|
1
|
Roa JC, García P, Kapoor VK, Maithel SK,
Javle M and Koshiol J: Gallbladder cancer. Nat Rev Dis Primers.
8:692022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Song X, Hu Y, Li Y, Shao R, Liu F and Liu
Y: Overview of current targeted therapy in gallbladder cancer.
Signal Transduct Target Ther. 5:2302020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhao Y, Yang M, Feng J, Wang X and Liu Y:
Advances in immunotherapy for biliary tract cancers. Chin Med J
(Engl). 137:524–532. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Schmidt MA, Marcano-Bonilla L and Roberts
LR: Gallbladder cancer: Epidemiology and genetic risk associations.
Chin Clin Oncol. 8(31)2019.PubMed/NCBI
|
|
5
|
Lau CSM, Zywot A, Mahendraraj K and
Chamberlain RS: Gallbladder carcinoma in the United States: A
population based clinical outcomes study involving 22,343 patients
from the surveillance, epidemiology, and end result database
(1973–2013). HPB Surg. 2017:15328352017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hickman L and Contreras C: Gallbladder
cancer: Diagnosis, surgical management, and adjuvant therapies.
Surg Clin North Am. 99:337–355. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Feo CF, Ginesu GC, Fancellu A, Perra T,
Ninniri C, Deiana G, Scanu AM and Porcu A: Current management of
incidental gallbladder cancer: A review. Int J Surg. 98:1062342022.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang J, Ren M, Yu J, Hu M, Wang X, Ma W,
Jiang X and Cui J: Single-cell RNA sequencing highlights the
functional role of human endogenous retroviruses in gallbladder
cancer. EBioMedicine. 85:1043192022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Shen H, He M, Lin R, Zhan M, Xu S, Huang
X, Xu C, Chen W, Yao Y, Mohan M and Wang J: PLEK2 promotes
gallbladder cancer invasion and metastasis through EGFR/CCL2
pathway. J Exp Clin Cancer Res. 38:2472019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wacker F and Dewald C: Local and
locoregional treatment of intrahepatic cholangiocarcinoma.
Radiologe. 62:247–252. 2022.(In German). View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Scott A, Wong P and Melstrom LG: Surgery
and hepatic artery infusion therapy for intrahepatic
cholangiocarcinoma. Surgery. 174:113–115. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Edeline J, Lamarca A, McNamara MG, Jacobs
T, Hubner RA, Palmer D, Groot Koerkamp B, Johnson P, Guiu B and
Valle JW: Locoregional therapies in patients with intrahepatic
cholangiocarcinoma: A systematic review and pooled analysis. Cancer
Treat Rev. 99:1022582021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Mondaca S, Yarmohammadi H and Kemeny NE:
Regional Chemotherapy for Biliary Tract Tumors and Hepatocellular
Carcinoma. Surg Oncol Clin N Am. 28:717–729. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chang Y, Jeong SW, Young Jang J and Jae
Kim Y: Recent updates of transarterial chemoembolilzation in
hepatocellular carcinoma. Int J Mol Sci. 21:81652020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ray CE Jr, Edwards A, Smith MT, Leong S,
Kondo K, Gipson M, Rochon PJ, Gupta R, Messersmith W, Purcell T and
Durham J: Metaanalysis of survival, complications, and imaging
response following chemotherapy-based transarterial therapy
inpatients with unresectable intrahepatic cholangiocarcinoma. J
Vasc Interv Radiol. 24:1218–1226. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Larghi A, Rimbas M, Tringali A, Boškoski
I, Rizzatti G and Costamagna G: Endoscopic radiofrequency biliary
ablation treatment: A comprehensive review. Dig Endosc. 31:245–255.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Deufel CL, Furutani KM, Dahl RA, Grams MP,
McLemore LB, Hallemeier CL, Neben-Wittich M, Martenson JA and
Haddock MG: Technique for the administration of high-dose-rate
brachytherapy to the bile duct using a nasobiliary catheter.
