
Advances in lenvatinib monotherapy and combination therapies in anaplastic thyroid cancer (Review)
- Authors:
- Lisha Xu
- Weidong Zhang
- Yinchun Wang
- Qi Le
- Yue Xie
- Kejie Yu
- Xianjiang Wu
-
Affiliations: Clinical Medicine Department, School of Medicine, Ningbo University, Ningbo, Zhejiang 315000, P.R. China, Department of Thyroid Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, P.R. China, Department of Thyroid Surgery, Ningbo No. 2 Hospital, Ningbo, Zhejiang 315000, P.R. China - Published online on: June 11, 2025 https://doi.org/10.3892/ol.2025.15139
- Article Number: 393
-
Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Siegel RL, Miller KD and Jemal A: Cancer statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K and Smit J: 2019 European thyroid association guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer. Eur Thyroid J. 8:227–245. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gunda V, Gigliotti B, Ashry T, Ndishabandi D, McCarthy M, Zhou Z, Amin S, Lee KE, Stork T, Wirth L, et al: Anti-PD-1/PD-L1 therapy augments lenvatinib's efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. Int J Cancer. 144:2266–2278. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bible KC, Kebebew E, Brierley J, Brito JP, Cabanillas ME, Clark TJ Jr, Di Cristofano A, Foote R, Giordano T, Kasperbauer J, et al: 2021 American thyroid association guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 31:337–386. 2021. View Article : Google Scholar : PubMed/NCBI | |
Duan H, Li Y, Hu P, Gao J, Ying J, Xu W, Zhao D, Wang Z, Ye J, Lizaso A, et al: Mutational profiling of poorly differentiated and anaplastic thyroid carcinoma by the use of targeted next-generation sequencing. Histopathology. 75:890–899. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ferrari SM, Elia G, Ragusa F, Ruffilli I, La Motta C, Paparo SR, Patrizio A, Vita R, Benvenga S, Materazzi G, et al: Novel treatments for anaplastic thyroid carcinoma. Gland Surg. 9 (Suppl 1):S28–S42. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ragazzi M, Ciarrocchi A, Sancisi V, Gandolfi G, Bisagni A and Piana S: Update on anaplastic thyroid carcinoma: morphological, molecular, and genetic features of the most aggressive thyroid cancer. Int J Endocrinol. 2014:7908342014. View Article : Google Scholar : PubMed/NCBI | |
Xing M: Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 13:184–199. 2013. View Article : Google Scholar : PubMed/NCBI | |
Landa I, Ibrahimpasic T, Boucai L, Sinha R, Knauf JA, Shah RH, Dogan S, Ricarte-Filho JC, Krishnamoorthy GP, Xu B, et al: Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 126:1052–1066. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pozdeyev N, Gay LM, Sokol ES, Hartmaier R, Deaver KE, Davis S, French JD, Borre PV, LaBarbera DV, Tan AC, et al: Genetic analysis of 779 advanced differentiated and anaplastic thyroid cancers. Clin Cancer Res. 24:3059–3068. 2018. View Article : Google Scholar : PubMed/NCBI | |
Romei C, Tacito A, Molinaro E, Piaggi P, Cappagli V, Pieruzzi L, Matrone A, Viola D, Agate L, Torregrossa L, et al: Clinical, pathological and genetic features of anaplastic and poorly differentiated thyroid cancer: A single institute experience. Oncol Lett. 15:9174–9182. 2018.PubMed/NCBI | |
Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, et al: Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke: From the American association of neurological surgeons (AANS), American society of neuroradiology (ASNR), cardiovascular and interventional radiology society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European society of minimally invasive neurological therapy (ESMINT), European society of neuroradiology (ESNR), European stroke organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World stroke organization (WSO). J Vasc Interv Radiol. 29:441–453. 2018. View Article : Google Scholar : PubMed/NCBI | |
