|
1
|
Martignoles JA, Delhommeau F and Hirsch P:
Genetic hierarchy of acute myeloid leukemia: From clonal
hematopoiesis to molecular residual disease. Int J Mol Sci.
19:38502018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ye M, Zhang H, Yang H, Koche R, Staber PB,
Cusan M, Levantini E, Welner RS, Bach CS, Zhang J, et al:
Hematopoietic differentiation is required for initiation of acute
myeloid leukemia. Cell Stem Cell. 17:611–623. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Bray F, Laversanne M, Sung H, Ferlay J,
Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics
2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. 74:229–263.
2024.PubMed/NCBI
|
|
4
|
De Kouchkovsky I and Abdul-Hay M: ‘Acute
myeloid leukemia: A comprehensive review and 2016 update’. Blood
Cancer J. 6:e4412016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
National Cancer Institute, . Surveillance,
Epidemiology, and End Results (SEER) Program. Cancer Stat Facts:
Leukemia-Acute Myeloid Leukemia (AML). https://seer.cancer.gov/statfacts/html/amyl.html
|
|
6
|
Forsberg M and Konopleva M: AML treatment:
Conventional chemotherapy and emerging novel agents. Trends
Pharmacol Sci. 45:430–448. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Huang BJ, Meyer LK, Alonzo TA, Wang YC,
Lamble AJ, Ries RE, Wang W, Hirsch B, Raca G, Ma X, et al:
Hematopoietic stem cell transplantation outcomes for high-risk AML:
A report from the children's oncology group. J Clin Oncol.
43:1961–1971. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ewald L, Dittmann J, Vogler M and Fulda S:
Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key
therapeutic target in AML. Cell Death Dis. 10:9172019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Renard C, Corbel A, Paillard C, Pochon C,
Schneider P, Simon N, Buchbinder N, Fahd M, Yakoub-Agha I and Calvo
C: Preventive and therapeutic strategies for relapse after
hematopoietic stem cell transplant for pediatric AML (SFGM-TC).
Bull Cancer. 112((1S)): S135–S145. 2025.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tawfik B, Sliesoraitis S, Lyerly S, Klepin
HD, Lawrence J, Isom S, Ellis LR, Manuel M, Dralle S, Berenzon D,
et al: Efficacy of the hypomethylating agents as frontline,
salvage, or consolidation therapy in adults with acute myeloid
leukemia (AML). Ann Hematol. 93:47–55. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Fernandez HF: What is the optimal
induction therapy for younger fit patients with AML? Curr Hematol
Malig Rep. 11:327–332. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Xiao WB, Chan A, Waarts MR, Mishra T, Liu
Y, Cai SF, Yao J, Gao Q, Bowman RL, Koche RP, et al: Plasmacytoid
dendritic cell expansion defines a distinct subset of RUNX1-mutated
acute myeloid leukemia. Blood. 137:1377–1391. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Nong T, Mehra S and Taylor J: Common
driver mutations in AML: Biological impact, clinical
considerations, and treatment strategies. Cells. 13:13922024.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Naji NS, Sathish M and Karantanos T:
Inflammation and Related signaling pathways in acute myeloid
leukemia. Cancers (Basel). 16:39742025. View Article : Google Scholar
|
|
15
|
Lee HJ, Daver N, Kantarjian HM, Verstovsek
S and Ravandi F: The role of JAK pathway dysregulation in the
pathogenesis and treatment of acute myeloid leukemia. Clin Cancer
Res. 19:327–335. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Li YF, Wan H and Jing Y: Molecular
characterization and clinical treatment of acute myeloid leukemia
(AML) and myelodysplastic syndromes (MDS) patients with TP53
mutation. Clin Lymphoma Myeloma Leuk. 21:841–851. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang P, Feng Y, Deng X, Liu S, Qiang X,
Gou Y, Li J, Yang W, Peng X and Zhang X: Tumor-forming plasmacytoid
dendritic cells in acute myelocytic leukemia: A report of three
cases and literature review. Int J Clin Exp Pathol. 10:7285–7291.
2017.PubMed/NCBI
|
|
18
|
Tang K, Schuh AC and Yee KW: 3+7 combined
chemotherapy for acute myeloid leukemia: Is it time to say goodbye?