Brachytherapy. 17:718–725. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yin Z, Jin H, Ma T, Zhou Y, Yu M and Jian
Z: A meta-analysis of long-term survival outcomes between Surgical
resection and radiofrequency ablation in patients with a single
hepatocellular carcinoma <2 cm (BCLC very early stage). Int J
Surg. 56:61–67. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Gkika E, Hawkins MA, Grosu AL and Brunner
TB: The evolving role of radiation therapy in the treatment of
biliary tract cancer. Front Oncol. 10:6043872020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Franzese C, Bonu ML, Comito T, Clerici E,
Loi M, Navarria P, Franceschini D, Pressiani T, Rimassa L and
Scorsetti M: Stereotactic body radiotherapy in the management of
oligometastatic and recurrent biliary tract cancer:
Single-institution analysis of outcome and toxicity. J Cancer Res
Clin Oncol. 146:2289–2297. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bisello S, Buwenge M, Palloni A, Autorino
R, Cellini F, Macchia G, Deodato F, Cilla S, Brandi G, Tagliaferri
L, et al: Radiotherapy or chemoradiation in unresectable biliary
cancer: A retrospective study. Anticancer Res. 39:3095–3100. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Komiyama S, Takeda A, Tateishi Y, Tsurugai
Y, Eriguchi T and Horita N: Comparison of stereotactic body
radiotherapy and transcatheter arterial chemoembolization for
hepatocellular carcinoma: Systematic review and meta-analysis.
Radiother Oncol. 202:1106142025. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gkika E, Hallauer L, Kirste S, Adebahr S,
Bartl N, Neeff HP, Fritsch R, Brass V, Nestle U, Grosu AL and
Brunner TB: Stereotactic body radiotherapy (SBRT) for locally
advanced intrahepatic and extrahepatic cholangiocarcinoma. BMC
Cancer. 17:7812017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Salgado SM, Gaidhane M and Kahaleh M:
Endoscopic palliation of malignant biliary strictures. World J
Gastrointest Oncol. 8:240–247. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sasaki T, Takeda T, Okamoto T, Ozaka M and
Sasahira N: Chemotherapy for biliary tract cancer in 2021. J Clin
Med. 10:3108–3122. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Yang L, Wang H, Guo M, He M, Zhang W, Zhan
M and Liu Y: ELF3 promotes gemcitabine resistance through
PKMYT1/CDK1 signaling pathway in gallbladder cancer. Cell Oncol
(Dordr). 46:1085–1095. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Choi IS, Kim KH, Lee JH, Suh KJ and Kim
JW, Park JH, Kim YJ, Kim JS, Kim JH and Kim JW: A randomised phase
II study of oxaliplatin/5-FU (mFOLFOX) versus irinotecan/5-FU
(mFOLFIRI) chemotherapy in locally advanced or metastatic biliary
tract cancer refractory to first-line gemcitabine/cisplatin
chemotherapy. Eur J Cancer. 154:288–295. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Sharma A, Kalyan Mohanti B, Pal Chaudhary
S, Sreenivas V, Kumar Sahoo R, Kumar Shukla N, Thulkar S, Pal S,
Deo SV, Pathy S, et al: Modified gemcitabine and oxaliplatin or
gemcitabine + cisplatin in unresectable gallbladder cancer: Results
of a phase III randomised controlled trial. Eur J Cancer.
123:162–170. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Valle J, Wasan H, Palmer DH, Cunningham D,
Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira
SP, et al: Cisplatin plus gemcitabine versus gemcitabine for
biliary tract cancer. N Engl J Med. 362:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Morizane C, Okusaka T, Mizusawa J,
Katayama H, Ueno M, Ikeda M, Ozaka M, Okano N, Sugimori K, Fukutomi
A, et al: Combination gemcitabine plus S-1 versus gemcitabine plus
cisplatin for advanced/recurrent biliary tract cancer: The FUGA-BT
(JCOG1113) randomized phase III clinical trial. Ann Oncol.