Conzo G, Docimo G, Mauriello C, Gambardella C, Esposito D, Cavallo F, Tartaglia E, Napolitano S and Santini L: The current status of lymph node dissection in the treatment of papillary thyroid cancer. A literature review. Clin Ter. 164:e343–e346. 2013.PubMed/NCBI | |
Conzo G, Mauriello C, Docimo G, Gambardella C, Thomas G, Cavallo F, Tartaglia E, Napolitano S, Varriale R, Rossetti G, et al: Clinicopathological pattern of lymph node recurrence of papillary thyroid cancer. Implications for surgery. Int J Surg. 12 (Suppl 1):S194–S197. 2014. View Article : Google Scholar : PubMed/NCBI | |
Laetitia G, Sven S and Fabrice J: Combinatorial therapies in thyroid cancer: An overview of preclinical and clinical progresses. Cells. 9:8302020. View Article : Google Scholar : PubMed/NCBI | |
Bible KC, Kebebew E, Brierley J, Brito JP, Cabanillas ME, Clark TJ Jr, Di Cristofano A, Foote R, Giordano T, Kasperbauer J, et al: 2021 American Thyroid association guidelines for management of patients with anaplastic thyroid cancer: American thyroid association anaplastic thyroid cancer guidelines task force by bible. Thyroid. 31:337–386. 2021. View Article : Google Scholar : PubMed/NCBI | |
Trendowski MR, El Charif O, Dinh PC Jr, Travis LB and Dolan ME: Genetic and modifiable risk factors contributing to cisplatin-induced toxicities. Clin Cancer Res. 25:1147–1155. 2019. View Article : Google Scholar : PubMed/NCBI | |
Frederiks CN, Lam SW, Guchelaar HJ and Boven E: Genetic polymorphisms and paclitaxel- or docetaxel-induced toxicities: A systematic review. Cancer Treat Rev. 41:935–950. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tirrò E, Martorana F, Romano C, Vitale SR, Motta G, Di Gregorio S, Massimino M, Pennisi MS, Stella S, Puma A, et al: Molecular alterations in thyroid cancer: From bench to clinical practice. Genes (Basel). 10:7092019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Liu R, Shen X, Zhu G, Li B and Xing M: The genetic duet of BRAF V600E and TERT promoter mutations robustly predicts loss of radioiodine avidity in recurrent papillary thyroid cancer. J Nucl Med. 61:177–182. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hussein Z, Mizuo H, Hayato S, Namiki M and Shumaker R: Clinical pharmacokinetic and pharmacodynamic profile of lenvatinib, an orally active, small-molecule, multitargeted tyrosine kinase inhibitor. Eur J Drug Metab Pharmacokinet. 42:903–914. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nair A, Lemery SJ, Yang J, Marathe A, Zhao L, Zhao H, Jiang X, He K, Ladouceur G, Mitra AK, et al: FDA approval summary: lenvatinib for progressive, radio-iodine-refractory differentiated thyroid cancer. Clin Cancer Res. 21:5205–5208. 2015. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki H, Toda S, Murayama D, Kato S and Matsui A: Relationship between adverse events associated with lenvatinib treatment for thyroid cancer and patient prognosis. Mol Clin Oncol. 14:282021. View Article : Google Scholar : PubMed/NCBI | |
Cabanillas ME and Habra MA: Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treat Rev. 42:47–55. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zeng H, Dvorak HF and Mukhopadhyay D: Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways. J Biol Chem. 276:26969–26979. 2001. View Article : Google Scholar : PubMed/NCBI | |
Barnhart BJ and Cox SH: DNA replication of induced prophage in Haemophilus influenzae. J Virol. 12:165–176. 1973. View Article : Google Scholar : PubMed/NCBI | |
Wedge SR, Ogilvie DJ, Dukes M, Kendrew J, Chester R, Jackson JA, Boffey SJ, Valentine PJ, Curwen JO, Musgrove HL, et al: ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res. 62:4645–4655. 2002.PubMed/NCBI | |
Glen H, Mason S, Patel H, Macleod K and Brunton VG: E7080, a multi-targeted tyrosine kinase inhibitor suppresses tumor cell migration and invasion. BMC Cancer. 11:3092011. View Article : Google Scholar : PubMed/NCBI | |