Curr Oncol Rep. 23:1202021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Tawfik B, Pardee TS, Isom S, Sliesoraitis
S, Winter A, Lawrence J, Powell BL and Klepin HD: Comorbidity, age,
and mortality among adults treated intensively for acute myeloid
leukemia (AML). J Geriatr Oncol. 7:24–31. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Abdallah M, Xie Z, Ready A, Manogna D,
Mendler JH and Loh KP: Management of acute myeloid leukemia (AML)
in older patients. Curr Oncol Rep. 22:1032020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Medeiros BC, Othus M, Fang M, Appelbaum FR
and Erba HP: Cytogenetic heterogeneity negatively impacts outcomes
in patients with acute myeloid leukemia. Haematologica.
100:331–335. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Madan V, Cao Z, Teoh WW, Dakle P, Han L,
Shyamsunder P, Jeitany M, Zhou S, Li J, Nordin HBM, et al: ZRSR1
Co-operates with ZRSR2 in regulating splicing of U12-type introns
in murine hematopoietic cells. Haematologica. 107:680–689. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Togami K, Chung SS, Madan V, Booth CAG,
Kenyon CM, Cabal-Hierro L, Taylor J, Kim SS, Griffin GK, Ghandi M,
et al: Sex-Biased ZRSR2 mutations in myeloid malignancies impair
plasmacytoid dendritic cell activation and apoptosis. Cancer
Discov. 12:522–541. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Huang G, Cai X and Li D: Significance of
targeting DNMT3A mutations in AML. Ann Hematol. 104:1399–1414.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cai XY, Huang GQ, Zhou YM and Li DJ:
Targeting calprotectin S100A8/A9 to overcome AML progression in
DNMT3A-Mutant cells. Curr Med Sci. 45:458–468. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Palam LR, Ramdas B, Pickerell K,
Pasupuleti SK, Kanumuri R, Cesarano A, Szymanski M, Selman B, Dave
UP, Sandusky G, et al: Loss of Dnmt3a impairs hematopoietic
homeostasis and myeloid cell skewing via the PI3Kinase pathway. JCI
Insight. 8:e1638642023. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gerritsen M, Yi G, Tijchon E, Kuster J,
Schuringa JJ, Martens JHA and Vellenga E: RUNX1 mutations enhance
self-renewal and block granulocytic differentiation in human in
vitro models and primary AMLs. Blood Adv. 3:320–332. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yang FC and Agosto-Peña J: Epigenetic
regulation by ASXL1 in myeloid malignancies. Int J Hematol.
117:791–806. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Medina EA, Delma CR and Yang FC: ASXL1/2
mutations and myeloid malignancies. J Hematol Oncol. 15:1272022.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Duan W, Jia J, Wang J, Liu X, Yu W, Zhu X,
Zhao T, Jiang Q, Ruan G, Zhao X, et al: Only FLT3-ITD co-mutation
did not have a deleterious effect on acute myeloid leukemia
patients with NPM1 mutation, but concomitant with DNMT3A
co-mutation or a < 3log reduction of MRD2 predicted poor
survival. Ann Hematol. 103:4525–4535. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ebian HF, Elshorbagy S, Mohamed H, Embaby
A, Khamis T, Sameh R, Sabbah NA and Hussein S: Clinical implication
and prognostic significance of FLT3-ITD and ASXL1 mutations in
Egyptian AML patients: A single-center study. Cancer Biomark.
32:379–389. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fang J, Zhang J, Zhu L, Xin X and Hu H:
The epigenetic role of EZH2 in acute myeloid leukemia. PeerJ.
12:e186562024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Stomper J, Meier R, Ma T, Pfeifer D,
Ihorst G, Blagitko-Dorfs N, Greve G, Zimmer D, Platzbecker U,
Hagemeijer A, et al: Integrative study of EZH2 mutational status,
copy number, protein expression and H3K27 trimethylation in AML/MDS
patients. Clin Epigenetics. 13:772021. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tecik M and Adan A: Therapeutic targeting
of FLT3 in acute myeloid leukemia: Current status and novel
approaches. Onco Targets Ther. 15:1449–1478. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pacharne S, Dovey OM, Cooper JL, Gu M,
Friedrich MJ, Rajan SS, Barenboim M, Collord G, Vijayabaskar MS,
Ponstingl H, et al: SETBP1 overexpression acts in the place of
class-defining mutations to drive FLT3-ITD-mutant AML. Blood Adv.