30:1950–1958. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Sharma A, Dwary AD, Mohanti BK, Deo SV,
Pal S, Sreenivas V, Raina V, Shukla NK, Thulkar S, Garg P and
Chaudhary SP: Best supportive care compared with chemotherapy for
unresectable gallbladder cancer: A randomized controlled study. J
Clin Oncol. 28:4581–4586. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Lai J, Yang S, Lin Z, Huang W, Li X, Li R,
Tan J and Wang W: Update on chemoresistance mechanisms to
first-line chemotherapy for gallbladder cancer and potential
reversal strategies. Am J Clin Oncol. 46:131–141. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ben-Josef E, Guthrie KA, El-Khoueiry AB,
Corless CL, Zalupski MM, Lowy AM, Thomas CR Jr, Alberts SR, Dawson
LA, Micetich KC, et al: SWOG S0809: A phase II intergroup trial of
adjuvant capecitabine and gemcitabine followed by radiotherapy and
concurrent capecitabine in extrahepatic cholangiocarcinoma and
gallbladder carcinoma. J Clin Oncol. 33:2617–2622. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lamarca A, Palmer DH, Wasan HS, Ross PJ,
Ma YT, Arora A, Falk S, Gillmore R, Wadsley J, Patel K, et al:
Second-line FOLFOX chemotherapy versus active symptom control for
advanced biliary tract cancer (ABC-06): A phase 3, open-label,
randomized, controlled trial. Lancet Oncol. 22:690–701. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Dodagoudar C, Doval DC, Mahanta A, Goel V,
Upadhyay A, Goyal P, Talwar V, Singh S, John MC, Tiwari S and
Patnaik N: FOLFOX-4 as second-line therapy after failure of
gemcitabine and platinum combination in advanced gall bladder
cancer patients. Jpn J Clin Oncol. 46:57–62. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Edeline J, Touchefeu Y, Guiu B, Farge O,
Tougeron D, Baumgaertner I, Ayav A, Campillo-Gimenez B, Beuzit L,
Pracht M, et al: Radioembolization plus chemotherapy for first-line
treatment of locally advanced intrahepatic cholangiocarcinoma: A
phase 2 clinical trial. JAMA Oncol. 6:51–59. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zhou Y, Yuan K, Yang Y, Ji Z, Zhou D,
Ouyang J, Wang Z, Wang F, Liu C, Li Q, et al: Gallbladder cancer:
Current and future treatment options. Front Pharmacol.
14:11836192023. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Schmid S, Jochum W, Padberg B, Demmer I,
Mertz KD, Joerger M, Britschgi C, Matter MS, Rothschild SI and
Omlin A: How to read a next-generation sequencing report-what
oncologists need to know. ESMO Open. 7:1005702022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
McCombie WR, McPherson JD and Mardis ER:
Next-generation sequencing technologies. Cold Spring Harb Perspect
Med. 9:a0367982019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kuipers H, de Bitter Tjjde Boer MT, van
der Post RS, Nijkamp MW, de Reuver PR, Fehrmann RSN and Hoogwater
FJH: Gallbladder cancer: Current insights in genetic alterations
and their possible therapeutic implications. Cancers (Basel).
