65:941–955.e8. 2017. View Article : Google Scholar : PubMed/NCBI

152 

Tang J, Yang Q, Mao C, Xiao D, Liu S, Xiao L, Zhou L, Wu G and Tao Y: The deubiquitinating enzyme UCHL3 promotes anaplastic thyroid cancer progression and metastasis through Hippo signaling pathway. Cell Death Differ. 30:1247–1259. 2023. View Article : Google Scholar : PubMed/NCBI

153 

Wang J, Xiang Y, Xie Z, Fan M, Fang S, Wan H, Zhao R, Zeng F and Hua Q: USP14 positively modulates head and neck squamous carcinoma tumorigenesis and potentiates heat shock pathway through HSF1 Stabilization. Cancers (Basel). 15:43852023. View Article : Google Scholar : PubMed/NCBI

154 

Wang F, Ning S, Yu B and Wang Y: USP14: Structure, function, and target inhibition. Front Pharmacol. 12:8013282022. View Article : Google Scholar : PubMed/NCBI

155 

Shi D, Wu X, Jian Y, Wang J, Huang C, Mo S, Li Y, Li F, Zhang C, Zhang D, et al: USP14 promotes tryptophan metabolism and immune suppression by stabilizing IDO1 in colorectal cancer. Nat Commun. 13:56442022. View Article : Google Scholar : PubMed/NCBI

156 

Ji J, Lv J, Lv M, Jing A, Xu M, Yuan Q, Ma X, Qian Q, Wang W, Geng T, et al: USP14 regulates heme metabolism and ovarian cancer invasion through BACH1 deubiquitination and stabilization. Biochem Biophys Res Commun. 667:186–193. 2023. View Article : Google Scholar : PubMed/NCBI

157 

Tao L, Liu X, Jiang X, Zhang K, Wang Y, Li X, Jiang S and Han T: USP10 as a potential therapeutic target in human cancers. Genes (Basel). 13:8312022. View Article : Google Scholar : PubMed/NCBI

158 

Xu Y, Pan J, Lin Y, Wu Y, Chen Y and Li H: Ceramide synthase 1 inhibits brain metastasis of non-small cell lung cancer by interacting with USP14 and downregulating the PI3K/AKT/mTOR signaling pathway. Cancers (Basel). 15:19942023. View Article : Google Scholar : PubMed/NCBI

159 

Zhao C, Gong J, Bai Y, Yin T, Zhou M, Pan S, Liu Y, Gao Y, Zhang Z, Shi Y, et al: A self-amplifying USP14-TAZ loop drives the progression and liver metastasis of pancreatic ductal adenocarcinoma. Cell Death Differ. 30:1–15. 2023. View Article : Google Scholar : PubMed/NCBI

160 

Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, Dias-Santagata D, Koeva M, Stemmer SM, Whitesell L and Lindquist S: The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. 158:564–578. 2014. View Article : Google Scholar : PubMed/NCBI

161 

Carpenter RL and Gökmen-Polar Y: HSF1 as a cancer biomarker and therapeutic target. Curr Cancer Drug Targets. 19:515–524. 2019. View Article : Google Scholar : PubMed/NCBI

162 

Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y, Wu W, Han L and Wang S: The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front Immunol. 13:9644422022. View Article : Google Scholar : PubMed/NCBI

163 

Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu K: Combination strategies with PD-1/PD-L1 blockade: Current advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI

164 

Fasano M, Corte CMD, Liello RD, Viscardi G, Sparano F, Iacovino ML, Paragliola F, Piccolo A, Napolitano S, Martini G, et al: Immunotherapy for head and neck cancer: Present and future. Crit Rev Oncol Hematol. 174:1036792022. View Article : Google Scholar : PubMed/NCBI

165 

Jiang S, Li X, Huang L, Xu Z and Lin J: Prognostic value of PD-1, PD-L1 and PD-L2 deserves attention in head and neck cancer. Front Immunol. 13:9884162022. View Article : Google Scholar : PubMed/NCBI

166 

Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M and Donato NJ: Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res. 70:9265–9276. 2010. View Article : Google Scholar : PubMed/NCBI

