|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Fugazzola L, Elisei R, Fuhrer D, Jarzab B,
Leboulleux S, Newbold K and Smit J: 2019 European thyroid
association guidelines for the treatment and follow-up of advanced
radioiodine-refractory thyroid cancer. Eur Thyroid J. 8:227–245.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Gunda V, Gigliotti B, Ashry T, Ndishabandi
D, McCarthy M, Zhou Z, Amin S, Lee KE, Stork T, Wirth L, et al:
Anti-PD-1/PD-L1 therapy augments lenvatinib's efficacy by favorably
altering the immune microenvironment of murine anaplastic thyroid
cancer. Int J Cancer. 144:2266–2278. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Bible KC, Kebebew E, Brierley J, Brito JP,
Cabanillas ME, Clark TJ Jr, Di Cristofano A, Foote R, Giordano T,
Kasperbauer J, et al: 2021 American thyroid association guidelines
for management of patients with anaplastic thyroid cancer. Thyroid.
31:337–386. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Duan H, Li Y, Hu P, Gao J, Ying J, Xu W,
Zhao D, Wang Z, Ye J, Lizaso A, et al: Mutational profiling of
poorly differentiated and anaplastic thyroid carcinoma by the use
of targeted next-generation sequencing. Histopathology. 75:890–899.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ferrari SM, Elia G, Ragusa F, Ruffilli I,
La Motta C, Paparo SR, Patrizio A, Vita R, Benvenga S, Materazzi G,
et al: Novel treatments for anaplastic thyroid carcinoma. Gland
Surg. 9 (Suppl 1):S28–S42. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ragazzi M, Ciarrocchi A, Sancisi V,
Gandolfi G, Bisagni A and Piana S: Update on anaplastic thyroid
carcinoma: morphological, molecular, and genetic features of the
most aggressive thyroid cancer. Int J Endocrinol. 2014:7908342014.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Xing M: Molecular pathogenesis and
mechanisms of thyroid cancer. Nat Rev Cancer. 13:184–199. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Landa I, Ibrahimpasic T, Boucai L, Sinha
R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP,
Xu B, et al: Genomic and transcriptomic hallmarks of poorly
differentiated and anaplastic thyroid cancers. J Clin Invest.
126:1052–1066. 2016. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pozdeyev N, Gay LM, Sokol ES, Hartmaier R,
Deaver KE, Davis S, French JD, Borre PV, LaBarbera DV, Tan AC, et
al: Genetic analysis of 779 advanced differentiated and anaplastic
thyroid cancers. Clin Cancer Res. 24:3059–3068. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Romei C, Tacito A, Molinaro E, Piaggi P,
Cappagli V, Pieruzzi L, Matrone A, Viola D, Agate L, Torregrossa L,
et al: Clinical, pathological and genetic features of anaplastic
and poorly differentiated thyroid cancer: A single institute
experience. Oncol Lett. 15:9174–9182. 2018.PubMed/NCBI
|
|
12
|
Sacks D, Baxter B, Campbell BCV, Carpenter
JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA,
et al: Multisociety consensus quality improvement revised consensus
statement for endovascular therapy of acute ischemic stroke: From
the American association of neurological surgeons (AANS), American
society of neuroradiology (ASNR), cardiovascular and interventional
radiology society of Europe (CIRSE), Canadian Interventional
Radiology Association (CIRA), Congress of Neurological Surgeons
(CNS), European society of minimally invasive neurological therapy
(ESMINT), European society of neuroradiology (ESNR), European
stroke organization (ESO), Society for Cardiovascular Angiography
and Interventions (SCAI), Society of Interventional Radiology
(SIR), Society of NeuroInterventional Surgery (SNIS), and World
stroke organization (WSO). J Vasc Interv Radiol. 29:441–453. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Conzo G, Docimo G, Mauriello C,
Gambardella C, Esposito D, Cavallo F, Tartaglia E, Napolitano S and
Santini L: The current status of lymph node dissection in the
treatment of papillary thyroid cancer. A literature review. Clin
Ter. 164:e343–e346. 2013.PubMed/NCBI
|
|
14
|
Conzo G, Mauriello C, Docimo G,
Gambardella C, Thomas G, Cavallo F, Tartaglia E, Napolitano S,
Varriale R, Rossetti G, et al: Clinicopathological pattern of lymph
node recurrence of papillary thyroid cancer. Implications for
surgery. Int J Surg. 12 (Suppl 1):S194–S197. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Laetitia G, Sven S and Fabrice J:
Combinatorial therapies in thyroid cancer: An overview of
preclinical and clinical progresses. Cells. 9:8302020. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bible KC, Kebebew E, Brierley J, Brito JP,
Cabanillas ME, Clark TJ Jr, Di Cristofano A, Foote R, Giordano T,
Kasperbauer J, et al: 2021 American Thyroid association guidelines
for management of patients with anaplastic thyroid cancer: American
thyroid association anaplastic thyroid cancer guidelines task force
by bible. Thyroid. 31:337–386. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Trendowski MR, El Charif O, Dinh PC Jr,
Travis LB and Dolan ME: Genetic and modifiable risk factors
contributing to cisplatin-induced toxicities. Clin Cancer Res.