Wesche J, Haglund K and Haugsten EM: Fibroblast growth factors and their receptors in cancer. Biochem J. 437:199–213. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tohyama O, Matsui J, Kodama K, Hata-Sugi N, Kimura T, Okamoto K, Minoshima Y, Iwata M and Funahashi Y: Antitumor activity of lenvatinib (e7080): An angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014:6387472014. View Article : Google Scholar : PubMed/NCBI | |
Adam P, Kircher S, Sbiera I, Koehler VF, Berg E, Knösel T, Sandner B, Fenske WK, Bläker H, Smaxwil C, et al: FGF-Receptors and PD-L1 in Anaplastic and Poorly Differentiated Thyroid Cancer: Evaluation of the Preclinical Rationale. Front Endocrinol (Lausanne). 12:7121072021. View Article : Google Scholar : PubMed/NCBI | |
Okamoto K, Kodama K, Takase K, Sugi NH, Yamamoto Y, Iwata M and Tsuruoka A: Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 340:97–103. 2013. View Article : Google Scholar : PubMed/NCBI | |
Santoro M, Melillo RM and Fusco A: RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol. 155:645–653. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mazeh H, Mizrahi I, Halle D, Ilyayev N, Stojadinovic A, Trink B, Mitrani-Rosenbaum S, Roistacher M, Ariel I, Eid A, et al: Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples. Thyroid. 21:111–118. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hao Z and Wang P: Lenvatinib in management of solid tumors. Oncologist. 25:e302–e310. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ferrari SM, Bocci G, Di Desidero T, Elia G, Ruffilli I, Ragusa F, Orlandi P, Paparo SR, Patrizio A, Piaggi S, et al: Lenvatinib exhibits antineoplastic activity in anaplastic thyroid cancer in vitro and in vivo. Oncol Rep. 39:2225–2234. 2018.PubMed/NCBI | |
Wang R, Yamada T, Arai S, Fukuda K, Taniguchi H, Tanimoto A, Nishiyama A, Takeuchi S, Yamashita K, Ohtsubo K, et al: Distribution and activity of lenvatinib in brain tumor models of human anaplastic thyroid cancer cells in severe combined immune deficient mice. Mol Cancer Ther. 18:947–956. 2019. View Article : Google Scholar : PubMed/NCBI | |
Murayama D, Yamamoto Y, Matsui A, Yasukawa M, Okamoto S, Toda S and Iwasaki H: Lung cavitation in patients with anaplastic thyroid cancer treated with lenvatinib. Gland Surg. 11:963–969. 2022. View Article : Google Scholar : PubMed/NCBI | |
Datar S, Cabanillas M, Dadu R, Ost D and Grosu HB: Pulmonary cavitation in patients with thyroid cancer receiving antiangiogenic agents. BMC Cancer. 20:11812020. View Article : Google Scholar : PubMed/NCBI | |
Cho JS, Park MH, Ryu YJ and Yoon JH: The neutrophil to lymphocyte ratio can discriminate anaplastic thyroid cancer against poorly or well differentiated cancer. Ann Surg Treat Res. 88:187–192. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fukuda N, Toda K, Fujiwara YU, Wang X, Ohmoto A, Urasaki T, Hayashi N, Sato Y, Nakano K, Yunokawa M, et al: Neutrophil-to-lymphocyte ratio as a prognostic marker for anaplastic thyroid cancer treated with lenvatinib. In Vivo. 34:2859–2864. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yamazaki H, Iwasaki H, Suganuma N, Toda S, Masudo K, Nakayama H, Rino Y and Masuda M: Inflammatory biomarkers and dynamics of neutrophil-to-lymphocyte ratio in lenvatinib treatment for anaplastic thyroid carcinoma. Gland Surg. 10:852–860. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tomoda C, Sugino K, Kitagawa W, Nagahama M and Ito K: The time series behavior of neutrophil-to-lymphocyte ratio in thyroid cancer patients on tyrosine kinase inhibitor therapy. ORL J Otorhinolaryngol Relat Spec. 83:347–353. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tahara M, Kiyota N, Yamazaki T, Chayahara N, Nakano K, Inagaki L, Toda K, Enokida T, Minami H, Imamura Y, et al: Lenvatinib for anaplastic thyroid cancer. Front Oncol. 7:252017. View Article : Google Scholar : PubMed/NCBI | |
