|
1
|
De Ruysscher D, Niedermann G, Burnet NG,
Siva S, Lee AWM and Hegi-Johnson F: Radiotherapy toxicity. Nat Rev
Dis Primers. 5:132019. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhao Q, Chen Y, Huang W, Zhou H and Zhang
W: Drug-microbiota interactions: An emerging priority for precision
medicine. Signal Transduct Target Ther. 8:3862023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Durrant MG and Bhatt AS: Microbiome genome
structure drives function. Nat Microbiol. 4:912–913. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Spencer CN, McQuade JL, Gopalakrishnan V,
McCulloch JA, Vetizou M, Cogdill AP, Khan MAW, Zhang X, White MG,
Peterson CB, et al: Dietary fiber and probiotics influence the gut
microbiome and melanoma immunotherapy response. Science.
374:1632–1640. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jin C, Lagoudas GK, Zhao C, Bullman S,
Bhutkar A, Hu B, Ameh S, Sandel D, Liang XS, Mazzilli S, et al:
Commensal microbiota promote lung cancer development via γδ T
cells. Cell. 176:998–1013.e16. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Pernigoni N, Zagato E, Calcinotto A,
Troiani M, Mestre RP, Calì B, Attanasio G, Troisi J, Minini M,
Mosole S, et al: Commensal bacteria promote endocrine resistance in
prostate cancer through androgen biosynthesis. Science.
374:216–224. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Sivan A, Corrales L, Hubert N, Williams
JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B,
Alegre ML, et al: Commensal Bifidobacterium promotes antitumor
immunity and facilitates anti-PD-L1 efficacy. Science.
350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Vétizou M, Pitt JM, Daillère R, Lepage P,
Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong
CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on
the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Baker JL, Morton JT, Dinis M, Alverez R,
Tran NC, Knight R and Edlund A: Deep metagenomics examines the oral
microbiome during dental caries, revealing novel taxa and
co-occurrences with host molecules. Genome Res. 31:64–74. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Di Stefano M, Polizzi A, Santonocito S,
Romano A, Lombardi T and Isola G: Impact of oral microbiome in
periodontal health and periodontitis: A critical review on
prevention and treatment. Int J Mol Sci. 23:51422022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Irfan M, Delgado RZR and Frias-Lopez J:
The oral microbiome and cancer. Front Immunol. 11:5910882020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Scannapieco FA: Poor oral health in the
etiology and prevention of aspiration pneumonia. Clin Geriatr Med.
39:257–271. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Park SY, Hwang BO, Lim M, Ok SH, Lee SK,
Chun KS, Park KK, Hu Y, Chung WY and Song NY: Oral-gut microbiome
axis in gastrointestinal disease and cancer. Cancers (Basel).
13:21242021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bruno JS, Al-Qadami GH, Laheij AMGA, Bossi
P, Fregnani ER and Wardill HR: From pathogenesis to intervention:
The importance of the microbiome in oral mucositis. Int J Mol Sci.
24:82742023. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dominy SS, Lynch C, Ermini F, Benedyk M,
Marczyk A, Konradi A, Nguyen M, Haditsch U, Raha D, Griffin C, et
al: Porphyromonas gingivalis in Alzheimer's disease brains:
Evidence for disease causation and treatment with small-molecule
inhibitors. Sci Adv. 5:eaau33332019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Benedyk M, Mydel PM, Delaleu N, Płaza K,
Gawron K, Milewska A, Maresz K, Koziel J, Pyrc K and Potempa J:
Gingipains: Critical factors in the development of aspiration
pneumonia caused by Porphyromonas gingivalis. J Innate
Immun. 8:185–198. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Vasconcelos RM, Sanfilippo N, Paster BJ,
Kerr AR, Li Y, Ramalho L, Queiroz EL, Smith B, Sonis ST and Corby
PM: Host-microbiome cross-talk in oral mucositis. J Dent Res.