25:1147–1155. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Frederiks CN, Lam SW, Guchelaar HJ and
Boven E: Genetic polymorphisms and paclitaxel- or docetaxel-induced
toxicities: A systematic review. Cancer Treat Rev. 41:935–950.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tirrò E, Martorana F, Romano C, Vitale SR,
Motta G, Di Gregorio S, Massimino M, Pennisi MS, Stella S, Puma A,
et al: Molecular alterations in thyroid cancer: From bench to
clinical practice. Genes (Basel). 10:7092019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Liu J, Liu R, Shen X, Zhu G, Li B and Xing
M: The genetic duet of BRAF V600E and TERT promoter mutations
robustly predicts loss of radioiodine avidity in recurrent
papillary thyroid cancer. J Nucl Med. 61:177–182. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Hussein Z, Mizuo H, Hayato S, Namiki M and
Shumaker R: Clinical pharmacokinetic and pharmacodynamic profile of
lenvatinib, an orally active, small-molecule, multitargeted
tyrosine kinase inhibitor. Eur J Drug Metab Pharmacokinet.
42:903–914. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nair A, Lemery SJ, Yang J, Marathe A, Zhao
L, Zhao H, Jiang X, He K, Ladouceur G, Mitra AK, et al: FDA
approval summary: lenvatinib for progressive,
radio-iodine-refractory differentiated thyroid cancer. Clin Cancer
Res. 21:5205–5208. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Iwasaki H, Toda S, Murayama D, Kato S and
Matsui A: Relationship between adverse events associated with
lenvatinib treatment for thyroid cancer and patient prognosis. Mol
Clin Oncol. 14:282021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cabanillas ME and Habra MA: Lenvatinib:
Role in thyroid cancer and other solid tumors. Cancer Treat Rev.
42:47–55. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zeng H, Dvorak HF and Mukhopadhyay D:
Vascular permeability factor (VPF)/vascular endothelial growth
factor (VEGF) peceptor-1 down-modulates VPF/VEGF
receptor-2-mediated endothelial cell proliferation, but not
migration, through phosphatidylinositol 3-kinase-dependent
pathways. J Biol Chem. 276:26969–26979. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Barnhart BJ and Cox SH: DNA replication of
induced prophage in Haemophilus influenzae. J Virol. 12:165–176.
1973. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wedge SR, Ogilvie DJ, Dukes M, Kendrew J,
Chester R, Jackson JA, Boffey SJ, Valentine PJ, Curwen JO, Musgrove
HL, et al: ZD6474 inhibits vascular endothelial growth factor
signaling, angiogenesis, and tumor growth following oral
administration. Cancer Res. 62:4645–4655. 2002.PubMed/NCBI
|
|
28
|
Glen H, Mason S, Patel H, Macleod K and
Brunton VG: E7080, a multi-targeted tyrosine kinase inhibitor
suppresses tumor cell migration and invasion. BMC Cancer.
11:3092011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wesche J, Haglund K and Haugsten EM:
Fibroblast growth factors and their receptors in cancer. Biochem J.