167 

Huang G, Liao J, Wang M, Huang Y, Tang M and Hao Y: USP9X increased tumor angiogenesis in mantle cell lymphoma by upregulation of CCND1-mediated SOX11. Mediterr J Hematol Infect Dis. 14:e20220482022. View Article : Google Scholar : PubMed/NCBI

168 

Zhang FK, Ni QZ, Wang K, Cao HJ, Guan DX, Zhang EB, Ma N, Wang YK, Zheng QW, Xu S, et al: Targeting USP9X-AMPK axis in ARID1A-deficient hepatocellular carcinoma. Cell Mol Gastroenterol Hepatol. 14:101–127. 2022. View Article : Google Scholar : PubMed/NCBI

169 

Li X, Song N, Liu L, Liu X, Ding X, Song X, Yang S, Shan L, Zhou X, Su D, et al: USP9X regulates centrosome duplication and promotes breast carcinogenesis. Nat Commun. 8:148662017. View Article : Google Scholar : PubMed/NCBI

170 

Wang Y, Liu Y, Yang B, Cao H, Yang CX, Ouyang W, Zhang SM, Yang GF, Zhou FX, Zhou YF and Xie CH: Elevated expression of USP9X correlates with poor prognosis in human non-small cell lung cancer. J Thorac Dis. 7:672–679. 2015.PubMed/NCBI

171 

Nanayakkara DM, Nguyen MN and Wood SA: Deubiquitylating enzyme, USP9X, regulates proliferation of cells of head and neck cancer lines. Cell Prolif. 49:494–502. 2016. View Article : Google Scholar : PubMed/NCBI

172 

Potu H, Peterson LF, Kandarpa M, Pal A, Sun H, Durham A, Harms PW, Hollenhorst PC, Eskiocak U, Talpaz M and Donato NJ: Usp9× regulates Ets-1 ubiquitination and stability to control NRAS expression and tumorigenicity in melanoma. Nat Commun. 8:144492017. View Article : Google Scholar : PubMed/NCBI

173 

Wu J, Guo W, Wen D, Hou G, Zhou A and Wu W: Deubiquitination and stabilization of programmed cell death ligand 1 by ubiquitin-specific peptidase 9, X-linked in oral squamous cell carcinoma. Cancer Med. 7:4004–4011. 2018. View Article : Google Scholar : PubMed/NCBI

174 

Pandruvada S, Kessler R and Thai A: Head and neck cancer treatment in the era of molecular medicine. Adv Cancer Res. 160:205–252. 2023. View Article : Google Scholar : PubMed/NCBI

175 

Runnels J, Bloom JR, Hsieh K, Dickstein DR, Shi Y, Jones BM, Lehrer EJ and Bakst RL: Combining radiotherapy and immunotherapy in head and neck cancer. Biomedicines. 11:20972023. View Article : Google Scholar : PubMed/NCBI

176 

Chung CH, Li J, Steuer CE, Bhateja P, Johnson M, Masannat J, Poole MI, Song F, Hernandez-Prera JC, Molina H, et al: Phase II multi-institutional clinical trial result of concurrent cetuximab and nivolumab in recurrent and/or metastatic head and neck squamous cell carcinoma. Clin Cancer Res. 28:2329–2338. 2022. View Article : Google Scholar : PubMed/NCBI

177 

Kitamura N, Sento S, Yoshizawa Y, Sasabe E, Kudo Y and Yamamoto T: Current trends and future prospects of molecular targeted therapy in head and neck squamous cell carcinoma. Int J Mol Sci. 22:2402020. View Article : Google Scholar : PubMed/NCBI

178 

Harrington KJ, Burtness B, Greil R, Soulières D, Tahara M, de Castro G Jr, Psyrri A, Brana I, Basté N, Neupane P, et al: Pembrolizumab with or without chemotherapy in recurrent or metastatic head and neck squamous cell carcinoma: Updated results of the phase III KEYNOTE-048 study. J Clin Oncol. 41:790–802. 2023. View Article : Google Scholar : PubMed/NCBI

179 

Cai Y, Dodhia S and Su GH: Dysregulations in the PI3K pathway and targeted therapies for head and neck squamous cell carcinoma. Oncotarget. 8:22203–22217. 2017. View Article : Google Scholar : PubMed/NCBI