5:2412–2425. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li HD, Chen SS, Ding J, Zhang CL, Qiu HY,
Xia XX, Yang J and Wang XR: Exploration of ETV6::ABL1-positive AML
with concurrent NPM1 and FLT3-ITD mutations. Ann Hematol.
103:4295–4304. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
O'Donnell MR, Abboud CN, Altman J,
Appelbaum FR, Coutre SE, Damon LE, Foran JM, Goorha S, Maness LJ,
Marcucci G, et al: Acute myeloid leukemia. J Natl Compr Canc Netw.
9:280–317. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Cui P, Zhang Y, Cui M, Li Z, Ma G, Wang R,
Wang N, Huang S and Gao J: Leukemia cells impair normal
hematopoiesis and induce functionally loss of hematopoietic stem
cells through immune cells and inflammation. Leukemia Res.
65:49–54. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Miraki-Moud F, Anjos-Afonso F, Hodby KA,
Griessinger E, Rosignoli G, Lillington D, Jia L, Davies JK,
Cavenagh J, Smith M, et al: Acute myeloid leukemia does not deplete
normal hematopoietic stem cells but induces cytopenias by impeding
their differentiation. Proc Natl Acad Sci USA. 110:13576–13581.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Van Acker HH, Versteven M, Lichtenegger
FS, Roex G, Campillo-Davo D, Lion E, Subklewe M, Van Tendeloo VF,
Berneman ZN and Anguille S: Dendritic cell-based immunotherapy of
acute myeloid leukemia. J Clin Med. 8:5792019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pollyea DA, DiNardo CD, Arellano ML,
Pigneux A, Fiedler W, Konopleva M, Rizzieri DA, Smith BD, Shinagawa
A, Lemoli RM, et al: Impact of venetoclax and azacitidine in
treatment-naïve patients with acute myeloid leukemia and IDH1/2
mutations. Clin Cancer Res. 28:2753–2761. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhu R, Li L, Nguyen B, Seo J, Wu M, Seale
T, Levis M, Duffield A, Hu Y and Small D: FLT3 tyrosine kinase
inhibitors synergize with BCL-2 inhibition to eliminate FLT3/ITD
acute leukemia cells through BIM activation. Signal Transduct
Target Ther. 6:1862021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yao MY, Wang YF, Zhao Y, Ling LJ, He Y,
Wen J, Zheng MY, Jiang HL and Xie CY: BCL-2 inhibitor synergizes
with PI3Kδ inhibitor and overcomes FLT3 inhibitor resistance in
acute myeloid leukaemia. Am J Cancer Res. 12:3829–3842.
2022.PubMed/NCBI
|
|
44
|
Yang J, Zhang P, Mao Y, Chen R, Cheng R,
Li J, Sun H, Deng C and Zhong Z: CXCR4-mediated codelivery of FLT3
and BCL-2 inhibitors for enhanced targeted combination therapy of
FLT3-ITD acute myeloid leukemia. Biomacromolecules. 25:4569–4580.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Molenaar RJ, Radivoyevitch T, Nagata Y,
Khurshed M, Przychodzen B, Makishima H, Xu M, Bleeker FE, Wilmink
JW, Carraway HE, et al: IDH1/2 mutations sensitize acute myeloid
leukemia to PARP inhibition and this is reversed by IDH1/2-mutant
inhibitors. Clin Cancer Res. 24:1705–1715. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Bonnevaux H, Guerif S, Albrecht J,
Jouannot E, De Gallier T, Beil C, Lange C, Leuschner WD, Schneider
M, Lemoine C, et al: Pre-clinical development of a novel CD3-CD123
bispecific T-cell engager using cross-over dual-variable domain
(CODV) format for acute myeloid leukemia (AML) treatment.
Oncoimmunology. 10:19458032021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Watts J, Lin TL, Mims A, Patel P, Lee C,
Shahidzadeh A, Shami P, Cull E, Cogle CR, Wang E and Uckun FM:
Post-hoc analysis of pharmacodynamics and single-agent activity of
CD3×CD123 bispecific antibody APVO436 in relapsed/refractory AML
and MDS resistant to HMA or venetoclax plus HMA. Front Oncol.