Wirth LJ, Brose MS, Sherman EJ, Licitra L, Schlumberger M, Sherman SI, Bible KC, Robinson B, Rodien P, Godbert Y, et al: Open-label, single-arm, multicenter, phase II trial of lenvatinib for the treatment of patients with anaplastic thyroid cancer. J Clin Oncol. 39:2359–2366. 2021. View Article : Google Scholar : PubMed/NCBI | |
Eskens FA and Verweij J: The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer. 42:3127–3139. 2006. View Article : Google Scholar : PubMed/NCBI | |
Takahashi S, Tahara M, Ito K, Tori M, Kiyota N, Yoshida K, Sakata Y and Yoshida A: Safety and effectiveness of lenvatinib in 594 patients with unresectable thyroid cancer in an all-case post-marketing observational study in Japan. Adv Ther. 37:3850–3862. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yamada K, Yamamoto N, Yamada Y, Nokihara H, Fujiwara Y, Hirata T, Koizumi F, Nishio K, Koyama N and Tamura T: Phase I dose-escalation study and biomarker analysis of E7080 in patients with advanced solid tumors. Clin Cancer Res. 17:2528–2537. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Ahn J, Song DE, Yoon JH, Kang HC, Lim DJ, Kim WG, Kim TY, Kim WB, Shong YK, et al: Real-world experience of lenvatinib in patients with advanced anaplastic thyroid cancer. Endocrine. 71:427–433. 2021. View Article : Google Scholar : PubMed/NCBI | |
Enomoto K, Hirayama S, Kumashiro N, Jing X, Kimura T, Tamagawa S, Matsuzaki I, Murata SI and Hotomi M: Synergistic effects of lenvatinib (E7080) and MEK inhibitors against anaplastic thyroid cancer in preclinical models. Cancers (Basel). 13:8622021. View Article : Google Scholar : PubMed/NCBI | |
Hong CM, Oh JM, Gangadaran P, Rajendran RL and Ahn BC: treatment effect of combining lenvatinib and vemurafenib for BRAF mutated anaplastic thyroid cancer. Int J Thyroidol. 14:127–134. 2021. View Article : Google Scholar | |
Zhang H and Chen D: Synergistic inhibition of MEK/ERK and BRAF V600E with PD98059 and PLX4032 induces sodium/iodide symporter (NIS) expression and radioiodine uptake in BRAF mutated papillary thyroid cancer cells. Thyroid Res. 11:132018. View Article : Google Scholar : PubMed/NCBI | |
Song H, Zhang J, Ning L, Zhang H, Chen D, Jiao X and Zhang K: The MEK1/2 Inhibitor AZD6244 Sensitizes BRAF-mutant thyroid cancer to vemurafenib. Med Sci Monit. 24:3002–3010. 2018. View Article : Google Scholar : PubMed/NCBI | |
Su X, Liu J, Zhang H, Gu Q, Zhou X, Ji M and Yao D: Lenvatinib promotes the antitumor effect of doxorubicin in anaplastic thyroid cancer. Onco Targets Ther. 13:11183–11192. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ulm R, Revenkova E, di Sansebastiano GP, Bechtold N and Paszkowski J: Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev. 15:699–709. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wood CD, Thornton TM, Sabio G, Davis RA and Rincon M: Nuclear localization of p38 MAPK in response to DNA damage. Int J Biol Sci. 5:428–437. 2009. View Article : Google Scholar : PubMed/NCBI | |
Martino E, Casamassima G, Castiglione S, Cellupica E, Pantalone S, Papagni F, Rui M, Siciliano AM and Collina S: Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett. 28:2816–2826. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shaked Y, Emmenegger U, Man S, Cervi D, Bertolini F, Ben-David Y and Kerbel RS: Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood. 106:3058–3061. 2005. View Article : Google Scholar : PubMed/NCBI | |
Di Desidero T, Orlandi P, Gentile D, Banchi M, Alì G, Kusmic C, Armanetti P, Cayme GJ, Menichetti L, Fontanini G, et al: Pharmacological effects of vinorelbine in combination with lenvatinib in anaplastic thyroid cancer. Pharmacol Res. 158:1049202020. View Article : Google Scholar : PubMed/NCBI | |
Wu S and Fu L: Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer. 17:252018. View Article : Google Scholar : PubMed/NCBI | |
Ryder M, Ghossein RA, Ricarte-Filho JC, Knauf JA and Fagin JA: Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocr Relat Cancer. 15:1069–1074. 2008. View Article : Google Scholar : PubMed/NCBI | |