437:199–213. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tohyama O, Matsui J, Kodama K, Hata-Sugi
N, Kimura T, Okamoto K, Minoshima Y, Iwata M and Funahashi Y:
Antitumor activity of lenvatinib (e7080): An angiogenesis inhibitor
that targets multiple receptor tyrosine kinases in preclinical
human thyroid cancer models. J Thyroid Res. 2014:6387472014.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Adam P, Kircher S, Sbiera I, Koehler VF,
Berg E, Knösel T, Sandner B, Fenske WK, Bläker H, Smaxwil C, et al:
FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated
Thyroid Cancer: Evaluation of the Preclinical Rationale. Front
Endocrinol (Lausanne). 12:7121072021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Okamoto K, Kodama K, Takase K, Sugi NH,
Yamamoto Y, Iwata M and Tsuruoka A: Antitumor activities of the
targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against
RET gene fusion-driven tumor models. Cancer Lett. 340:97–103. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Santoro M, Melillo RM and Fusco A: RET/PTC
activation in papillary thyroid carcinoma: European Journal of
Endocrinology Prize Lecture. Eur J Endocrinol. 155:645–653. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Mazeh H, Mizrahi I, Halle D, Ilyayev N,
Stojadinovic A, Trink B, Mitrani-Rosenbaum S, Roistacher M, Ariel
I, Eid A, et al: Development of a microRNA-based molecular assay
for the detection of papillary thyroid carcinoma in aspiration
biopsy samples. Thyroid. 21:111–118. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hao Z and Wang P: Lenvatinib in management
of solid tumors. Oncologist. 25:e302–e310. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Ferrari SM, Bocci G, Di Desidero T, Elia
G, Ruffilli I, Ragusa F, Orlandi P, Paparo SR, Patrizio A, Piaggi
S, et al: Lenvatinib exhibits antineoplastic activity in anaplastic
thyroid cancer in vitro and in vivo. Oncol Rep. 39:2225–2234.
2018.PubMed/NCBI
|
|
37
|
Wang R, Yamada T, Arai S, Fukuda K,
Taniguchi H, Tanimoto A, Nishiyama A, Takeuchi S, Yamashita K,
Ohtsubo K, et al: Distribution and activity of lenvatinib in brain
tumor models of human anaplastic thyroid cancer cells in severe
combined immune deficient mice. Mol Cancer Ther. 18:947–956. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Murayama D, Yamamoto Y, Matsui A, Yasukawa
M, Okamoto S, Toda S and Iwasaki H: Lung cavitation in patients
with anaplastic thyroid cancer treated with lenvatinib. Gland Surg.
11:963–969. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Datar S, Cabanillas M, Dadu R, Ost D and
Grosu HB: Pulmonary cavitation in patients with thyroid cancer
receiving antiangiogenic agents. BMC Cancer. 20:11812020.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cho JS, Park MH, Ryu YJ and Yoon JH: The
neutrophil to lymphocyte ratio can discriminate anaplastic thyroid
cancer against poorly or well differentiated cancer. Ann Surg Treat
Res. 88:187–192. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fukuda N, Toda K, Fujiwara YU, Wang X,
Ohmoto A, Urasaki T, Hayashi N, Sato Y, Nakano K, Yunokawa M, et
al: Neutrophil-to-lymphocyte ratio as a prognostic marker for
anaplastic thyroid cancer treated with lenvatinib. In Vivo.
34:2859–2864. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yamazaki H, Iwasaki H, Suganuma N, Toda S,
Masudo K, Nakayama H, Rino Y and Masuda M: Inflammatory biomarkers
and dynamics of neutrophil-to-lymphocyte ratio in lenvatinib
treatment for anaplastic thyroid carcinoma. Gland Surg. 10:852–860.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tomoda C, Sugino K, Kitagawa W, Nagahama M
and Ito K: The time series behavior of neutrophil-to-lymphocyte
ratio in thyroid cancer patients on tyrosine kinase inhibitor
therapy. ORL J Otorhinolaryngol Relat Spec. 83:347–353. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Tahara M, Kiyota N, Yamazaki T, Chayahara
N, Nakano K, Inagaki L, Toda K, Enokida T, Minami H, Imamura Y, et
al: Lenvatinib for anaplastic thyroid cancer. Front Oncol.
