|
1
|
Siegel RL, Giaquinto AN and Jemal A:
Cancer statistics, 2024. CA Cancer J Clin. 74:12–49.
2024.PubMed/NCBI
|
|
2
|
Cornford P, van den Bergh RCN, Briers E,
Van den Broeck T, Brunckhorst O, Darraugh J, Eberli D, De Meerleer
G, De Santis M, Farolfi A, et al: EAU-EANM-ESTRO-ESUR-ISUP-SIOG
guidelines on prostate Cancer-2024 update. Part I: Screening,
diagnosis, and local treatment with curative intent. Eur Urol.
86:148–163. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Van Poppel H, Roobol MJ, Chapple CR, Catto
JWF, N'Dow J, Sønksen J, Stenzl A and Wirth M: Prostate-specific
antigen testing as part of a Risk-adapted early detection strategy
for prostate cancer: European association of urology position and
recommendations for 2021. Eur Urol. 80:703–711. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Van Poppel H, Albreht T, Basu P, Hogenhout
R, Collen S and Roobol M: Serum PSA-based early detection of
prostate cancer in Europe and globally: Past, present and future.
Nat Rev Urol. 19:562–572. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Usman A: Nanoparticle enhanced optical
biosensing technologies for prostate specific antigen biomarker
detection. IEEE Rev Biomed Eng. 15:122–137. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Leenen RCA, Venderbos LDF, Helleman J,
Gómez Rivas J, Vynckier P, Annemans L, Chloupková R, Májek O,
Briers E, Vasilyeva V, et al: Prostate cancer early detection in
the european union and UK. Eur Urol. 87:326–339. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Ilic D, Djulbegovic M, Jung JH, Hwang EC,
Zhou Q, Cleves A, Agoritsas T and Dahm P: Prostate cancer screening
with prostate-specific antigen (PSA) test: A systematic review and
meta-analysis. BMJ. 362:k35192018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pang B, Zhu Y, Ni J, Thompson J, Malouf D,
Bucci J, Graham P and Li Y: Extracellular vesicles: The next
generation of biomarkers for liquid Biopsy-based prostate cancer
diagnosis. Theranostics. 10:2309–2326. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lomas DJ and Ahmed HU: All change in the
prostate cancer diagnostic pathway. Nat Rev Clin Oncol. 17:372–381.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wade J, Rosario DJ, Macefield RC, Avery
KN, Salter CE, Goodwin ML, Blazeby JM, Lane JA, Metcalfe C, Neal
DE, et al: Psychological impact of prostate biopsy: Physical
symptoms, anxiety, and depression. J Clin Oncol. 31:4235–4241.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Gershman B, Van Houten HK, Herrin J,
Moreira DM, Kim SP, Shah ND and Karnes RJ: Impact of
Prostate-specific antigen (PSA) screening trials and revised PSA
screening guidelines on rates of prostate biopsy and postbiopsy
complications. Eur Urol. 71:55–65. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pantel K and Alix-Panabières C: Liquid
biopsy and minimal residual Disease-latest advances and
implications for cure. Nat Rev Clin Oncol. 16:409–424. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kilgour E, Rothwell DG, Brady G and Dive
C: Liquid Biopsy-based biomarkers of treatment response and
resistance. Cancer Cell. 37:485–495. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Di Meo A, Bartlett J, Cheng Y, Pasic MD
and Yousef GM: Liquid biopsy: A step forward towards precision
medicine in urologic malignancies. Mol Cancer. 16:802017.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yu W, Hurley J, Roberts D, Chakrabortty
SK, Enderle D, Noerholm M, Breakefield XO and Skog JK:
Exosome-based liquid biopsies in cancer: Opportunities and
challenges. Ann Oncol. 32:466–477. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Intasqui P, Bertolla RP and Sadi MV:
Prostate cancer proteomics: Clinically useful protein biomarkers
and future perspectives. Expert Rev Proteomics. 15:65–79. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zhong Q, Sun R, Aref AT, Noor Z, Anees A,
Zhu Y, Lucas N, Poulos RC, Lyu M, Zhu T, et al: Proteomic-based