95:725–733. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Geng F, Zhang Y, Lu Z, Zhang S and Pan Y:
Fusobacterium nucleatum caused DNA damage and promoted cell
proliferation by the Ku70/p53 Pathway in oral cancer cells. DNA
Cell Biol. 39:144–151. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Sampath C, Okoro EU, Gipson MJ,
Chukkapalli SS, Farmer-Dixon CM and Gangula PR: Porphyromonas
gingivalis infection alters Nrf2-phase II enzymes and nitric
oxide in primary human aortic endothelial cells. J Periodontol.
92:54–65. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Feng N, Han X, Peng D, Geng F, Li Q, Pan
C, Wang H, Pan Y and Tan L: P. gingivalis alters lung
microbiota and aggravates disease severity of COPD rats by
up-regulating Hsp90α/MLKL. J Oral Microbiol. 16:23345882024.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gong T, Chen Q, Mao H, Zhang Y, Ren H, Xu
M, Chen H and Yang D: Outer membrane vesicles of Porphyromonas
gingivalis trigger NLRP3 inflammasome and induce
neuroinflammation, tau phosphorylation, and memory dysfunction in
mice. Front Cell Infect Microbiol. 12:9254352022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mladenov E, Li F, Zhang L, Klammer H and
Iliakis G: Intercellular communication of DNA damage and oxidative
status underpin bystander effects. Int J Radiat Biol. 94:719–726.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang K and Tepper JE: Radiation
therapy-associated toxicity: Etiology, management, and prevention.
CA Cancer J Clin. 71:437–454. 2021.PubMed/NCBI
|
|
24
|
Turnquist C, Harris BT and Harris CC:
Radiation-induced brain injury: Current concepts and therapeutic
strategies targeting neuroinflammation. Neurooncol Adv.
2:vdaa0572020.PubMed/NCBI
|
|
25
|
Xu L, Huang H, Liu T, Yang T and Yi X:
Exposure to X-rays causes depression-like behaviors in mice via
HMGB1-mediated pyroptosis. Neuroscience. 481:99–110. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Makale MT, McDonald CR, Hattangadi-Gluth
JA and Kesari S: Mechanisms of radiotherapy-associated cognitive
disability in patients with brain tumours. Nat Rev Neurol.
13:52–64. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bowland GB and Weyrich LS: The
oral-microbiome-brain axis and neuropsychiatric disorders: An
anthropological perspective. Front Psychiatry. 13:8100082022.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Verma A, Azhar G, Patyal P, Zhang W, Zhang
X and Wei JY: Proteomic analysis of P.
gingivalis-lipopolysaccharide induced neuroinflammation in
SH-SY5Y and HMC3 cells. Geroscience. 46:4315–4332. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang J, Yu C, Zhang X, Chen H, Dong J, Lu
W, Song Z and Zhou W: Porphyromonas gingivalis
lipopolysaccharide induces cognitive dysfunction, mediated by
neuronal inflammation via activation of the TLR4 signaling pathway
in C57BL/6 mice. J Neuroinflammation. 15:372018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bulgart HR, Neczypor EW, Wold LE and
Mackos AR: Microbial involvement in Alzheimer disease development
and progression. Mol Neurodegener. 15:422020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jin R, Ning X, Liu X, Zhao Y and Ye G:
Porphyromonas gingivalis-induced periodontitis could
contribute to cognitive impairment in Sprague-Dawley rats via the
P38 MAPK signaling pathway. Front Cell Neurosci. 17:11413392023.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B and
Tang F: Microglia as therapeutic target for radiation-induced brain
injury. Int J Mol Sci. 23:82862022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Wang Y, Tian J, Liu D, Li T, Mao Y and Zhu
C: Microglia in radiation-induced brain injury: Cellular and
molecular mechanisms and therapeutic potential. CNS Neurosci Ther.