13:52572021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Javle M, Bekaii-Saab T, Jain A, Wang Y,
Kelley RK, Wang K, Kang HC, Catenacci D, Ali S, Krishnan S, et al:
Biliary cancer: Utility of next-generation sequencing for clinical
management. Cancer. 122:3838–3847. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Roa I, Garcia H, Game A, de Toro G, de
Aretxabala X and Javle M: Somatic mutations of PI3K in early and
advanced gallbladder cancer: Additional options for an orphan
cancer. J Mol Diagn. 18:388–394. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dixit R, Pandey M, Tripathi SK, Dwivedi AN
and Shukla VK: Comparative analysis of mutational profile of sonic
hedgehog gene in gallbladder cancer. Dig Dis Sci. 62:708–714. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang P, Javle M, Pang F, Zhao W,
Abdel-Wahab R, Chen X, Meric-Bernstam F, Chen H, Borad MJ, Liu Y,
et al: Somatic genetic aberrations in gallbladder cancer:
Comparison between Chinese and US patients. Hepatobiliary Surg
Nutr. 8:604–614. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kim RD, Sanoff HK, Poklepovic AS, Soares
H, Kim J, Lyu J, Liu Y, Nixon AB and Kim DW: A multi-institutional
phase 2 trial of regorafenib in refractory advanced biliary tract
cancer. Cancer. 126:3464–3470. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lee CK, Chon HJ, Cheon J, Lee MA, Im HS,
Jang JS, Kim MH, Park S, Kang B, Hong M, et al: Trastuzumab plus
FOLFOX for HER2-positive biliary tract cancer refractory to
gemcitabine and cisplatin: a multi-institutional phase 2 trial of
the Korean Cancer Study Group (KCSG-HB19-14). Lancet Gastroenterol
Hepatol. 8:56–65. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Costello BA, Borad MJ, Qi Y, Kim GP,
Northfelt DW, Erlichman C and Alberts SR: Phase I trial of
everolimus, gemcitabine and cisplatin in patients with solid
tumors. Investig. New Drugs. 32:710–716. 2014. View Article : Google Scholar
|
|
48
|
Bekaii-Saab TS, Yaeger R, Spira AI,
Pelster MS, Sabari JK, Hafez N, Barve M, Velastegui K, Yan X,
Shetty A, et al: Adagrasib in advanced solid tumors harboring a
KRASG12C mutation. J Clin Oncol. 41:4097–4106. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kastenhuber ER and Lowe SW: Putting p53 in
Context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Vousden KH and Lane DP: p53 in health and
disease. Nat Rev Mol Cell Biol. 8:275–283. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Levine AJ: p53: 800 million years of
evolution and 40 years of discovery. Nat Rev Cancer. 20:471–480.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kennedy MC and Lowe SW: Mutant p53: It's
not all one and the same. Cell Death Differ. 29:983–987. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ajiki T, Onoyama H, Yamamoto M, Asaka K,
Fujimori T, Maeda S and Saitoh Y: p53 protein expression and
prognosis in gallbladder carcinoma and premalignant lesions.
Hepatogastroenterology. 43:521–526. 1996.PubMed/NCBI
|
|
54
|
Zhao C, Yang ZY, Zhang J, Li O, Liu SL,
Cai C, Shu YJ, Pan LJ, Gong W and Dong P: Inhibition of XPO1 with
KPT-330 induces autophagy-dependent apoptosis in gallbladder cancer
by activating the p53/mTOR pathway. J Transl Med. 20:4342022.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Nepal C, Zhu B, O'Rourke CJ, Bhatt DK, Lee
D, Song L, Wang D, Van Dyke AL, Choo-Wosoba H, Liu Z, et al:
Integrative molecular characterisation of gallbladder cancer
reveals micro-environment-associated subtypes. J Hepatol.
74:1132–1144. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Stancu M, Caruntu ID, Sajin M, Giuşca S,
Badescu A and Dobrescu G: Immunohistochemical markers in the study
of gallbladder premalignant lesions and cancer. Rev Med Chir Soc
Med Nat Iasi. 111:734–743. 2007.PubMed/NCBI
|
|
57
|
National Library of Medicine, .
Brightline-2: A Study to Test Whether Brigimadlin (BI 907828) Helps
People With Cancer in the Biliary Tract, Pancreas, Lung or Bladder.
https://ClinicalTrials.gov/show/NCT05512377
|
|
58
|
Pilley S, Rodriguez TA and Vousden KH:
Mutant p53 in cell-cell interactions. Genes Dev. 35:433–448. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Agupitan AD, Neeson P, Williams S, Howitt
J, Haupt S and Haupt Y: p53: A guardian of immunity becomes its
saboteur through mutation. Int J Mol Sci. 21:34522020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Efe G, Rustgi AK and Prives C: p53 at the
crossroads of tumor immunity. Nat Cancer. 5:983–995. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Guo XF, Zhang YY, Kang J, Dou QH and Zhu
XF: A bispecific decoy receptor VEGFR-EGFR/Fc binding EGF-like
ligands and VEGF shows potent antitumor efficacy. J Drug Target.