stratification of intermediate-risk prostate cancer patients. Life
Sci Alliance. 7:e2023021462023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Pinsky PF and Parnes H: Screening for
prostate cancer. N Engl J Med. 388:1405–1414. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Prensner JR, Rubin MA, Wei JT and
Chinnaiyan AM: Beyond PSA: The next generation of prostate cancer
biomarkers. Sci Transl Med. 4:127rv1232012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
De Marzo AM, Platz EA, Sutcliffe S, Xu J,
Grönberg H, Drake CG, Nakai Y, Isaacs WB and Nelson WG:
Inflammation in prostate carcinogenesis. Nat Rev Cancer. 7:256–269.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bonavita E, Gentile S, Rubino M, Maina V,
Papait R, Kunderfranco P, Greco C, Feruglio F, Molgora M, Laface I,
et al: PTX3 is an extrinsic oncosuppressor regulating
complement-dependent inflammation in cancer. Cell. 160:700–714.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Gupta G, Mou Z, Jia P, Sharma R, Zayats R,
Viana SM, Shan L, Barral A, Boaventura VS, Murooka TT, et al: The
long pentraxin 3 (PTX3) suppresses immunity to cutaneous
leishmaniasis by regulating CD4+ T helper cell response. Cell Rep.
33:1085132020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Stallone G, Cormio L, Netti GS, Infante B,
Selvaggio O, Fino GD, Ranieri E, Bruno F, Prattichizzo C,
Sanguedolce F, et al: Pentraxin 3: A novel biomarker for predicting
progression from prostatic inflammation to prostate cancer. Cancer
Res. 74:4230–4238. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Miller AM, Lundberg K, Ozenci V, Banham
AH, Hellström M, Egevad L and Pisa P: CD4+CD25high T cells are
enriched in the tumor and peripheral blood of prostate cancer
patients. J Immunol. 177:7398–7405. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
de Bono JS, Guo C, Gurel B, De Marzo AM,
Sfanos KS, Mani RS, Gil J, Drake CG and Alimonti A: Prostate
carcinogenesis: Inflammatory storms. Nat Rev Cancer. 20:455–469.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang Q, Ye Y, Yu H, Lin SH, Tu H, Liang D,
Chang DW, Huang M and Wu X: Immune checkpoint-related serum
proteins and genetic variants predict outcomes of localized
prostate cancer, a cohort study. Cancer Immunol Immunother.
70:701–712. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tsaur I, Thurn K, Juengel E, Gust KM,
Borgmann H, Mager R, Bartsch G, Oppermann E, Ackermann H, Nelson K,
et al: sE-cadherin serves as a diagnostic and predictive parameter
in prostate cancer patients. J Exp Clin Cancer Res. 34:432015.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Strumane K, Bonnomet A, Stove C,
Vandenbroucke R, Nawrocki-Raby B, Bruyneel E, Mareel M, Birembaut
P, Berx G and van Roy F: E-cadherin regulates human Nanos1, which
interacts with p120ctn and induces tumor cell migration and
invasion. Cancer Res. 66:10007–10015. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gong J, Kim DM, De Hoedt AM, Bhowmick N,
Figlin R, Kim HL, Sandler H, Theodorescu D, Posadas E and Freedland
SJ: Disparities with systemic therapies for black men having
advanced prostate cancer: Where Do We Stand? J Clin Oncol.
42:228–236. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ferrari MG, Jimenez-Uribe AP, Wang L,
Hoeppner LH, Murugan P, Hahm E, Yu J, Kuzel TM, Gradilone SA and
Mansini AP: Myeloid differentiation factor-2/LY96, a potential
predictive biomarker of metastasis and poor outcomes in prostate
cancer: Clinical implications as a potential therapeutic target.
Oncogene. 43:484–494. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Liu S, Shen M, Hsu EC, Zhang CA,
Garcia-Marques F, Nolley R, Koul K, Rice MA, Aslan M, Pitteri SJ,
et al: Discovery of PTN as a serum-based biomarker of
pro-metastatic prostate cancer. Br J Cancer. 124:896–900. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bai PS, Xia N, Sun H and Kong Y:
Pleiotrophin, a target of miR-384, promotes proliferation,
metastasis and lipogenesis in HBV-related hepatocellular carcinoma.