30:e147942024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chuang WC, Yang CN, Wang HW, Lin SK, Yu
CC, Syu JH, Chiang CP, Shiao YJ and Chen YW: The mechanisms of
Porphyromonas gingivalis-derived outer membrane
vesicles-induced neurotoxicity and microglia activation. J Dent
Sci. 19:1434–1442. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Maria OM, Eliopoulos N and Muanza T:
Radiation-Induced oral mucositis. Front Oncol. 7:892017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li J, Zhu C, Zhang Y, Guan C, Wang Q, Ding
Y and Hu X: Incidence and risk factors for radiotherapy-induced
oral mucositis among patients with nasopharyngeal carcinoma: A
meta-analysis. Asian Nurs Res (Korean Soc Nurs Sci). 17:70–82.
2023.PubMed/NCBI
|
|
37
|
Nodit L, Kelley JR, Panella TJ, Bruckbauer
A, Nodit PG, Shope GA, Peyton K, Klingeman DM, Zaretzki R, Carrell
A and Podar M: Oral microbiome and mycobiome dynamics in cancer
therapy-induced oral mucositis. Sci Data. 12:4632025. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Hou J, Zheng H, Li P, Liu H, Zhou H and
Yang X: Distinct shifts in the oral microbiota are associated with
the progression and aggravation of mucositis during radiotherapy.
Radiother Oncol. 129:44–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhu XX, Yang XJ, Chao YL, Zheng HM, Sheng
HF, Liu HY, He Y and Zhou HW: The potential effect of oral
microbiota in the prediction of mucositis during radiotherapy for
nasopharyngeal carcinoma. EBioMedicine. 18:23–31. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Vesty A, Gear K, Biswas K, Mackenzie BW,
Taylor MW and Douglas RG: Oral microbial influences on oral
mucositis during radiotherapy treatment of head and neck cancer.
Support Care Cancer. 28:2683–2691. 2020.PubMed/NCBI
|
|
41
|
Nishii M, Soutome S, Kawakita A, Yutori H,
Iwata E, Akashi M, Hasegawa T, Kojima Y, Funahara M, Umeda M and
Komori T: Factors associated with severe oral mucositis and
candidiasis in patients undergoing radiotherapy for oral and
oropharyngeal carcinomas: A retrospective multicenter study of 326
patients. Support Care Cancer. 28:1069–1075. 2020.PubMed/NCBI
|
|
42
|
Groeger S and Meyle J: Oral mucosal
epithelial cells. Front Immunol. 10:2082019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hirahara L, Takase-Minegishi K, Kirino Y,
Iizuka-Iribe Y, Soejima Y, Yoshimi R and Nakajima H: The roles of
monocytes and macrophages in Behçet's disease with focus on M1 and
M2 polarization. Front Immunol. 13:8522972022. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Suárez LJ, Arboleda S, Angelov N and Arce
RM: Oral versus gastrointestinal mucosal immune niches in
homeostasis and allostasis. Front Immunol. 12:7052062021.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li Y, Li Z, Zheng S and Xu X: Probiotics
in the management of radiation-induced oral mucositis. Front Cell
Infect Microbiol. 14:14771432024. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zhao M, Wang C, Ji C, Liu R, Xie J, Wang Y
and Gu Z: Ascidian-inspired temperature-switchable hydrogels with
antioxidant fullerenols for protecting radiation-induced oral
mucositis and maintaining the homeostasis of oral microbiota.
Small. 19:e22065982023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Morsy BM, El Domiaty S, Meheissen MAM,
Heikal LA, Meheissen MA and Aly NM: Omega-3 nanoemulgel in
prevention of radiation-induced oral mucositis and its associated
effect on microbiome: A randomized clinical trial. BMC Oral Health.
23:6122023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zou XY, Xiang SX and Pan Y: Research
advances in traditional Chinese and Western medicine treatments for
radiation-induced esophagitis. J Esophagus Dis. 7:129–134.