30:302–312. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hung MS, Chen IC, Lin PY, Lung JH, Li YC,
Lin YC, Yang CT and Tsai YH: Epidermal growth factor receptor
mutation enhances expression of vascular endothelial growth factor
in lung cancer. Oncol Lett. 12:4598–4604. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Singh P, Jain SL, Sakhuja P and Agarwal A:
Expression of VEGF-A, HER2/neu, and KRAS in gall bladder carcinoma
and their correlation with clinico-pathological parameters. Indian
J Pathol Microbiol. 64:687–692. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xu D, Li J, Jiang F, Cai K and Ren G: The
effect and mechanism of vascular endothelial growth factor (VEGF)
on tumor angiogenesis in gallbladder carcinoma. Iran J Public
Health. 48:713–721. 2019.PubMed/NCBI
|
|
65
|
De Lorenzo S, Garajova I, Stefanini B and
Tovoli F: Targeted therapies for gallbladder cancer: An overview of
agents in preclinical and clinical development. Expert Opin
Investig Drugs. 30:759–772. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mabeta P and Steenkamp V: The VEGF/VEGFR
axis revisited: Implications for cancer therapy. Int J Mol Sci.
23:155852022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Patel SA, Nilsson MB, Le X, Cascone T,
Jain RK and Heymach JV: Molecular mechanisms and future
implications of VEGF/VEGFR in cancer therapy. Clin Cancer Res.
29:30–39. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ahamed A, Samanta A, Alam SSM, Mir SA,
Jamil Z, Ali S and Hoque M: Nonsynonymous mutations in VEGF
receptor binding domain alter the efficacy of bevacizumab
treatment. J Cell Biochem. 125:e305152024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Papadimitriou M and Papadimitriou CA:
Antiangiogenic tyrosine kinase inhibitors in metastatic colorectal
cancer: Focusing on regorafenib. Anticancer Res. 41:567–582. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yan H, Wu W, Hu Y, Li J, Xu J, Chen X, Xu
Z, Yang X, Yang B, He Q and Luo P: Regorafenib inhibits EphA2
phosphorylation and leads to liver damage via the ERK/MDM2/p53
axis. Nat Commun. 14:27562023. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sahin IH, Tan E and Kim R: Regorafenib, an
investigational agent for the treatment of cholangiocarcinoma.
Expert Opin Investig Drugs. 30:333–341. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yarden Y and Sliwkowski MX: Untangling the
ErbB signaling network. Nat Rev Mol Cell Biol. 2:127–137. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li M, Liu F, Zhang F, Zhou W, Jiang X,
Yang Y, Qu K, Wang Y, Ma Q, Wang T, et al: Genomic ERBB2/ERBB3
mutations promote PD-L1-mediated immune escape in gallbladder
cancer: A whole-exome sequencing analysis. Gut. 68:1024–1033. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Augustin JE, Soussan P and Bass AJ:
Targeting the complexity of ERBB2 biology in gastroesophageal
carcinoma. Ann Oncol. 33:1134–1148. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Fernandez AI, Liu M, Bellizzi A, Brock J,
Fadare O, Hanley K, Harigopal M, Jorns JM, Kuba MG, Ly A, et al:
Examination of Low ERBB2 Protein Expression in Breast Cancer
Tissue. JAMA Oncol. 8:1–4. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kam AE, Masood A and Shroff RT: Current
and emerging therapies for advanced biliary tract cancers. Lancet
Gastroenterol Hepatol. 6:956–969. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Merters J and Lamarca A: Integrating
cytotoxic, targeted and immune therapies for cholangiocarcinoma. J
Hepatol. 78:652–657. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Nam AR, Kim JW, Cha Y, Ha H, Park JE, Bang
JH, Jin MH, Lee KH, Kim TY, Han SW, et al: Therapeutic implication
of HER2 in advanced biliary tract cancer. Oncotarget.
7:58007–58021. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
National Library of Medicine, .