J Cell Mol Med. 21:3023–3043. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
de V II, Meertens A, Hogenhout R, Remmers
S and Roobol MJ; ERSPC Rotterdam Study Group, : A detailed
evaluation of the effect of Prostate-specific Antigen-based
screening on morbidity and mortality of prostate cancer: 21-year
Follow-up results of the rotterdam section of the european
randomised study of screening for prostate cancer. Eur Urol.
84:426–434. 2023. View Article : Google Scholar
|
|
34
|
Vynckier P, Annemans L, Raes S, Amrouch C,
Lindgren P, Májek O, Beyer K, Leenen RCA, Venderbos LDF, Denijs F,
et al: Systematic review on the cost effectiveness of prostate
cancer screening in europe. Eur Urol. 86:400–408. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Hugosson J, Roobol MJ, Månsson M, Tammela
TLJ, Zappa M, Nelen V, Kwiatkowski M, Lujan M, Carlsson SV, Talala
KM, et al: A 16-yr Follow-up of the european randomized study of
screening for prostate cancer. Eur Urol. 76:43–51. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
de Koning HJ, Gulati R, Moss SM, Hugosson
J, Pinsky PF, Berg CD, Auvinen A, Andriole GL, Roobol MJ, Crawford
ED, et al: The efficacy of prostate-specific antigen screening:
Impact of key components in the ERSPC and PLCO trials. Cancer.
124:1197–1206. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Vanli N, Sheng J, Li S, Xu Z and Hu GF:
Ribonuclease 4 is associated with aggressiveness and progression of
prostate cancer. Commun Biol. 5:6252022. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lucarelli G, Rutigliano M, Bettocchi C,
Palazzo S, Vavallo A, Galleggiante V, Trabucco S, Di Clemente D,
Selvaggi FP, Battaglia M and Ditonno P: Spondin-2, a secreted
extracellular matrix protein, is a novel diagnostic biomarker for
prostate cancer. J Urol. 190:2271–2277. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kim KA, Wagle M, Tran K, Zhan X, Dixon MA,
Liu S, Gros D, Korver W, Yonkovich S, Tomasevic N, et al: R-Spondin
family members regulate the Wnt pathway by a common mechanism. Mol
Biol Cell. 19:2588–2596. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Qian X, Li C, Pang B, Xue M, Wang J and
Zhou J: Spondin-2 (SPON2), a more prostate-cancer-specific
diagnostic biomarker. PLoS One. 7:e372252012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mooso BA, Vinall RL, Tepper CG, Savoy RM,
Cheung JP, Singh S, Siddiqui S, Wang Y, Bedolla RG and Martinez A:
Enhancing the effectiveness of androgen deprivation in prostate
cancer by inducing Filamin A nuclear localization. Endocr Relat
Cancer. 19:759–777. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Di Donato M, Zamagni A, Galasso G, Di
Zazzo E, Giovannelli P, Barone MV, Zanoni M, Gunelli R, Costantini
M, Auricchio F, et al: The androgen receptor/filamin A complex as a
target in prostate cancer microenvironment. Cell Death Dis.
12:1272021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mahaveer Chand N, Tekumalla PK, Rosenberg
MT, Dobi A, Ali A, Miller GM, Aristizabal-Henao JJ, Granger E,
Freedland SJ, Kellogg MD, et al: Filamin A is a prognostic serum
biomarker for differentiating benign prostatic hyperplasia from
prostate cancer in caucasian and african american men. Cancers
(Basel). 16:7122024. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Kiebish MA, Tekumalla P, Ravipaty S, Dobi
A, Srivastava S, Wu W, Patil S, Friss T, Klotz A, Srinivasan A, et
al: Clinical utility of a serum biomarker panel in distinguishing
prostate cancer from benign prostate hyperplasia. Sci Rep.