2025.
|
|
49
|
Liu S, Wang S, Zhang N and Li P: The oral
microbiome and oral and upper gastrointestinal diseases. J Oral
Microbiol. 16:23558232024. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zou Q, Feng L, Cai X, Qian Y and Xu L:
Esophageal microflora in esophageal diseases. Front Cell Infect
Microbiol. 13:11457912023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yang L, Francois F and Pei Z: Molecular
pathways: Pathogenesis and clinical implications of microbiome
alteration in esophagitis and Barrett esophagus. Clin Cancer Res.
18:2138–2144. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hanania AN, Mainwaring W, Ghebre YT,
Hanania NA and Ludwig M: Radiation-induced lung injury: Assessment
and management. Chest. 156:150–162. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li R, Li J and Zhou X: Lung microbiome:
New insights into the pathogenesis of respiratory diseases. Signal
Transduct Target Ther. 9:192024. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Pathak JL, Yan Y, Zhang Q, Wang L and Ge
L: The role of oral microbiome in respiratory health and diseases.
Respir Med. 185:1064752021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Dong J, Li W, Wang Q, Chen J, Zu Y, Zhou X
and Guo Q: Relationships between oral microecosystem and
respiratory diseases. Front Mol Biosci. 8:7182222022. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Gaeckle NT, Pragman AA, Pendleton KM,
Baldomero AK and Criner GJ: The oral-lung axis: The impact of oral
health on lung health. Respir Care. 65:1211–1220. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li Q, Wang H, Tan L, Zhang S, Lin L, Tang
X and Pan Y: Oral pathogen Fusobacterium nucleatum
coaggregates with Pseudomonas aeruginosa to modulate the
inflammatory cytotoxicity of pulmonary epithelial cells. Front Cell
Infect Microbiol. 11:6439132021. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Takahashi Y, Watanabe N, Kamio N, Yokoe S,
Suzuki R, Sato S, Iinuma T and Imai K: Expression of the SARS-CoV-2
Receptor ACE2 and proinflammatory cytokines induced by the
periodontopathic bacterium Fusobacterium nucleatum in human
respiratory epithelial cells. Int J Mol Sci. 22:13522021.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Suzuki R, Kamio N, Sugimoto K, Maruoka S,
Gon Y, Kaneko T, Yonehara Y and Imai K: Periodontopathic bacterium
Fusobacterium nucleatum affects matrix metalloproteinase-9
expression in human alveolar epithelial cells and mouse lung. In
Vivo. 36:649–656. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Okabe T, Kamiya Y, Kikuchi T, Goto H,
Umemura M, Suzuki Y, Sugita Y, Naiki Y, Hasegawa Y, Hayashi JI, et
al: Porphyromonas gingivalis components/secretions
synergistically enhance pneumonia caused by Streptococcus
pneumoniae in mice. Int J Mol Sci. 22:127042021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
O'Dwyer DN, Kim JS, Ma SF, Ranjan P, Das
P, Lipinski JH, Metcalf JD, Falkowski NR, Yow E, Anstrom K, et al:
Commensal oral microbiota, disease severity, and mortality in
fibrotic lung disease. Am J Respir Crit Care Med. 209:1101–1110.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang Q, Xu G, Yan O, Wang S and Wang X:
Radiation-induced injury and the gut microbiota: Insights from a
microbial perspective. Therap Adv Gastroenterol.
18:175628482513473472025. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Yamazaki K and Kamada N: Exploring the
oral-gut linkage: Interrelationship between oral and systemic
diseases. Mucosal Immunol. 17:147–153. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang A, Zhai Z, Ding Y, Wei J, Wei Z and
Cao H: The oral-gut microbiome axis in inflammatory bowel disease:
From inside to insight. Front Immunol. 15:14300012024. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yamazaki K: Oral-gut axis as a novel
biological mechanism linking periodontal disease and systemic
diseases: A review. Jpn Dent Sci Rev. 59:273–280. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Atarashi K, Suda W, Luo C, Kawaguchi T,
Motoo I, Narushima S, Kiguchi Y, Yasuma K, Watanabe E, Tanoue T, et
al: Ectopic colonization of oral bacteria in the intestine drives
TH1 cell induction and inflammation. Science.