7:252017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wirth LJ, Brose MS, Sherman EJ, Licitra L,
Schlumberger M, Sherman SI, Bible KC, Robinson B, Rodien P, Godbert
Y, et al: Open-label, single-arm, multicenter, phase II trial of
lenvatinib for the treatment of patients with anaplastic thyroid
cancer. J Clin Oncol. 39:2359–2366. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Eskens FA and Verweij J: The clinical
toxicity profile of vascular endothelial growth factor (VEGF) and
vascular endothelial growth factor receptor (VEGFR) targeting
angiogenesis inhibitors; a review. Eur J Cancer. 42:3127–3139.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Takahashi S, Tahara M, Ito K, Tori M,
Kiyota N, Yoshida K, Sakata Y and Yoshida A: Safety and
effectiveness of lenvatinib in 594 patients with unresectable
thyroid cancer in an all-case post-marketing observational study in
Japan. Adv Ther. 37:3850–3862. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yamada K, Yamamoto N, Yamada Y, Nokihara
H, Fujiwara Y, Hirata T, Koizumi F, Nishio K, Koyama N and Tamura
T: Phase I dose-escalation study and biomarker analysis of E7080 in
patients with advanced solid tumors. Clin Cancer Res. 17:2528–2537.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kim M, Ahn J, Song DE, Yoon JH, Kang HC,
Lim DJ, Kim WG, Kim TY, Kim WB, Shong YK, et al: Real-world
experience of lenvatinib in patients with advanced anaplastic
thyroid cancer. Endocrine. 71:427–433. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Enomoto K, Hirayama S, Kumashiro N, Jing
X, Kimura T, Tamagawa S, Matsuzaki I, Murata SI and Hotomi M:
Synergistic effects of lenvatinib (E7080) and MEK inhibitors
against anaplastic thyroid cancer in preclinical models. Cancers
(Basel). 13:8622021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Hong CM, Oh JM, Gangadaran P, Rajendran RL
and Ahn BC: treatment effect of combining lenvatinib and
vemurafenib for BRAF mutated anaplastic thyroid cancer. Int J
Thyroidol. 14:127–134. 2021. View Article : Google Scholar
|
|
52
|
Zhang H and Chen D: Synergistic inhibition
of MEK/ERK and BRAF V600E with PD98059 and PLX4032 induces
sodium/iodide symporter (NIS) expression and radioiodine uptake in
BRAF mutated papillary thyroid cancer cells. Thyroid Res.
11:132018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Song H, Zhang J, Ning L, Zhang H, Chen D,
Jiao X and Zhang K: The MEK1/2 Inhibitor AZD6244 Sensitizes
BRAF-mutant thyroid cancer to vemurafenib. Med Sci Monit.
24:3002–3010. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Su X, Liu J, Zhang H, Gu Q, Zhou X, Ji M
and Yao D: Lenvatinib promotes the antitumor effect of doxorubicin
in anaplastic thyroid cancer. Onco Targets Ther. 13:11183–11192.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ulm R, Revenkova E, di Sansebastiano GP,
Bechtold N and Paszkowski J: Mitogen-activated protein kinase
phosphatase is required for genotoxic stress relief in Arabidopsis.
Genes Dev. 15:699–709. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Wood CD, Thornton TM, Sabio G, Davis RA
and Rincon M: Nuclear localization of p38 MAPK in response to DNA
damage. Int J Biol Sci. 5:428–437. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Martino E, Casamassima G, Castiglione S,
Cellupica E, Pantalone S, Papagni F, Rui M, Siciliano AM and
Collina S: Vinca alkaloids and analogues as anti-cancer agents:
Looking back, peering ahead. Bioorg Med Chem Lett. 28:2816–2826.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shaked Y, Emmenegger U, Man S, Cervi D,
Bertolini F, Ben-David Y and Kerbel RS: Optimal biologic dose of
metronomic chemotherapy regimens is associated with maximum
antiangiogenic activity. Blood. 106:3058–3061. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Di Desidero T, Orlandi P, Gentile D,
Banchi M, Alì G, Kusmic C, Armanetti P, Cayme GJ, Menichetti L,
Fontanini G, et al: Pharmacological effects of vinorelbine in
combination with lenvatinib in anaplastic thyroid cancer. Pharmacol
Res. 158:1049202020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wu S and Fu L: Tyrosine kinase inhibitors
enhanced the efficacy of conventional chemotherapeutic agent in
multidrug resistant cancer cells. Mol Cancer. 17:252018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ryder M, Ghossein RA, Ricarte-Filho JC,
Knauf JA and Fagin JA: Increased density of tumor-associated
macrophages is associated with decreased survival in advanced
thyroid cancer. Endocr Relat Cancer. 15:1069–1074. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Eubank TD, Galloway M, Montague CM,
Waldman WJ and Marsh CB: M-CSF induces vascular endothelial growth
factor production and angiogenic activity from human monocytes. J
Immunol. 171:2637–2643. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Abbasifarid E, Sajjadi-Jazi SM, Beheshtian