Trastuzumab-pkrb Combined With Modified FOLFOX-6 in Biliary Tract
Cancer Patients Progressed on First Line Therapy. https://ClinicalTrials.gov/show/NCT04722133
|
|
80
|
Peng Y, Wang Y, Zhou C, Mei W and Zeng C:
PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we
making headway? Front Oncol. 12:8191282022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lavacchi D, Caliman E, Rossi G, Buttitta
E, Botteri C, Fancelli S, Pellegrini E, Roviello G, Pillozzi S and
Antonuzzo L: Ivosidenib in IDH1-mutated cholangiocarcinoma:
Clinical evaluation and future directions. Pharmacol Ther.
237:1081702022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang J, Jiang W, Liu S, Shi K, Zhang Y,
Chen Y, Shan J, Wang Y, Xu X, Li C and Li X: Exosome-derived
miR-182-5p promoted cholangiocarcinoma progression and
vasculogenesis by regulating ADK/SEMA5a/PI3K pathway. Liver Int.
44:370–388. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Narayanankutty A: PI3K/akt/mTOR pathway as
a therapeutic target for colorectal cancer: A review of preclinical
and clinical evidence Curr. Drug Targets. 20:1217–1226. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Rosenberg L, Yoon CH, Sharma G,
Bertagnolli MM and Cho NL: Sorafenib inhibits proliferation and
invasion in desmoid-derived cells by targeting Ras/MEK/ERK and
PI3K/Akt/mTOR pathways. Carcinogenesis. 39:681–688. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Cai C, Dang W, Liu S, Huang L, Li Y, Li G,
Yan S, Jiang C, Song X, Hu Y and Gu J: Anthrax toxin receptor
1/tumor endothelial marker 8 promotes gastric cancer progression
through activation of the PI3K/AKT/mTOR signaling pathway. Cancer
Sci. 111:1132–1145. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu H, Liu C, Wang M, Sun D, Zhu P, Zhang
P, Tan X and Shi G: Tanshinone IIA affects the malignant growth of
Cholangiocarcinoma cells by inhibiting the PI3K-Akt-mTOR pathway.
Sci Rep. 11:192682021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan
T, Yang W, Tian C, Miao Z, Wang T and Yang S: Small molecules in
targeted cancer therapy: Advances, challenges, and future
perspectives. Signal Transduct Target Ther. 6:2012021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Barbacid M: ras genes. Annu Rev Biochem.
56:779–827. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hallin J, Bowcut V, Calinisan A, Briere
DM, Hargis L, Engstrom LD, Laguer J, Medwid J, Vanderpool D, Lifset
E, et al: Anti-tumor efficacy of a potent and selective
non-covalent KRASG12D inhibitor. Nat Med. 8:2171–2182. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Zhu C, Guan X, Zhang X, Luan X, Song Z,
Cheng X, Zhang W and Qin JJ: Targeting KRAS mutant cancers: From
druggable therapy to drug resistance. Mol Cancer. 21:1592022.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hunter JC, Manandhar A, Carrasco MA,
Gurbani D, Gondi S and Westover KD: Biochemical and structural
analysis of common cancer-associated KRAS mutations. Mol Cancer
Res. 13:1325–1335. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Huang L, Guo Z, Wang F and Fu L: KRAS
mutation: From undruggable to druggable in cancer. Signal Transduct
Target Ther. 6:3862021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Nagao M, Fukuda A, Omatsu M, Namikawa M,
Sono M, Fukunaga Y, Masuda T, Araki O, Yoshikawa T, Ogawa S, et al:
Concurrent activation of Kras and canonical Wnt signaling induces
premalignant lesions that progress to extrahepatic biliary cancer
in mice. Cancer Res. 82:1803–1817. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Gotwals P, Cameron S, Cipolletta D,
Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S,
Sabatos-Peyton C, Petruzzelli L, et al: Prospects for combining
targeted and conventional cancer therapy with immunotherapy. Nat
Rev Cancer. 17:286–301. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Obeid M, Tesniere A, Ghiringhelli F, Fimia
GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T,
Casares N, et al: Calreticulin exposure dictates the immunogenicity
of cancer cell death. Nat Med. 13:54–61. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhu H, Shan Y, Ge K, Lu J, Kong W and Jia
C: Oxaliplatin induces immunogenic cell death in hepatocellular