358:359–365. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dong J, Li Y, Xiao H, Zhang S, Wang B,
Wang H, Li Y, Fan S and Cui M: Oral microbiota affects the efficacy
and prognosis of radiotherapy for colorectal cancer in mouse
models. Cell Rep. 37:1098862021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zou B, Schuster JP, Niu K, Huang Q, Rühle
A and Huber PE: Radiotherapy-induced heart disease: A review of the
literature. Precis Clin Med. 2:270–282. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Podlesnikar T, Berlot B, Dolenc J, Goričar
K and Marinko T: Radiotherapy-induced cardiotoxicity: The role of
multimodality cardiovascular imaging. Front Cardiovasc Med.
9:8877052022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Liu QH and Liu ZY: Research advances in
radiation-induced heart injury. J Microcirc. 34:92–97. 2024.
|
|
71
|
Peron D, Prates RA, Antonio EL, Teixeira
ILA, de Oliveira HA, Mansano BSDM, Bergamo A, Almeida DR, Dariolli
R, Tucci PJF and Serra AJ: A common oral pathogen Porphyromonas
gingivalis induces myocarditis in rats. J Clin Periodontol.
49:506–517. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bijla M, Saini SK, Pathak AK, Bharadwaj
KP, Sukhavasi K, Patil A, Saini D, Yadav R, Singh S, Leeuwenburgh C
and Kumar P: Microbiome interactions with different risk factors in
development of myocardial infarction. Exp Gerontol. 189:1124092024.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yang HJ, Zhang Y, Peng O and Zou BW:
Radiation-induced heart disease: Current status and challenges.
Sichuan Da Xue Xue Bao Yi Xue Ban. 53:1127–1134. 2022.(In Chinese).
PubMed/NCBI
|
|
74
|
Miyamae N, Ogai K, Kunimitsu M, Fujiwara
M, Nagai M, Okamoto S, Okuwa M and Oe M: Relationship between
severe radiodermatitis and skin barrier functions in patients with
head and neck cancer: A prospective observational study. Asia Pac J
Oncol Nurs. 12:1006252024. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Hülpüsch C, Neumann AU, Reiger M, Fischer
JC, de Tomassi A, Hammel G, Gülzow C, Fleming M, Dapper H, Mayinger
M, et al: Association of skin microbiome dynamics with
radiodermatitis in patients with breast cancer. JAMA Oncol.
10:516–521. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li W and Yosipovitch G: The role of the
microbiome and microbiome-derived metabolites in atopic dermatitis
and non-histaminergic itch. Am J Clin Dermatol. 21 (Suppl
1):S44–S50. 2020. View Article : Google Scholar
|
|
77
|
Janko M, Ontiveros F, Fitzgerald TJ, Deng
A, DeCicco M and Rock KL: IL-1 generated subsequent to
radiation-induced tissue injury contributes to the pathogenesis of
radiodermatitis. Radiat Res. 178:166–172. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Curi MM, Cardoso CL, de Lima HG, Kowalski
LP and Martins MD: Histopathologic and histomorphometric analysis
of irradiation injury in bone and the surrounding soft tissues of
the jaws. J Oral Maxillofac Surg. 74:190–199. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li Z, Fu R, Huang X, Wen X and Zhang L:
Oral microbiota may affect osteoradionecrosis following
radiotherapy for head and neck cancer. J Transl Med. 21:3912023.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hathaway-Schrader JD, Aartun JD, Poulides
NA, Kuhn MB, McCormick BE, Chew ME, Huang E, Darveau RP, Westwater
C and Novince CM: Commensal oral microbiota induces
osteoimmunomodulatory effects separate from systemic microbiome in
mice. JCI Insight. 7:e1407382022. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Xu J, Yu L, Ye S, Ye Z, Yang L and Xu X:
Oral microbiota-host interaction: The chief culprit of alveolar
bone resorption. Front Immunol. 15:12545162024. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kovtonyuk LV, Caiado F, Garcia-Martin S,
Manz EM, Helbling P, Takizawa H, Boettcher S, Al-Shahrour F,
Nombela-Arrieta C, Slack E and Manz MG: IL-1 mediates
microbiome-induced inflammaging of hematopoietic stem cells in
mice. Blood. 139:44–58. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Klaus R, Niyazi M and Lange-Sperandio B:
Radiation-induced kidney toxicity: Molecular and cellular
pathogenesis. Radiat Oncol. 16:432021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang WP, Zhang FQ and Yuan SH: Clinical
practice guidelines for the prevention and treatment of
radiation-induced bladder injury. Chin J Cancer Prev Treat.