M, Samimi H, Larijani B and Haghpanah V: The role of ATP-binding
cassette transporters in the chemoresistance of anaplastic thyroid
cancer: A systematic review. Endocrinology. 160:2015–2023. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Iyer PC, Dadu R, Gule-Monroe M, Busaidy
NL, Ferrarotto R, Habra MA, Zafereo M, Williams MD, Gunn GB, Grosu
H, et al: Salvage pembrolizumab added to kinase inhibitor therapy
for the treatment of anaplastic thyroid carcinoma. J Immunother
Cancer. 6:682018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
French JD, Bible K, Spitzweg C, Haugen BR
and Ryder M: Leveraging the immune system to treat advanced thyroid
cancers. Lancet Diabetes Endocrinol. 5:469–481. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Suzuki S, Shibata M, Gonda K, Kanke Y,
Ashizawa M, Ujiie D, Suzushino S, Nakano K, Fukushima T, Sakurai K,
et al: Immunosuppression involving increased myeloid-derived
suppressor cell levels, systemic inflammation and hypoalbuminemia
are present in patients with anaplastic thyroid cancer. Mol Clin
Oncol. 1:959–964. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Galdiero MR, Varricchi G and Marone G: The
immune network in thyroid cancer. Oncoimmunology. 5:e11685562016.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Woyach JA, Kloos RT, Ringel MD, Arbogast
D, Collamore M, Zwiebel JA, Grever M, Villalona-Calero M and Shah
MH: Lack of therapeutic effect of the histone deacetylase inhibitor
vorinostat in patients with metastatic radioiodine-refractory
thyroid carcinoma. J Clin Endocrinol Metab. 94:164–170. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lee YS, Kim SM, Kim BW, Chang HJ, Kim SY,
Park CS, Park KC and Chang HS: Anti-cancer effects of HNHA and
lenvatinib by the suppression of EMT-mediated drug resistance in
cancer stem cells. Neoplasia. 20:197–206. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Brown WS, Akhand SS and Wendt MK: FGFR
signaling maintains a drug persistent cell population following
epithelial-mesenchymal transition. Oncotarget. 7:83424–83436. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shibue T and Weinberg RA: EMT, CSCs, and
drug resistance: The mechanistic link and clinical implications.
Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Meidhof S, Brabletz S, Lehmann W, Preca
BT, Mock K, Ruh M, Schüler J, Berthold M, Weber A, Burk U, et al:
ZEB1-associated drug resistance in cancer cells is reversed by the
class I HDAC inhibitor mocetinostat. EMBO Mol Med. 7:831–847. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhou G, Zhang F, Guo Y, Huang J, Xie Y,
Yue S, Chen M, Jiang H and Li M: miR-200c enhances sensitivity of
drug-resistant non-small cell lung cancer to gefitinib by
suppression of PI3K/Akt signaling pathway and inhibites cell
migration via targeting ZEB1. Biomed Pharmacother. 85:113–119.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Kwok G, Yau TC, Chiu JW, Tse E and Kwong
YL: Pembrolizumab (Keytruda). Hum Vaccin Immunother. 12:2777–2789.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Dierks C, Seufert J, Aumann K, Ruf J,
Klein C, Kiefer S, Rassner M, Boerries M, Zielke A, la Rosee P, et
al: Combination of lenvatinib and pembrolizumab is an effective
treatment option for anaplastic and poorly differentiated thyroid
carcinoma. Thyroid. 31:1076–1085. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kim SY, Kim SM, Kim JW, Lee IJ, Jeon TJ,
Chang H, Kim BW, Lee YS, Chang HS and Park CS: Survival with
lenvatinib for the treatment of progressive anaplastic thyroid
cancer: A single-center, retrospective analysis. Front Endocrinol
(Lausanne). 11:5992020. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Schlumberger M, Tahara M, Wirth LJ,
Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff
AO, et al: Lenvatinib versus placebo in radioiodine-refractory
thyroid cancer. N Engl J Med. 372:621–630. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Are C and Shaha AR: Anaplastic thyroid
carcinoma: Biology, pathogenesis, prognostic factors, and treatment
approaches. Ann Surg Oncol. 13:453–464. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kebebew E, Greenspan FS, Clark OH, Woeber
KA and McMillan A: Anaplastic thyroid carcinoma. Treatment outcome
and prognostic factors. Cancer. 103:1330–1335. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sugitani I, Miyauchi A, Sugino K, Okamoto
T, Yoshida A and Suzuki S: Prognostic factors and treatment
outcomes for anaplastic thyroid carcinoma: ATC research consortium
of Japan cohort study of 677 patients. World J Surg. 36:1247–1254.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu L, Wang E, Li L, Chen D, Peng K, Wang
M and Han G: As clinical markers, hand-foot-skin reaction and
diarrhea can predict better outcomes for hepatocellular carcinoma
patients receiving transarterial chemoembolization plus sorafenib.