11:8062432022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mardiros A, Dos Santos C, McDonald T,
Brown CE, Wang X, Budde LE, Hoffman L, Aguilar B, Chang WC,
Bretzlaff W, et al: T cells expressing CD123-specific chimeric
antigen receptors exhibit specific cytolytic effector functions and
antitumor effects against human acute myeloid leukemia. Blood.
122:3138–3148. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Leber B, Ruiz MT, Elgendy H, Pettersson F,
Prebet T, Vigil CE, Parikh RC, Korgaonkar S, Bello F, Davis KL, et
al: Real-world treatment patterns and outcomes with oral
azacitidine maintenance therapy in patients with acute myeloid
leukemia. Cancer. 131:e358452025. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gajendran C, Tantry SJ, MNS Mohammed Z,
Dewang P, Hallur M, Nair S, Vaithilingam K, Nagayya B, Rajagopal S
and Sivanandhan D: Novel dual LSD1/HDAC6 inhibitor for the
treatment of cancer. PLoS One. 18:e02790632023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Naveen Sadhu M, Sivanandhan D, Gajendran
C, Tantry S, Dewang P, Murugan K, Chickamunivenkatappa S, Zainuddin
M, Nair S, Vaithilingam K and Rajagopal S: Novel dual LSD1/HDAC6
inhibitors for the treatment of multiple myeloma. Bioorg Med Chem
Lett. 34:1277632020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Mukhopadhyay S, Huang HY, Lin Z, Ranieri
M, Li S, Sahu S, Liu Y, Ban Y, Guidry K, Hu H, et al: Genome-Wide
CRISPR screens identify multiple synthetic lethal targets that
enhance KRASG12C inhibitor efficacy. Cancer Res. 83:4095–4111.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
He Y, Li H, Ju X and Gong B: Developing
pioneering pharmacological strategies with CRISPR/Cas9 library
screening to overcome cancer drug resistance. Biochim Biophys Acta
Rev Cancer. 1879:1892122024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Alvarez-Calderon F, Gregory MA and
DeGregori J: Using functional genomics to overcome therapeutic
resistance in hematological malignancies. Immunol Res. 55:100–115.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Fatehchand K, Mehta P, Colvin CB, Buteyn
NJ, Santhanam R, Merchand-Reyes G, Inshaar H, Shen B, Mo X,
Mundy-Bosse B, et al: Activation of plasmacytoid dendritic cells
promotes AML-cell fratricide. Oncotarget. 12:878–890. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ayyadurai VAS, Deonikar P, Mclure KG and
Sakamoto KM: Molecular systems architecture of interactome in the
acute myeloid leukemia microenvironment. Cancers (Basel).
14:7562022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Zhu L, Wang P, Zhang W, Li Q, Xiong J, Li
J, Deng X, Liu Y, Yang C, Kong P, et al: Plasmacytoid dendritic
cell infiltration in acute myeloid leukemia. Cancer Manag Res.
12:11411–11419. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Khoury JD, Solary E, Abla O, Akkari Y,
Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, et
al: The 5th edition of the World Health Organization classification
of haematolymphoid tumours: Myeloid and histiocytic/dendritic
neoplasms. Leukemia. 36:1703–1719. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zalmaï L, Viailly PJ, Biichle S, Cheok M,
Soret L, Angelot-Delettre F, Petrella T, Collonge-Rame MA, Seilles
E, Geffroy S, et al: Plasmacytoid dendritic cells proliferation
associated with acute myeloid leukemia: Phenotype profile and
mutation landscape. Haematologica. 106:3056–3066. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang W, Xu J, Khoury JD, Pemmaraju N, Fang
H, Miranda RN, Yin CC, Hussein SE, Jia F, Tang Z, et al:
Immunophenotypic and molecular features of acute myeloid leukemia
with plasmacytoid dendritic cell differentiation are distinct from
blastic plasmacytoid dendritic cell neoplasm. Cancers (Basel).