180 

Bozec A, Ebran N, Radosevic-Robin N, Chamorey E, Yahia HB, Marcie S, Gautier M, Penault-Llorca F and Milano G: Combination of phosphotidylinositol-3-kinase targeting with cetuximab and irradiation: A preclinical study on an orthotopic xenograft model of head and neck cancer. Head Neck. 39:151–159. 2017. View Article : Google Scholar : PubMed/NCBI

181 

Liao YM, Kim C and Yen Y: Mammalian target of rapamycin and head and neck squamous cell carcinoma. Head Neck Oncol. 3:222011. View Article : Google Scholar : PubMed/NCBI

182 

Marret G, Isambert N, Rezai K, Gal J, Saada-Bouzid E, Rolland F, Chausson M, Borcoman E, Alt M, Klijanienko J, et al: Phase I trial of copanlisib, a selective PI3K inhibitor, in combination with cetuximab in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Invest New Drugs. 39:1641–1648. 2021. View Article : Google Scholar : PubMed/NCBI

183 

Nathan CO, Hayes DN, Karrison T, Harismendy O, Flores JM, Moore-Medlin T, Vokes EE, Gutkind JS, Neupane P, Mills G, et al: A Randomized multi-institutional phase II trial of everolimus as adjuvant therapy in patients with locally advanced squamous cell cancer of the head and neck. Clin Cancer Res. 28:5040–5048. 2022. View Article : Google Scholar : PubMed/NCBI

184 

Poondla N, Chandrasekaran AP, Kim KS and Ramakrishna S: Deubiquitinating enzymes as cancer biomarkers: New therapeutic opportunities? BMB Rep. 52:181–189. 2019. View Article : Google Scholar : PubMed/NCBI

185 

Lee HR, Choi WC, Lee S, Hwang J, Hwang E, Guchhait K, Haas J, Toth Z, Jeon YH, Oh TK, et al: Bilateral inhibition of HAUSP deubiquitinase by a viral interferon regulatory factor protein. Nat Struct Mol Biol. 18:1336–1344. 2011. View Article : Google Scholar : PubMed/NCBI

186 

Hu T, Zhang J, Sha B, Li M, Wang L, Zhang Y, Liu X, Dong Z, Liu Z, Li P and Chen P: Targeting the overexpressed USP7 inhibits esophageal squamous cell carcinoma cell growth by inducing NOXA-mediated apoptosis. Mol Carcinog. 58:42–54. 2019. View Article : Google Scholar : PubMed/NCBI

187 

Yoshizaki T, Kondo S, Endo K, Nakanishi Y, Aga M, Kobayashi E, Hirai N, Sugimoto H, Hatano M, Ueno T, et al: Modulation of the tumor microenvironment by Epstein-Barr virus latent membrane protein 1 in nasopharyngeal carcinoma. Cancer Sci. 109:272–278. 2018. View Article : Google Scholar : PubMed/NCBI

188 

Kondo S, Seo SY, Yoshizaki T, Wakisaka N, Furukawa M, Joab I, Jang KL and Pagano JS: EBV latent membrane protein 1 up-regulates hypoxia-inducible factor 1alpha through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells. Cancer Res. 66:9870–9877. 2006. View Article : Google Scholar : PubMed/NCBI

189 

Kobayashi E, Hwang D, Bheda-Malge A, Whitehurst CB, Kabanov AV, Kondo S, Aga M, Yoshizaki T, Pagano JS, Sokolsky M and Shakelford J: Inhibition of UCH-L1 deubiquitinating activity with two forms of LDN-57444 has anti-invasive effects in metastatic carcinoma cells. Int J Mol Sci. 20:37332019. View Article : Google Scholar : PubMed/NCBI

190 

Ding W, Wang JX, Wu JZ, Liu AC, Jiang LL, Zhang HC, Meng Y, Liu BY, Peng GJ, Lou EZ, et al: Targeting proteasomal deubiquitinases USP14 and UCHL5 with b-AP15 reduces 5-fluorouracil resistance in colorectal cancer cells. Acta Pharmacol Sin. 44:2537–2548. 2023. View Article : Google Scholar : PubMed/NCBI