Eubank TD, Galloway M, Montague CM, Waldman WJ and Marsh CB: M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. J Immunol. 171:2637–2643. 2003. View Article : Google Scholar : PubMed/NCBI | |
Abbasifarid E, Sajjadi-Jazi SM, Beheshtian M, Samimi H, Larijani B and Haghpanah V: The role of ATP-binding cassette transporters in the chemoresistance of anaplastic thyroid cancer: A systematic review. Endocrinology. 160:2015–2023. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iyer PC, Dadu R, Gule-Monroe M, Busaidy NL, Ferrarotto R, Habra MA, Zafereo M, Williams MD, Gunn GB, Grosu H, et al: Salvage pembrolizumab added to kinase inhibitor therapy for the treatment of anaplastic thyroid carcinoma. J Immunother Cancer. 6:682018. View Article : Google Scholar : PubMed/NCBI | |
French JD, Bible K, Spitzweg C, Haugen BR and Ryder M: Leveraging the immune system to treat advanced thyroid cancers. Lancet Diabetes Endocrinol. 5:469–481. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suzuki S, Shibata M, Gonda K, Kanke Y, Ashizawa M, Ujiie D, Suzushino S, Nakano K, Fukushima T, Sakurai K, et al: Immunosuppression involving increased myeloid-derived suppressor cell levels, systemic inflammation and hypoalbuminemia are present in patients with anaplastic thyroid cancer. Mol Clin Oncol. 1:959–964. 2013. View Article : Google Scholar : PubMed/NCBI | |
Galdiero MR, Varricchi G and Marone G: The immune network in thyroid cancer. Oncoimmunology. 5:e11685562016. View Article : Google Scholar : PubMed/NCBI | |
Woyach JA, Kloos RT, Ringel MD, Arbogast D, Collamore M, Zwiebel JA, Grever M, Villalona-Calero M and Shah MH: Lack of therapeutic effect of the histone deacetylase inhibitor vorinostat in patients with metastatic radioiodine-refractory thyroid carcinoma. J Clin Endocrinol Metab. 94:164–170. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee YS, Kim SM, Kim BW, Chang HJ, Kim SY, Park CS, Park KC and Chang HS: Anti-cancer effects of HNHA and lenvatinib by the suppression of EMT-mediated drug resistance in cancer stem cells. Neoplasia. 20:197–206. 2018. View Article : Google Scholar : PubMed/NCBI | |
Brown WS, Akhand SS and Wendt MK: FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition. Oncotarget. 7:83424–83436. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meidhof S, Brabletz S, Lehmann W, Preca BT, Mock K, Ruh M, Schüler J, Berthold M, Weber A, Burk U, et al: ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 7:831–847. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou G, Zhang F, Guo Y, Huang J, Xie Y, Yue S, Chen M, Jiang H and Li M: miR-200c enhances sensitivity of drug-resistant non-small cell lung cancer to gefitinib by suppression of PI3K/Akt signaling pathway and inhibites cell migration via targeting ZEB1. Biomed Pharmacother. 85:113–119. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kwok G, Yau TC, Chiu JW, Tse E and Kwong YL: Pembrolizumab (Keytruda). Hum Vaccin Immunother. 12:2777–2789. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dierks C, Seufert J, Aumann K, Ruf J, Klein C, Kiefer S, Rassner M, Boerries M, Zielke A, la Rosee P, et al: Combination of lenvatinib and pembrolizumab is an effective treatment option for anaplastic and poorly differentiated thyroid carcinoma. Thyroid. 31:1076–1085. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Kim SM, Kim JW, Lee IJ, Jeon TJ, Chang H, Kim BW, Lee YS, Chang HS and Park CS: Survival with lenvatinib for the treatment of progressive anaplastic thyroid cancer: A single-center, retrospective analysis. Front Endocrinol (Lausanne). 11:5992020. View Article : Google Scholar : PubMed/NCBI | |
Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold K, Shah MH, Hoff AO, et al: Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 372:621–630. 2015. View Article : Google Scholar : PubMed/NCBI | |