carcinoma cells and synergizes with immune checkpoint blockade
therapy. Cell Oncol (Dordr). 43:1203–1214. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yi M, Zheng X, Niu M, Zhu S, Ge H and Wu
K: Combination strategies with PD-1/PD-L1 blockade: current
advances and future directions. Mol Cancer. 21:282022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang L, Tang K, Li X and Lu W:
Anti-PD-1-based immunotherapy plus lenvatinib to treat advanced
gallbladder cancer in the elderly: A case series and review of
current literature. J Cancer Res Clin Oncol. 149:941–950. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Patel SP, Guadarrama E, Chae YK, Dennis
MJ, Powers BC, Liao CY, Ferri WA Jr, George TJ, Sharon E, Ryan CW,
et al: SWOG 1609 cohort 48: Anti-CTLA-4 and anti-PD-1 for advanced
gallbladder cancer. Cancer. 130:2918–2927. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zheng Q, Wu C, Ye H, Xu Z, Ji Y, Rao J, Lu
L, Zhu Y and Cheng F: Analysis of the efficacy and prognostic
factors of PD-1 inhibitors in advanced gallbladder cancer. Ann
Transl Med. 9:15682021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Jalili-Nik M, Soltani A, Mashkani B,
Rafatpanah H and Hashemy SI: PD-1 and PD-L1 inhibitors foster the
progression of adult T-cell Leukemia/Lymphoma. Int Immunopharmacol.
98:1078702021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zuo H and Wan Y: Inhibition of myeloid
PD-L1 suppresses osteoclastogenesis and cancer bone metastasis.
Cancer Gene Ther. 29:1342–1354. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Luke JJ, Rutkowski P, Queirolo P, Del
Vecchio M, Mackiewicz J, Chiarion-Sileni V, de la Cruz Merino L,
Khattak MA, Schadendorf D, Long GV, et al: Pembrolizumab versus
placebo as adjuvant therapy in completely resected stage IIB or IIC
melanoma (KEYNOTE-716): A randomized, double-blind, phase 3 trial.
Lancet. 399:1718–1729. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y
and Xia Y: Improvement of the anticancer efficacy of PD-1/PD-L1
blockade via combination therapy and PD-L1 regulation. J Hematol
Oncol. 15:242022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Chu X, Tian W, Wang Z, Zhang J and Zhou R:
Co-inhibition of TIGIT and PD-1/PD-L1 in cancer immunotherapy:
Mechanisms and clinical trials. Mol Cancer. 22:932023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Tang Q, Chen Y, Li X, Long S, Shi Y, Yu Y,
Wu W, Han L and Wang S: The role of PD-1/PD-L1 and application of
immune-checkpoint inhibitors in human cancers. Front Immunol.
13:9644422022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Xie Q, Wang L and Zheng S: Prognostic and
clinicopathological significance of PD-L1 in patients with
cholangiocarcinoma: A meta-analysis. Dis Markers. 2020:18179312020.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Xia L, Liu Y and Wang Y: PD-1/PD-L1
blockade therapy in advanced non-small cell lung cancer: Current
status and future directions. Oncologist. 24 (Suppl 1):S31–S41.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Aguiar PN Jr, De Mello RA, Hall P,
Tadokoro H and Lima Lopes G: PD-L1 expression as a predictive
biomarker in advanced non-small cell lung cancer: Updated survival
data. Immunotherapy. 9:499–506. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang H, Dai Z, Wu W, Wang Z, Zhang N,
Zhang L, Zeng WJ, Liu Z and Cheng Q: Regulatory mechanisms of
immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer
Res. 40:1842021. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Sznol M and Melero I: Revisiting
anti-CTLA-4 antibodies in combination with PD-1 blockade for cancer
immunotherapy. Ann Oncol. 32:295–297. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Rotte A: Combination of CTLA-4 and PD-1
blockers for treatment of cancer. J Exp Clin Cancer Res.
38:2552019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Doki Y, Ueno M, Hsu CH, Oh DY, Park K,
Yamamoto N, Ioka T, Hara H, Hayama M, Nii M, et al: Tolerability
and efficacy of durvalumab, either as monotherapy or in combination
with tremelimumab, in patients from Asia with advanced biliary
tract, esophageal, or head-and-neck cancer. Cancer Med.