Can J Gastroenterol Hepatol. 2019:25763492019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Robinson B, Schlumberger M, Wirth LJ,
Dutcus CE, Song J, Taylor MH, Kim SB, Krzyzanowska MK, Capdevila J,
Sherman SI and Tahara M: Characterization of tumor size changes
over time from the phase 3 study of lenvatinib in thyroid cancer. J
Clin Endocrinol Metab. 101:4103–4109. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hamidi S, Dadu R, Zafereo ME, Ferrarotto
R, Wang JR, Maniakas A, Gunn GB, Lee A, Spiotto MT, Iyer PC, et al:
Initial management of BRAF V600E-variant anaplastic thyroid cancer:
The FAST multidisciplinary group consensus statement. JAMA Oncol.
10:1264–1271. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhao X, Wang JR, Dadu R, Busaidy NL, Xu L,
Learned KO, Chasen NN, Vu T, Maniakas A, Eguia AA, et al: Surgery
after BRAF-directed therapy is associated with improved survival in
BRAF(V600E) mutant anaplastic thyroid cancer: A single-center
retrospective cohort study. Thyroid. 33:484–491. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Cabanillas ME, Williams MD, Gunn GB,
Weitzman SP, Burke L, Busaidy NL, Ying AK, Yiin YH, William WN, Lu
C and Lai SY: Facilitating anaplastic thyroid cancer specialized
treatment: A model for improving access to multidisciplinary care
for patients with anaplastic thyroid cancer. Head Neck.
39:1291–1295. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yamazaki H, Yokose T, Hayashi H, Iwasaki
H, Osanai S, Suganuma N, Nakayama H, Masudo K, Rino Y and Masuda M:
Expression of fibroblast growth factor receptor 4 and clinical
response to lenvatinib in patients with anaplastic thyroid
carcinoma: A pilot study. Eur J Clin Pharmacol. 76:703–709. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Iwasaki H, Toda S, Suganuma N, Murayama D,
Nakayama H and Masudo K: Lenvatinib vs. palliative therapy for
stage IVC anaplastic thyroid cancer. Mol Clin Oncol. 12:138–143.
2020.PubMed/NCBI
|
|
88
|
Yang J and Barletta JA: Anaplastic thyroid
carcinoma. Semin Diagn Pathol. 37:248–256. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hu S, Helman SN, Hanly E and Likhterov I:
The role of surgery in anaplastic thyroid cancer: A systematic
review. Am J Otolaryngol. 38:337–350. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Page MJ, McKenzie JE, Bossuyt PM, Boutron
I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan
SE, et al: The PRISMA 2020 statement: An updated guideline for
reporting systematic reviews. BMJ. 372:n712021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Iwasaki H, Yamazaki H, Takasaki H,
Suganuma N, Nakayama H, Toda S and Masudo K: Lenvatinib as a novel
treatment for anaplastic thyroid cancer: A retrospective study.
Oncol Lett. 16:7271–7277. 2018.PubMed/NCBI
|
|
92
|
Koyama S, Miyake N, Fujiwara K, Morisaki
T, Fukuhara T, Kitano H and Takeuchi H: Lenvatinib for anaplastic
thyroid cancer and lenvatinib-induced thyroid dysfunction. Eur
Thyroid J. 7:139–144. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Iyer PC, Dadu R, Ferrarotto R, Busaidy NL,
Habra MA, Zafereo M, Gross N, Hess KR, Gule-Monroe M, Williams MD
and Cabanillas ME: Real-world experience with targeted therapy for
the treatment of anaplastic thyroid carcinoma. Thyroid. 28:79–87.
2018. View Article : Google Scholar : PubMed/NCBI
|