11:150522021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Varambally S, Laxman B, Mehra R, Cao Q,
Dhanasekaran SM, Tomlins SA, Granger J, Vellaichamy A, Sreekumar A,
Yu J, et al: Golgi protein GOLM1 is a tissue and urine biomarker of
prostate cancer. Neoplasia. 10:1285–1294. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dong B, Xu JY, Huang Y, Guo J, Dong Q,
Wang Y, Li N, Liu Q, Zhang M, Pan Q, et al: Integrative
proteogenomic profiling of high-risk prostate cancer samples from
Chinese patients indicates metabolic vulnerabilities and diagnostic
biomarkers. Nat Cancer. 5:1427–1447. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Peng Z, Wang Y, Wu X, Yang S, Du X, Xu X,
Hu C, Liu W, Zhu Y, Dong B, et al: Identifying high gleason score
prostate cancer by prostate fluid metabolic Fingerprint-based
Multi-modal recognition. Small Methods. 8:e23016842024. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Mekkawy AH, Pourgholami MH and Morris DL:
Involvement of Urokinase-type plasminogen activator system in
cancer: An overview. Med Res Rev. 34:918–956. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wach S, Al-Janabi O, Weigelt K, Fischer K,
Greither T, Marcou M, Theil G, Nolte E, Holzhausen HJ, Stöhr R, et
al: The combined serum levels of miR-375 and urokinase plasminogen
activator receptor are suggested as diagnostic and prognostic
biomarkers in prostate cancer. Int J Cancer. 137:1406–1416. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Furesi G, Rauner M and Hofbauer LC:
Emerging players in prostate Cancer-bone niche communication.
Trends Cancer. 7:112–121. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Pang B, Wang Q, Chen H, Liu Z, Han M, Gong
J, Yue L, Ding X, Wang S, Yan Z, et al: Proteomic identification of
small extracellular vesicle proteins LAMB1 and histone H4 for
prostate cancer diagnosis and risk stratification. Adv Sci (Weinh).
11:e24025092024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Peng Y, Wu D, Li F, Zhang P, Feng Y and He
A: Identification of key biomarkers associated with cell adhesion
in multiple myeloma by integrated bioinformatics analysis. Cancer
Cell Int. 20:2622020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Wu L, Shu X, Bao J, Guo X, Kote-Jarai Z,
Haiman CA, Eeles RA and Zheng W; PRACTICAL CRUKBPC3 CAP SPEGASUS
Consortia, : Analysis of over 140,000 european descendants
identifies genetically predicted blood protein biomarkers
associated with prostate cancer risk. Cancer Res. 79:4592–4598.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Adamaki M and Zoumpourlis V: Prostate
cancer biomarkers: From diagnosis to prognosis and precision-guided
therapeutics. Pharmacol Ther. 228:1079322021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sfanos KS, Yegnasubramanian S, Nelson WG
and De Marzo AM: The inflammatory microenvironment and microbiome
in prostate cancer development. Nat Rev Urol. 15:11–24. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
McMillan DC: The systemic
inflammation-based glasgow prognostic score: A decade of experience
in patients with cancer. Cancer Treat Rev. 39:534–540. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Diakos CI, Charles KA, McMillan DC and
Clarke SJ: Cancer-related inflammation and treatment effectiveness.
Lancet Oncol. 15:e493–503. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kalin M, Cima I, Schiess R, Fankhauser N,
Powles T, Wild P, Templeton A, Cerny T, Aebersold R, Krek W and
Gillessen S: Novel prognostic markers in the serum of patients with
castration-resistant prostate cancer derived from quantitative
analysis of the pten conditional knockout mouse proteome. Eur Urol.
60:1235–1243. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Arthur R, Williams R, Garmo H, Holmberg L,
Stattin P, Malmström H, Lambe M, Hammar N, Walldius G, Robinsson D,
et al: Serum inflammatory markers in relation to prostate cancer
severity and death in the Swedish AMORIS study. Int J Cancer.