30:187–193. 2023.
|
|
85
|
Yuan S, Fang C, Leng WD, Wu L, Li BH, Wang
XH, Hu H and Zeng XT: Oral microbiota in the oral-genitourinary
axis: Identifying periodontitis as a potential risk of
genitourinary cancers. Mil Med Res. 8:542021.PubMed/NCBI
|
|
86
|
Porter CM, Shrestha E, Peiffer LB and
Sfanos KS: The microbiome in prostate inflammation and prostate
cancer. Prostate Cancer Prostatic Dis. 21:345–354. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Prakash P, Verma S and Gupta S: Influence
of microbiome in intraprostatic inflammation and prostate cancer.
Prostate. 84:1179–1188. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wang SY, Cai Y, Hu X, Li F, Qian XH, Xia
LY, Gao B, Wu L, Xie WZ, Gu JM, et al: P. gingivalis in
oral-prostate axis exacerbates benign prostatic hyperplasia via
IL-6/IL-6R pathway. Mil Med Res. 11:302024.PubMed/NCBI
|
|
89
|
Liu ZH, Zhou XD and Zhang LL: Research
progress in the correlation between oral microbiota and chronic
kidney disease. Sichuan Da Xue Xue Bao Yi Xue Ban. 54:66–70.
2023.(In Chinese). PubMed/NCBI
|
|
90
|
Kajiwara K, Sawa Y, Fujita T and Tamaoki
S: Immunohistochemical study for the expression of leukocyte
adhesion molecules, and FGF23 and ACE2 in P. gingivalis
LPS-induced diabetic nephropathy. BMC Nephrol. 22:32021. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhu W, Zhang X, Yu M, Lin B and Yu C:
Radiation-induced liver injury and hepatocyte senescence. Cell
Death Discov. 7:2442021. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Acharya C, Sahingur SE and Bajaj JS:
Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI
Insight. 2:e94416–94416. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Albuquerque-Souza E and Sahingur SE:
Periodontitis, chronic liver diseases, and the emerging
oral-gut-liver axis. Periodontol 2000. 89:125–141. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Bai L, Wang YL, Chen YL, Li HX, Zhu SW,
Liu Y, Song ZC and Duan SZ: The combination of experimental
periodontitis and oral microbiota from periodontitis patients
aggravates liver fibrosis in mice. J Clin Periodontol.