191 

Kropp KN, Maurer S, Rothfelder K, Schmied BJ, Clar KL, Schmidt M, Strunz B, Kopp HG, Steinle A, Grünebach F, et al: The novel deubiquitinase inhibitor b-AP15 induces direct and NK cell-mediated antitumor effects in human mantle cell lymphoma. Cancer Immunol Immunother. 67:935–947. 2018. View Article : Google Scholar : PubMed/NCBI

192 

Wang S, Wang T, Yang Q, Cheng S, Liu F, Yang G, Wang F, Wang R, Yang D, Zhou M, et al: Proteasomal deubiquitylase activity enhances cell surface recycling of the epidermal growth factor receptor in non-small cell lung cancer. Cell Oncol (Dordr). 45:951–965. 2022. View Article : Google Scholar : PubMed/NCBI

193 

Tian Z, D'Arcy P, Wang X, Ray A, Tai YT, Hu Y, Carrasco RD, Richardson P, Linder S, Chauhan D and Anderson KC: A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood. 123:706–716. 2014. View Article : Google Scholar : PubMed/NCBI

194 

Nalawansha DA and Crews CM: PROTACs: An emerging therapeutic modality in precision medicine. Cell Chem Biol. 27:998–1014. 2020. View Article : Google Scholar : PubMed/NCBI

195 

Noblejas-López MDM, Tébar-García D, López-Rosa R, Alcaraz-Sanabria A, Cristóbal-Cueto P, Pinedo-Serrano A, Rivas-García L and Galán-Moya EM: TACkling cancer by targeting selective protein degradation. Pharmaceutics. 15:24422023. View Article : Google Scholar : PubMed/NCBI

196 

Henning NJ, Boike L, Spradlin JN, Ward CC, Liu G, Zhang E, Belcher BP, Brittain SM, Hesse MJ, Dovala D, et al: Deubiquitinase-targeting chimeras for targeted protein stabilization. Nat Chem Biol. 18:412–421. 2022. View Article : Google Scholar : PubMed/NCBI

197 

Chen Y, Xue H and Jin J: Applications of protein ubiquitylation and deubiquitylation in drug discovery. J Biol Chem. 300:1072642024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang J, Wu L, Tian Z and Chen J: Effect of deubiquitinases in head and neck squamous cell carcinoma (Review). Oncol Lett 29: 307, 2025.
APA
Wang, J., Wu, L., Tian, Z., & Chen, J. (2025). Effect of deubiquitinases in head and neck squamous cell carcinoma (Review). Oncology Letters, 29, 307. https://doi.org/10.3892/ol.2025.15053
MLA
Wang, J., Wu, L., Tian, Z., Chen, J."Effect of deubiquitinases in head and neck squamous cell carcinoma (Review)". Oncology Letters 29.6 (2025): 307.
Chicago
Wang, J., Wu, L., Tian, Z., Chen, J."Effect of deubiquitinases in head and neck squamous cell carcinoma (Review)". Oncology Letters 29, no. 6 (2025): 307. https://doi.org/10.3892/ol.2025.15053
Copy and paste a formatted citation
x
Spandidos Publications style
Wang J, Wu L, Tian Z and Chen J: Effect of deubiquitinases in head and neck squamous cell carcinoma (Review). Oncol Lett 29: 307, 2025.
APA
Wang, J., Wu, L., Tian, Z., & Chen, J. (2025). Effect of deubiquitinases in head and neck squamous cell carcinoma (Review). Oncology Letters, 29, 307. https://doi.org/10.3892/ol.2025.15053
MLA
Wang, J., Wu, L., Tian, Z., Chen, J."Effect of deubiquitinases in head and neck squamous cell carcinoma (Review)". Oncology Letters 29.6 (2025): 307.
Chicago
Wang, J., Wu, L., Tian, Z., Chen, J."Effect of deubiquitinases in head and neck squamous cell carcinoma (Review)". Oncology Letters 29, no. 6 (2025): 307. https://doi.org/10.3892/ol.2025.15053
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team