142:2254–2262. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hendrickson WK, Flavin R, Kasperzyk JL,
Fiorentino M, Fang F, Lis R, Fiore C, Penney KL, Ma J, Kantoff PW,
et al: Vitamin D receptor protein expression in tumor tissue and
prostate cancer progression. J Clin Oncol. 29:2378–2385. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yuan C, Shui IM, Wilson KM, Stampfer MJ,
Mucci LA and Giovannucci EL: Circulating 25-hydroxyvitamin D,
vitamin D binding protein and risk of advanced and lethal prostate
cancer. Int J Cancer. 144:2401–2407. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Gregory KJ, Zhao B, Bielenberg DR, Dridi
S, Wu J, Jiang W, Huang B, Pirie-Shepherd S and Fannon M: Vitamin D
binding protein-macrophage activating factor directly inhibits
proliferation, migration, and uPAR expression of prostate cancer
cells. PLoS One. 5:e134282010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Minas TZ, Candia J, Dorsey TH, Baker F,
Tang W, Kiely M, Smith CJ, Zhang AL, Jordan SV, Obadi OM, et al:
Serum proteomics links suppression of tumor immunity to ancestry
and lethal prostate cancer. Nat Commun. 13:17592022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Freeman ZT, Nirschl TR, Hovelson DH,
Johnston RJ, Engelhardt JJ, Selby MJ, Kochel CM, Lan RY, Zhai J,
Ghasemzadeh A, et al: A conserved intratumoral regulatory T cell
signature identifies 4-1BB as a pan-cancer target. J Clin Invest.
130:1405–1416. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Chen Y, Wang Q, Shi B, Xu P, Hu Z, Bai L
and Zhang X: Development of a sandwich ELISA for evaluating soluble
PD-L1 (CD274) in human sera of different ages as well as
supernatants of PD-L1+ cell lines. Cytokine. 56:231–238. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Beer TM, Hotte SJ, Saad F, Alekseev B,
Matveev V, Fléchon A, Gravis G, Joly F, Chi KN, Malik Z, et al:
Custirsen (OGX-011) combined with cabazitaxel and prednisone versus
cabazitaxel and prednisone alone in patients with metastatic
castration-resistant prostate cancer previously treated with
docetaxel (AFFINITY): A randomised, open-label, international,
phase 3 trial. Lancet Oncol. 18:1532–1542. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ryan CJ, Smith MR, Fizazi K, Saad F,
Mulders PF, Sternberg CN, Miller K, Logothetis CJ, Shore ND, Small
EJ, et al: Abiraterone acetate plus prednisone versus placebo plus
prednisone in chemotherapy-naive men with metastatic
castration-resistant prostate cancer (COU-AA-302): Final overall
survival analysis of a randomised, double-blind, placebo-controlled
phase 3 study. Lancet Oncol. 16:152–160. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Attard G, Murphy L, Clarke NW, Cross W,
Jones RJ, Parker CC, Gillessen S, Cook A, Brawley C, Amos CL, et
al: Abiraterone acetate and prednisolone with or without
enzalutamide for high-risk non-metastatic prostate cancer: A
meta-analysis of primary results from two randomised controlled
phase 3 trials of the STAMPEDE platform protocol. Lancet.