49:1067–1078. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jia G, Zhi A, Lai PFH, Wang G, Xia Y,
Xiong Z, Zhang H, Che N and Ai L: The oral microbiota-a mechanistic
role for systemic diseases. Br Dent J. 224:447–455. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y,
Mai Z, Zhao X, Cui L and Huang S: The oral microbiome in autoimmune
diseases: Friend or foe? J Transl Med. 21:2112023. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wang Y, Li J, Zhang H, Zheng X, Wang J,
Jia X, Peng X, Xie Q, Zou J, Zheng L, et al: Probiotic
Streptococcus salivarius K12 alleviates radiation-induced
oral mucositis in mice. Front Immunol. 12:6848242021. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
De Sanctis V, Belgioia L, Cante D, LA
Porta MR, Caspiani O, Guarnaccia R, Argenone A, Muto P, Musio D, DE
Felice F, et al: Lactobacillus brevis CD2 for prevention of
oral mucositis in patients with head and neck tumors: A
multicentric randomized study. Anticancer Res. 39:1935–1942. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Peng X, Li Z, Pei Y, Zheng S, Liu J, Wang
J, Li R and Xu X: Streptococcus salivarius K12 alleviates oral
mucositis in patients undergoing radiotherapy for malignant head
and neck tumors: A randomized controlled trial. J Clin Oncol.
42:1426–1435. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Cunha E, Valente S, Nascimento M, Pereira
M, Tavares L, Dias R and Oliveira M: Influence of the dental
topical application of a nisin-biogel in the oral microbiome of
dogs: A pilot study. PeerJ. 9:e116262021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wu L, Li F, Ran L, Gao Y, Xie P, Yang J,
Ke F, Liu L, Wang Q and Gao X: Insight into the effects of nisin
and cecropin on the oral microbial community of rats by
high-throughput sequencing. Front Microbiol. 11:10822020.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Gao L, Kuraji R, Zhang MJ, Martinez A,
Radaic A, Kamarajan P, Le C, Zhan L, Ye C, Rangé H, et al: Nisin
probiotic prevents inflammatory bone loss while promoting
reparative proliferation and a healthy microbiome. NPJ Biofilms
Microbiomes. 8:452022. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhao C, Kuraji R, Ye C, Gao L, Radaic A,
Kamarajan P, Taketani Y and Kapila YL: Nisin a probiotic
bacteriocin mitigates brain microbiome dysbiosis and Alzheimer's
disease-like neuroinflammation triggered by periodontal disease. J
Neuroinflammation. 20:2282023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Nascimento MM: Oral microbiota transplant:
A potential new therapy for oral diseases. J Calif Dent Assoc.
45:565–568. 2017.PubMed/NCBI
|
|
105
|
Xiao H, Fan Y, Li Y, Dong J, Zhang S, Wang
B, Liu J, Liu X, Fan S, Guan J and Cui M: Oral microbiota
transplantation fights against head and neck radiotherapy-induced
oral mucositis in mice. Comput Struct Biotechnol J. 19:5898–5910.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Goloshchapov OV, Chukhlovin AB, Bug DS,
Polev DE, Kosarev OV, Klementeva RV, Izmailova EA, Kazantsev IV,
Khalipskaia MS, Goloshchapova МО, et al: Safety, feasibility, and
advantages of oral microbiota transplantation: The first clinical
case. J Pediatr Hematol Oncol. 46:287–296. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
AbdelMassih A, Gadalla M, Hussein E,
Elahmady M, Zahra N, Eid MA, Hussein M, Hassan AA, Abou-Zeid AS,
Hassan A, et al: The forgotten oral microbial transplantation for
improving the outcomes of COVID-19. New Microbes New Infect.
43:1009232021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhao F, Huang D and Cao M: Application of
bonded medical care peer management model in patients with
radiotherapy-induced radiation lung injury for lung cancer. Qilu J
Nurs China. 27:19–22. 2021.(In Chinese). View Article : Google Scholar
|
|
109
|
Wang N, Wang J and Fang F: Application of
4F nursing management model in patients undergoing radiotherapy for
nasopharyngeal carcinoma. Qilu J Nurs China. 29:135–138. 2023.(In
Chinese).
|
|
110
|
Xiao B, Zou T and Liu Y: Application of 4R
crisis management theory in the management of radiation dermatitis
in patients with breast cancer during radiotherapy. Mod Med Health.
40:2238–2241. 2024.
|