11:2550–2560. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang X, Zhu L, Zhang H, Chen S and Xiao
Y: CAR-T cell therapy in hematological malignancies: Current
opportunities and challenges. Front Immunol. 13:9271532022.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Goyco Vera D, Waghela H, Nuh M, Pan J and
Lulla P: Approved CAR-T therapies have reproducible efficacy and
safety in clinical practice. Hum Vaccin Immunother. 20:23785432024.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
National Library of Medicine, . Clinical
Study of CAR-CLD18 T Cells in Patients With Advanced Gastric
Adenocarcinoma and Pancreatic Adenocarcinoma. https://ClinicalTrials.gov/show/NCT03159819
|
|
117
|
Wang Y, Jain P, Locke FL, Maurer MJ, Frank
MJ, Munoz JL, Dahiya S, Beitinjaneh AM, Jacobs MT, Mcguirk JP, et
al: Brexucabtagene autoleucel for relapsed or refractory mantle
cell lymphoma in standard-of-care practice: Results from the US
lymphoma CAR T consortium. J Clin Oncol. 41:2594–2606. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Depil S, Duchateau P, Grupp SA, Mufti G
and Poirot L: ‘Off-the-shelf’ allogeneic CAR T cells: Development
and challenges. Nat Rev Drug Discov. 19:185–199. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Sterner RC and Sterner RM: CAR-T cell
therapy: Current limitations and potential strategies. Blood Cancer
J. 11:692021. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan
CX and Zhu Z: CAR race to cancer immunotherapy: from CAR T, CAR NK
to CAR macrophage therapy. J Exp Clin Cancer Res. 41:1192022.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang
C, Ye Z and Qian Q: Current progress in CAR-T cell therapy for
solid tumors. Int J Biol Sci. 15:2548–2560. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Faghfuri E, Pourfarzi F, Faghfouri AH,
Abdoli Shadbad M, Hajiasgharzadeh K and Baradaran B: Recent
developments of RNA-based vaccines in cancer immunotherapy. Expert
Opin Biol Ther. 21:201–218. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Malacopol AT and Holst PJ: Cancer
vaccines: Recent insights and future directions. Int J Mol Sci.
25:112562024. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Miao L, Zhang Y and Huang L: mRNA vaccine
for cancer immunotherapy. Mol Cancer. 20:412021. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Binda C, Anderloni A, Fugazza A, Amato A,
de Nucci G, Redaelli A, Di Mitri R, Cugia L, Pollino V,
Macchiarelli R, et al: EUS-guided gallbladder drainage using a
lumen-apposing metal stent as rescue treatment for malignant distal
biliary obstruction: A large multicenter experience. Gastrointest
Endosc. 98:765–773. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Benson AB, D'Angelica MI, Abbott DE, Anaya
DA, Anders R, Are C, Bachini M, Borad M, Brown D, Burgoyne A, et
al: Hepatobiliary cancers, version 2.2021, NCCN clinical practice
guidelines in oncology. J Natl Compr Canc Netw. 19:541–565. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Strang P: Palliative oncology and
palliative care. Mol Oncol. 16:3399–3409. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Beasley AM, Bakitas MA, Ivankova N and
Shirey MR: Evolution and conceptual foundations of nonhospice
palliative care. West J Nurs Res. 41:1347–1369. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Kozlov E, Niknejad B and Reid MC:
Palliative care gaps in providing psychological treatment: A review
of the current state of research in multidisciplinary palliative
care. Am J Hosp Palliat Care. 35:505–510. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Tondorf T, Grossert A, Rothschild SI,
Koller MT, Rochlitz C, Kiss A, Schaefert R, Meinlschmidt G,
Hunziker S and Zwahlen D: Focusing on cancer patients' intentions
to use psychooncological support: A longitudinal, mixed-methods
study. Psychooncology. 27:1656–1663. 2018. View Article : Google Scholar : PubMed/NCBI
|