399:447–460. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rathi N, McFarland TR, Nussenzveig R,
Agarwal N and Swami U: Evolving role of immunotherapy in metastatic
castration refractory prostate cancer. Drugs. 81:191–206. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Abida W, Patnaik A, Campbell D, Shapiro J,
Bryce AH, McDermott R, Sautois B, Vogelzang NJ, Bambury RM, Voog E,
et al: Rucaparib in men with metastatic castration-resistant
prostate cancer harboring a BRCA1 or BRCA2 gene alteration. J Clin
Oncol. 38:3763–3772. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hussain M, Fizazi K, Shore ND, Heidegger
I, Smith MR, Tombal B and Saad F: Metastatic hormone-sensitive
prostate cancer and combination treatment outcomes: A review. JAMA
Oncol. 10:807–820. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ryan CJ, Molina A, Li J, Kheoh T, Small
EJ, Haqq CM, Grant RP, de Bono JS and Scher HI: Serum androgens as
prognostic biomarkers in castration-resistant prostate cancer:
Results from an analysis of a randomized phase III trial. J Clin
Oncol. 31:2791–2798. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Smith MR, Hussain M, Saad F, Fizazi K,
Sternberg CN, Crawford ED, Kopyltsov E, Park CH, Alekseev B,
Montesa-Pino Á, et al: Darolutamide and survival in metastatic,
hormone-sensitive prostate cancer. N Engl J Med. 386:1132–1142.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Csizmarik A, Keresztes D, Nagy N, Bracht
T, Sitek B, Witzke K, Puhr M, Tornyi I, Lázár J, Takács L, et al:
Proteome profiling of enzalutamide-resistant cell lines and serum
analysis identified ALCAM as marker of resistance in
castration-resistant prostate cancer. Int J Cancer. 151:1405–1419.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Chen YM, Chen L, Xu YX, Cheng HB and Zhou
JL: Shared mechanisms for metastasis and drug resistance in
prostate cancer. Biochim Biophys Acta Rev Cancer. 1880:1893582025.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Cardillo TM, Govindan SV, Sharkey RM,
Trisal P and Goldenberg DM: Humanized anti-Trop-2 IgG-SN-38
conjugate for effective treatment of diverse epithelial cancers:
Preclinical studies in human cancer xenograft models and monkeys.
Clin Cancer Res. 17:3157–3169. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Trerotola M, Cantanelli P, Guerra E,
Tripaldi R, Aloisi AL, Bonasera V, Lattanzio R, de Lange R, Weidle
UH, Piantelli M and Alberti S: Upregulation of Trop-2
quantitatively stimulates human cancer growth. Oncogene.
32:222–233. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tong Y, Fan X, Liu H and Liang T: Advances
in Trop-2 targeted antibody-drug conjugates for breast cancer:
Mechanisms, clinical applications, and future directions. Front
Immunol. 15:14956752024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liu X, Deng J, Yuan Y, Chen W, Sun W, Wang
Y, Huang H, Liang B, Ming T, Wen J, et al: Advances in
Trop2-targeted therapy: Novel agents and opportunities beyond
breast cancer. Pharmacol Ther. 239:1082962022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sperger JM, Helzer KT, Stahlfeld CN, Jiang
D, Singh A, Kaufmann KR, Niles DJ, Heninger E, Rydzewski NR, Wang
L, et al: Expression and therapeutic targeting of TROP-2 in
Treatment-resistant prostate cancer. Clin Cancer Res. 29:2324–2335.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kim Y and Kislinger T: Novel approaches
for the identification of biomarkers of aggressive prostate cancer.
Genome Med. 5:562013. View
Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sun RAJ, Yu H, Wang Y, He M, Tan L, Cheng
H, Zhang J, Wang Y, Sun X, et al: Proteomic landscape profiling of
primary prostate cancer reveals a 16-protein panel for prognosis
prediction. Cell Rep Med. 5:1016792024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Guo T, Steen JA and Mann M:
Mass-spectrometry-based proteomics: From single cells to clinical
applications. Nature. 638:901–911. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Nordström T, Discacciati A, Bergman M,
Clements M, Aly M, Annerstedt M, Glaessgen A, Carlsson S, Jäderling
F, Eklund M, et al: Prostate cancer screening using a combination
of risk-prediction, MRI, and targeted prostate biopsies
(STHLM3-MRI): A prospective, population-based, randomised,
open-label, non-inferiority trial. Lancet Oncol. 22:1240–1249.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Song J, Ma S, Sokoll LJ, Eguez RV, Höti N,
Zhang H, Mohr P, Dua R, Patil D, May KD, et al: A panel of selected
serum protein biomarkers for the detection of aggressive prostate
cancer. Theranostics. 11:6214–6224. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Labiano S, Palazón A, Bolaños E,
Azpilikueta A, Sánchez-Paulete AR, Morales-Kastresana A, Quetglas
JI, Perez-Gracia JL, Gúrpide A, Rodriguez-Ruiz M, et al:
Hypoxia-induced soluble CD137 in malignant cells blocks
CD137L-costimulation as an immune escape mechanism. Oncoimmunology.
5:e10629672016. View Article : Google Scholar : PubMed/NCBI
|