Are C and Shaha AR: Anaplastic thyroid carcinoma: Biology, pathogenesis, prognostic factors, and treatment approaches. Ann Surg Oncol. 13:453–464. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kebebew E, Greenspan FS, Clark OH, Woeber KA and McMillan A: Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors. Cancer. 103:1330–1335. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sugitani I, Miyauchi A, Sugino K, Okamoto T, Yoshida A and Suzuki S: Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC research consortium of Japan cohort study of 677 patients. World J Surg. 36:1247–1254. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Wang E, Li L, Chen D, Peng K, Wang M and Han G: As clinical markers, hand-foot-skin reaction and diarrhea can predict better outcomes for hepatocellular carcinoma patients receiving transarterial chemoembolization plus sorafenib. Can J Gastroenterol Hepatol. 2019:25763492019. View Article : Google Scholar : PubMed/NCBI | |
Robinson B, Schlumberger M, Wirth LJ, Dutcus CE, Song J, Taylor MH, Kim SB, Krzyzanowska MK, Capdevila J, Sherman SI and Tahara M: Characterization of tumor size changes over time from the phase 3 study of lenvatinib in thyroid cancer. J Clin Endocrinol Metab. 101:4103–4109. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hamidi S, Dadu R, Zafereo ME, Ferrarotto R, Wang JR, Maniakas A, Gunn GB, Lee A, Spiotto MT, Iyer PC, et al: Initial management of BRAF V600E-variant anaplastic thyroid cancer: The FAST multidisciplinary group consensus statement. JAMA Oncol. 10:1264–1271. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Wang JR, Dadu R, Busaidy NL, Xu L, Learned KO, Chasen NN, Vu T, Maniakas A, Eguia AA, et al: Surgery after BRAF-directed therapy is associated with improved survival in BRAF(V600E) mutant anaplastic thyroid cancer: A single-center retrospective cohort study. Thyroid. 33:484–491. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cabanillas ME, Williams MD, Gunn GB, Weitzman SP, Burke L, Busaidy NL, Ying AK, Yiin YH, William WN, Lu C and Lai SY: Facilitating anaplastic thyroid cancer specialized treatment: A model for improving access to multidisciplinary care for patients with anaplastic thyroid cancer. Head Neck. 39:1291–1295. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yamazaki H, Yokose T, Hayashi H, Iwasaki H, Osanai S, Suganuma N, Nakayama H, Masudo K, Rino Y and Masuda M: Expression of fibroblast growth factor receptor 4 and clinical response to lenvatinib in patients with anaplastic thyroid carcinoma: A pilot study. Eur J Clin Pharmacol. 76:703–709. 2020. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki H, Toda S, Suganuma N, Murayama D, Nakayama H and Masudo K: Lenvatinib vs. palliative therapy for stage IVC anaplastic thyroid cancer. Mol Clin Oncol. 12:138–143. 2020.PubMed/NCBI | |
Yang J and Barletta JA: Anaplastic thyroid carcinoma. Semin Diagn Pathol. 37:248–256. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Helman SN, Hanly E and Likhterov I: The role of surgery in anaplastic thyroid cancer: A systematic review. Am J Otolaryngol. 38:337–350. 2017. View Article : Google Scholar : PubMed/NCBI | |
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al: The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 372:n712021. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki H, Yamazaki H, Takasaki H, Suganuma N, Nakayama H, Toda S and Masudo K: Lenvatinib as a novel treatment for anaplastic thyroid cancer: A retrospective study. Oncol Lett. 16:7271–7277. 2018.PubMed/NCBI | |
Koyama S, Miyake N, Fujiwara K, Morisaki T, Fukuhara T, Kitano H and Takeuchi H: Lenvatinib for anaplastic thyroid cancer and lenvatinib-induced thyroid dysfunction. Eur Thyroid J. 7:139–144. 2018. View Article : Google Scholar : PubMed/NCBI | |
Iyer PC, Dadu R, Ferrarotto R, Busaidy NL, Habra MA, Zafereo M, Gross N, Hess KR, Gule-Monroe M, Williams MD and Cabanillas ME: Real-world experience with targeted therapy for the treatment of anaplastic thyroid carcinoma. Thyroid. 28:79–87. 2018. View Article : Google Scholar : PubMed/NCBI |