14:33752022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Huang Y, Wang Y, Chang Y, Yuan X, Hao L,
Shi H, Lai Y, Huang X and Liu Y: Myeloid neoplasms with elevated
plasmacytoid dendritic cell differentiation reflect the maturation
process of dendritic cells. Cytometry A. 97:61–69. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gong X, Li C, Wang Y, Rao Q, Mi Y, Wang M,
Wei H and Wang J: Mature plasmacytoid dendritic cells associated
with acute myeloid leukemia show similar genetic mutations and
expression profiles to leukemia cells. Blood Sci. 4:38–43. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Li G, Cheng L and Su L: Phenotypic and
functional study of human plasmacytoid dendritic cells. Curr
Protoc. 1:e502021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xiao W, Chan A, Waarts MR, Mishra T, Liu
Y, Cai SF, Yao J, Gao Q, Bowman RL, Koche RP, et al: Plasmacytoid
dendritic cell expansion defines a distinct subset of RUNX1-mutated
acute myeloid leukemia. Blood. 137:1377–1391. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lucas N, Duchmann M, Rameau P, Noël F,
Michea P, Saada V, Kosmider O, Pierron G, Fernandez-Zapico ME,
Howard MT, et al: Biology and prognostic impact of clonal
plasmacytoid dendritic cells in chronic myelomonocytic leukemia.
Leukemia. 33:2466–2480. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Klanova M, Lorkova L, Vit O, Maswabi B,
Molinsky J, Pospisilova J, Vockova P, Mavis C, Lateckova L, Kulvait
V, et al: Downregulation of deoxycytidine kinase in
cytarabine-resistant mantle cell lymphoma cells confers
cross-resistance to nucleoside analogs gemcitabine, fludarabine and
cladribine, but not to other classes of anti-lymphoma agents. Mol
Cancer. 13:1592014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lopez-Millan B, Diaz de la Guardia R,
Roca-Ho H, Anguita E, Islam ABMMK, Romero-Moya D, Prieto C,
Gutierrez-Agüera F, Bejarano-Garcia JA, Perez-Simon JA, et al:
IMiDs mobilize acute myeloid leukemia blasts to peripheral blood
through downregulation of CXCR4 but fail to potentiate
AraC/Idarubicin activity in preclinical models of non del5q/5q-AML.
Oncoimmunology. 7:e14774602018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Goulart H, Kantarjian H, Borthakur G,
Daver N, DiNardo CD, Jabbour E, Pemmaraju N, Alvarado Y, Atluri H,
Yilmaz M, et al: Cladribine, idarubicin, and cytarabine (CLIA) for
patients with relapsed and/or refractory acute myeloid leukemia: A
single-center, single-arm, phase 2 trial. Cancer. 131:e358402025.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sharon D, Cathelin S, Mirali S, Di Trani
JM, Yanofsky DJ, Keon KA, Rubinstein JL, Schimmer AD, Ketela T and
Chan SM: Inhibition of mitochondrial translation overcomes
venetoclax resistance in AML through activation of the integrated
stress response. Sci Transl Med. 11:eaax28632019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Pemmaraju N, Deconinck E, Mehta P, Walker
I, Herling M, Garnache-Ottou F, Gabarin N, Campbell CJV, Duell J,
Moshe Y, et al: Recent advances in the biology and CD123-directed
treatment of blastic plasmacytoid dendritic cell neoplasm. Clin
Lymphoma Myeloma Leuk. 24:e130–e137. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Pammaraju N, Kantarjian H, Sweet K, Wang
ES, Lane AA, Ali H, Stein AS, Yacoub A, Rizzieri D, Vasu S, et al:
Poster: AML-397 Integrated Safety Analysis of Tagraxofusp, a
CD123-Directed Targeted Therapy, in Patients With Hematologic
Malignancies. Clin Lymphoma Myeloma Leuk. 22:S246–S247. 2022.
View Article : Google Scholar
|
|
72
|
DiPippo AJ, Wilson NR and Pemmaraju N:
Targeting CD123 in BPDCN: An emerging field. Expert Rev Hematol.
14:993–1004. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Aldoss I, Clark M, Song JY and Pullarkat
V: Targeting the alpha subunit of IL-3 receptor (CD123) in patients
with acute leukemia. Hum Vaccin Immunother. 16:2341–2348. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Lane AA: Targeting CD123 in AML. Clin
Lymphoma Myeloma Leuk. 20 (Suppl 1):S67–S68. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Roussel X, Garnache Ottou F and Renosi F:
Plasmacytoid dendritic cells, a novel target in myeloid neoplasms.
Cancers (Basel). 14:35452022. View Article : Google Scholar : PubMed/NCBI
|